
An $O(mn+n^{2}\log n)$ Time Cactus Construction Algorithm

永持仁 中村秀司 石井利昌
豊橋技術科学大学大学院工学研究科情報工学系

Hiroshi Nagamochi Shuji Nakamura Toshimasa Ishii
Department of Information and Computer Sciences,

Toyohashi University of Technology,
Toyohashi, Aichi, 441-8580, Japan.

{naga. shuji.ishii}@algo.ics.tut.ac.jp

Abstract
It is known that all minimum cuts in an edge-weighted, undirected graph can be reP-

raaeented by a cactus. In this paper, we show that such a cactus representation can be
computed in $O(mn+n^{2}\log n)$ time and $O(m)$ space. This improves the previous best time
bound of deterministic cactus construction algorithms, and matches with the time bound
of the fastest deterministic algorithm for computing aminimum cut.

1 Introduction

We consider m undirected graph G with n vertices and m edges. The minimum cut in a graph
is one of the most fundamental notions in graph theory $\mathrm{m}\mathrm{d}$ is a rich source of interesting
combinatorial problems. A connected graph is called a cactus if each edge is contained in
exactly one cycle. Dinits, Karzanov and Lomonosov [3] showed that all minimum cuts in a
given graph G can be represented as a cactus \mathcal{R} of size $O(n)$ (see section 3 for the definition
of the representation). Such a cactus \mathcal{R} is called a cactus representation for au minimum cuts.
This cactus representation plays m important role in solving many connectivity problems
such as the edge-connectivity augmentation problem $[4, 11]$ and the edge splitting problem [9].
Several efficient algorithms for cactus representations have been developed so far. Currently an
$O(nm\log(n^{2}/m))$ time algorithm due to Gabow [4] and m $O(mn+n^{2}\log n+\gamma m\log n)$ time
algorithm due to Nagamochi, Naffio and Ibaraki [10] are the fastest among these deterministic
algorithms, where γ is the number of cycles in a cactus \mathcal{R} and $\gamma=O(n)$ holds. An $O\sim(n^{2})$ time
randomized algorithm of Monte Carlo type is proposed by Bencz\’ur [2].

However, the fastest deterministic algorithm for computing the minimum cut size due to
Nagamochi $\mathrm{m}\mathrm{d}$ Ibaraki [6] runs in $O(mn+n^{2}\log n)$ time and $O(m)$ space. Thus, it was a little
gap between the time complexities for computing a single minimum cut and for computing
all minimum cuts. In this paper, we try to improve the complexity of Nagamochi, Nakao
and Ibaraki’s algorithm ($\mathrm{N}\mathrm{N}\mathrm{I}$ algorithm, for short), whose time $\mathrm{m}\mathrm{d}$ space complexities are
$O(mn+n^{2}\log n+\gamma m\log n)=O(mn\log n)$ and $O(mn)$, respectively. We show that the $\mathrm{N}\mathrm{N}\mathrm{I}$

algorithm can be implemented to run in $O(mn+n^{2}\log n)$ time and $O(m)$ space. This closes
the gap between the complexities of the $\mathrm{N}\mathrm{N}\mathrm{I}$ algorithm and of the Nagamochi and Ibaraki’s
minimum cut algorithm.

2Preliminaries
Let G be a simple undirected graph with a set $V(G)$ of vertices and a set $E(G)$ of edges
weighted by cc : $E(G)arrow R^{+}$, where R^{+} is the set of non-negative real numbers. An edge in

数理解析研究所講究録 1241巻 2001年 148-156

148

$E(G)$ with end vertices u and v is denoted by (u, v) or (v, u) . We denote $|V(G)|$ by n , $|E(G)|$

by m , and $V(G)-X$ by \overline{X} for a subset $X\subseteq V(G)$. A graph G is said to be unweighted if
$c_{G}(e)=1$ for all edges $e\in E(G)$.

For two non-empty disjoint subsets X, $\mathrm{Y}\in V$, we denote by $E(X, \mathrm{Y};G)$ the set of edges
$e=(x, y)$ such that $x\in X$ and $y\in \mathrm{Y}$, and also denote $c(X, \mathrm{Y};G)=\sum_{e\in E(X,Y;G)}c_{G}(e)$. We
may write $E(X, \mathrm{Y};G)$ and $c(X, \mathrm{Y};G)$ simply as $E(X, \mathrm{Y})$ and $c(X, \mathrm{Y})$, respectively, if G is clear
from the context.

A partition of $V(G)$ is a family $\{V_{1}, V_{2}, \ldots, V_{r}\}$ of non-empty subsets of $V(G)$ (possibly
$r=1)$ such that any two subsets are pairwise disjoint and the union of all subsets is $V(G)$.
An ordered set $(V_{1}, V_{2}, \ldots, V_{r})$, $r\geq 2$, is called an ordered partition (or o partition, for short)
of $V(G)$ if $\{V_{1}, \ldots, V_{r}\}$ is apartition of $V(G)$. A partition $\{X, V(G)-X\}$ of $V(G)$ is called
acut of G , and its size is defined by $c(X,\overline{X})$. A cut $\{X,\overline{X}\}$ crosses another cut $\{\mathrm{Y},\overline{\mathrm{Y}}\}$ in a

graph G if

$X\cap \mathrm{Y}\neq\emptyset$, $X-\mathrm{Y}\neq\emptyset$, $\mathrm{Y}-X\neq\emptyset$ and $\overline{X\cup \mathrm{Y}}\neq\emptyset$.

