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Abstract— Recently studies on spreading sequences (SS) codes generated by
a Markov chain have been extensively discussed since it was reported that, for
an asynchronous DS/CDMA system, SS codes can achieve smaller bit error
rate (BER) than linear feedback shift register (LFSR) sequences. However
these results follow from the assumption that the receiver is completely syn-
chronized. In this paper we treat the case where the transmitted signal and
its corresponding correlation receiver is incompletely synchronized within a
fraction of a chip and give the distribution of autocorrelation functions of SS
codes generated by a Markov chain. We also give the BER when a nearly
synchonized correlator is employed.

Keywords— asynchronous DS/CDMA, spreading sequences, Markov chain,
autocorrelation function

1 Introduction

In direct sequence code division multiple access (DS/CDMA) systems, one of
the most important problems is to design “good” spreading sequences, each of
which is assigned to each user. In most cases, the linear feedback shift registor
(LFSR) sequences have been used.

Recently Mazzini, Rovatti, and Setti [1]-[3] have extensively discussed that
some class of Markov sequences is better than independent and identically dis-
tributed (i.i.d.) random sequences as well as LFSR sequences in terms of
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Figure 1: Asynchronous DS/CDMA communication system

bit error rate (BER), which temporarily astonished researchers in communi-
cation engineering and applied mathematics who believed unconsciously that
sequences of i.i.d. random variables are the best at spreading sequences in
terms of BER. This, however, has been supported by several following pa-
pers [4]-[6]. '

Corresponding with such results including almost all of the previous ones,
is the fact that the receiver is assumed to be completely synchronized. It is
natural to ask: to what extent do the sequence designers sacrifice acquisition
and tracking performances of the correlation receiver in order to achieve a
smaller BER by using Markov sequences? In this paper we will give some
possible answers to this question.

2 Asynchronous DS/CDMA Systems

We consider baseband direct-sequence spread-spectrum (DS/SS) communica-
tions of J users (See Figure 1). We define the data signal of the j-th user
(j =1,2,---,J) with duration T and its assigned spread-spectrum code sig-
nal with duration T, respectively, by

Q)= 3 dur(t - pT) M

. p=—
X0(t) = 3 XPug,(t - ¢T2), (2)

q=-00 |
where
1 for0<t<D

t) = - ]
up(t) {0 otherwise. ©)

The j-th user’s spread-spectrum code sequence X ) = {Xéj )}g‘;_w has period

N = T/T,. Without loss of generality, we assume T, = 1 through this paper.
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We assume both data symbols dgj ) and code symbols Xéj ) take on values +1
or —1 only. The transmitted signal for the j-th user is sU)(t) = d@ () X ) (¢).
For asynchronous systems the received signal r(t) is given by

, |
r(t) =) st —t9) + n(2), (4)
j=1 .

where t\ is the time delay of j-th user’s signal and n(t) is the channel noise
process which we assume to be a white Gaussian process with two-sided spec-
tral density No/2. The output of the i-th correlation receiver during the p-th
time interval is given by

@ _ (oI (3 (i)
Z'=/ r(t) X" (t - r¥)de
d pT+1() (5)

= 59+ I 4y,

where

) (P+)T+r . . )
SW = / s@(t — D) XD (¢ — 70))qe (6)
pT+1(i)

is the signal component or the self-interference component, -

. (P+)T+r® J , . .
15 = / D st — tD)XO(¢ — 7))t (7)
P

T+7() =1

J#i
is the multiple-access interference (MAI) from the other J — 1 channels, and
1t is the noise component. 7(*) is the time delay of i-th correlation receiver. If
t® = 70 then S is equal to d” N. Note that S8 is called the autocorrelation
function, when regarded as a function of a relative time delay t®) — 7).
The aim of this paper is to give the distribution of the self-interference S,(,’) .

3 Spreading Sequences Generated by Markov
Chains

Let X = {X,}52,and Y = {Y,}32, be sequences of {—1, 1}-valued stationary
random variables. Suppose that X and Y are stationary 2-state Markov chains
with 2-dimensional transition matrix P, and mutually independent. Let their
probabilities be Prob{X, = —1} = Prob{Y, = -1} = Prob{X, = 1} =
Prob{Y, = 1} = ;. Let X be the eigenvalue of P other than 1. Then the
transition matrix P is given by

C1(14+X 1-A
P"z'(l—A 1+A)' (8)
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For simplicity, suppose irreducible, aperiodic Markov chains, then for £,m, k :

0 we have
Ex[Xn] = Ey[¥a] = 0, Exy[XaYad =0,
Ex[XnXn+e = A Ey[YaYoy] = 2
EX[4X—n-Xn+£JYn+€+k] =0,

Ex [Xan+eXn+£+an+e+k+m] -

(9)

l+m
AT

where Ez[-] denotes the expected value with respect to the distribution of a
random variable Z.

4 Distribution of the Self-Interference

The aperiodic cross-correlation functwn between two binary sequences X and
Y is given by

- N-1-¢
RYLX,Y)= > XpYou (£=0,1,---,N-1), (10)

n=0

which is introduced by Pursley[7]. Using this, we get its even and odd cross-
correlation functions are respectively defined by

RE(6: X,Y)=Ri(£; X,Y) + Ry(N - Y, X), (11)
RY(6X,Y)=Ry(6X,Y)-Ry(N-4Y,X). (12

We assume that the relative time delay t0) — 7) is expressed as £; + 5,
¢; € {0,1,- -1}, kij € {0,1,- — 1}, (M is some positive integer).
Using the up- sampled sequence by a factor of M for X, defined by

X = {:YO"'; 1‘Y97:¥1a"' 7‘YL7"' 13(1\]—1"" a‘YN—L}y ) (13)

M M M

which is regarded as a special kind of Kronecker sequences [8], we have

dy’ d(+1 1

B RE (M + ki x¥ x)

s
d(z) _ d(l) N
+ _p_’)—p-ﬂj\l[RNM(eiiAI + kii; X( ), X( )). (14)

4

For simplicity, we denote &, ki;, and /)E(i) as ¢, k, and f, respectively.
R%?(EM +k; X, Y) has the relation

1 —
HRf/A?(IZM +kX,Y)

_ k \ pero E/O .
_(1 M) (IZXY)+MR e+1,X,Y), (15)
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Figure 2: Expectation of Self-Interference

where the superscript /0 denotes either even or odd. Using (9)-(15), we get
the expectation of S,(,’) with respect to SS codes X as

i i k k
Ex[S{] = d{Y [(1 ~ H) (N -0\ + A—[(N (- 1),\‘“]

i k k e
+df,,l1 [( M) ANt 4 H(£+1),\N ¢ l]. (16)

Figure 2 shows the expectation of S(') for N = 128 and df,i) = d;:)_l =1
with the eigenvalue of transition matrix of Markov chain A = —2 + /3, which
minimize MAI[5] and, hence, is regarded as a candidate of SS codes.

1
Applying the central limit theorem [9] to ﬁRﬁ/ ©(¢,X,X) in 02, together
with using (15), we get the variance of S,(,i) /V' N with respect to X, denoted
by 0%, as

(1 - i) g+(e)+2]fI (1 1{61) Ho(0) + (fl)2g+(e+1)

+dOdC), [(1 - %)29 0 +20 (1 - H)” 0+ ( ") g (z+1)}
(17)

where G1(¢) and H(¢) are givén by G+(€) = (GE(£) £ G°(¢))/2 and H4(¢) =
(HE(€) £ HO(¢))/2, where

GE/IO(e) = E[RE’°(e X,X)? - E[RE/"(e;x,X)F, (18)
HEIO(¢) = E[Rf/o 6X,X)R¥°(+1,X,X))

lE[RE/O(e X, X)]-E[RE°(t+1, X, X)), (19)
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Figure 3: Variance of self-interference

Though precise calculation results are considerably complicated (See Ap-
pendix), we can approximate G.(£) and H.(€) for a sufficiently large N as
follows:

g+(e)z-(2e+iff\z)vwifj\\z, (20)
N(N 20) + 1:”:\\2) AN-2¢ for 0<e< (%], (21)
((22 +1) 42 T :\\2> AL —1% (22)
%e(N 20— 1) + ifj\\z)x" "% for 0< €< %) (23)

By (11), (12), (18), and (19), it is obvious that there exist symmetric relations

G(¢f) = G(N —£) and H(¢) = H(N — 1 — £). Using these relations, we obtain
the expressions for £ <Z < N.

5 Bit Error Rate

Finally, we will briefly mention the bit error ratio (BER) of a nearly synchro-
nized correlator i.e., {=0o0r N —1. Let the time-delay € = % for £ =0, and
e=1- — for £ = N — 1, then we obtain the expectation and the variance of

S8/ \/_ by VN(1 —¢(1 = X)) and €2(1 — A?), respectively, as N approaches
to infinity.
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For a 2-user multiple access system, Kohda and Fujisaki [5] gave a simple

expression of the variance of Iéfl), /V'N with respect to spreading codes X and
Y as the following:

2142+ )2

3T (24)

0? € Ex[Ep|Varxy [I{)/VN]]] =
for M > 1, where Ex[-] denotes the average with respect to the time delays k;,
which is assumed to take values on {0,1,---, A — 1} with equal probability.
For general J-user systems, the variance of MAI is given by (J — 1)o2 because
of the additive property of the Gaussian distribution.
The bit error occurs when Z,(,i) in (5) is positive if d;,i) = -1 (or Zpi) <
0 if d;i) = +1). Since Z,(,i) /V'N tends to Gaussian distribution with mean
VN(1 — (1 - ))) and variance or(e, A)? = €2(1 — A?) + (J-1)o?+Z0as N
approaches to infinity, the BER is given by

P(s;0) =Q (‘/N(i;é(;)_ A) ) : (25)
where
Q(zx) = /oo —\/12=1rexp [— u—;—] dw. (26)

Hence we get the expected BER: P,()\) = 2 foé P.(g; A)de. Lastly note that
since the classic LFSR-based SS codes are assumed to be approximately iden-
tified with sequences of i.i.d. binary random variables, SS codes generated by
Markov chains show great promising.
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Appendix Details of G.(¢) and H.(¢)
Using (9)-(15), we obtain

3¢ 1+A2 (N—=20)1+2

N =1-2 —_— 2¢ - 24
G+(¢) ( €+N)/\ + 1 v T
401 =X 2 ynee |
-y amr N (27)
G-(¢) “NI- e /\2)\ + 2—————N A
N—=2042(1 _ 20\ _
4 (L= N _2AN-0t,n (28)
N (1-2x2) N

forlgégj%l,and

Hi(l) = (_(212 by LA 1) yoert - (N 2202 D1F X

N N  1-x
(N=-1) 2 4XA-X) Ul+1) v 0 (29)
| N 1-X N (1-2x2)2 N
(N =20)(20—=1) yoopq  ALANT2FL 11402 o
(o) = — - S AT
H-(0) N A NT-x Ni-a
N-0+1 ¢N-—£-1
( ]1[( + ))\N—I + ( - )/\N+1 (30)

for 1 < ¢ < 2L
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