Acut separates x , $y\in V(G)$ is called an (x, y) cut An (x, y)-cut with minimum size called
aminimum $(x, y)- cut$, and its size is defifined by $\lambda(x, y;G)$. A total ordering v_{1} , v_{2} , \ldots , v_{n} of all
vertices in $V(G)$ maximum adjacency ordering (MAO, for short) if it satisfies

$c(\{v_{1}, v_{2}, \ldots, v_{i}\}, v_{i+1})=\max_{v_{+1,\ldots\prime}u\in\{.v_{n}\}}c(\{v_{1}, v_{2}, \ldots, v_{i}\}, u)(1\leq i\leq n-1)$
.

Lemma 2.1 [6, 7, 13] For an $MAOv_{1}$, v_{2} , \ldots , v_{n} , $\lambda(v_{n-1}, v_{n};G)=c(\{v_{n}\}, V(G)-\{v_{n}\})$ holds
for the last two vertices v_{n-1} and v_{n} . An MAO in a graph G with n vertices and m edges can
be found in $O(m+n\log n)$ time. \square

Lemma 2.2 [7] For a given MAO in a graph G with n vertices and m edges, a maximum
$fflow\square$

between the last two vertices v_{n-1} and v_{n} can be computed in $O(m\log n)$ time.

A cut with the minimum size is called a minimum cut, and its size is defifined by $\lambda(G)$. We
denote the set of all minimum cuts in G by $\mathrm{C}(G)$. For example, the graph G in Fig. 1 has the
minimum cut size 4.

Figure 1: An edge-weighted undirected graph G with $\lambda(G)=4$. (the number of lines between
two vertices u and v represents weight of the edge (u,$v))$.

3 Cactus representation for minimum cuts

In this section, we review the defifinition of cactus representations for all minimum cuts and
some basic operations for constructing cactus representations

149

3.1 Definition of cactus representations

We call a graph consisting of a single vertex a $t_{l\dot{\mathrm{Y}}}vial$ cactus. An unweighted graph with more
$\mathrm{t}\mathrm{h}\mathrm{m}$ one vertex is called a cactus if each edge belongs to exactly one cycle, where every cycle
is of length at least 2 ($\mathrm{i}.\mathrm{e}.$, there is no self-loop). Thus, every pair of cycles, if any, in a cactus
has at most one vertex in common. Any non-trivial unweighted cactus \mathcal{R} satisfies $\lambda(\mathcal{R})=2$.

For a given graph G, we introduce m unweighted cactus \mathcal{R} and a mapping φ : $V(G)arrow$

$V(\mathcal{R})$. Throughout this paper, we shall use the term ”vertex” to denote an element in $V(G)$,
and the term ”node” to denote an element in $V(\mathcal{R})$. A set $V(\mathcal{R})$ may $\infty \mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}$ a node x such
that $V(G)$ contains no vertex v with $\varphi(v)=x$. Such a node x is called m empty node. Let
$\mathrm{C}(\mathcal{R})$ denote the set of all minimum cuts of \mathcal{R} . Thus, $\{S, V(\mathcal{R})-S\}\in \mathrm{C}(\mathcal{R})$ holds if $\mathrm{m}\mathrm{d}$ only
if $E(S, V(\mathcal{R})-S;\mathcal{R})$ is a set of two edges belonging to the same cycle in \mathcal{R} .

Defifinition 3.1 For a $\dot{\varphi}ven$ subset $\mathrm{C}’\subseteq \mathrm{C}(G)$ of $\min_{\dot{l}}mum$ cuts, a $pa\dot{\iota}r(\mathcal{R}, \varphi)$ of a cactus \mathcal{R}

and a mapping φ is called a cactus representation for $\mathrm{C}’$ if it satisfies (i) and (ii).

(i) For an arbitrary minimum cut $\{S, V(\mathcal{R}) -S\}\in \mathrm{C}(\mathcal{R})$, the cut { $X,X\urcorner$ defined by $X=$
$\{u\in V(G)|\varphi(u)\in S\}$ and $\overline{X}=\{u\in V|\varphi(u)\in V(\mathcal{R})-S\}$ belong to $\mathrm{C}’$

(ii) Conversely, for any $m\dot{\iota}n\dot{l}mum$ cut { $X,X\urcorner\in \mathrm{C}’$, there exists a minimum cut {S, $V(\mathcal{R})-$

$S\}\in \mathrm{C}(\mathcal{R})$ such that X $=$ {u $\in V$ | $\varphi(u)\in S\}$ and $\overline{X}=$ {u $\in V$ | $\varphi(u)\in V(\mathcal{R})$-S}. \square

It is shown in [3] that, for any graph G, there exists a cactus representation for $\mathrm{C}(G)$. For
example, Fig. 2 shows a cactus representation for au minimum cuts in the graph in Fig. 1.

Figure 2: A cactus representation \mathcal{R} for $\mathrm{C}(G)$ of the graph G in Fig. 1

3.2 Union of cactus representations

Suppose that we are given two cactus representations $(\mathcal{R}_{1}, \varphi_{1})\mathrm{m}\mathrm{d}$ $(\mathcal{R}_{2}, \varphi_{2})$ for suket of
minimum cuts $\mathrm{C}_{1},\mathrm{C}_{2}\in \mathrm{C}(G)$. We review m operation for $\infty \mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}(\mathcal{R}_{1}, \varphi_{1})$ and $(\mathcal{R}_{2}, \varphi_{2})$ into
a single cactus representation (\mathcal{R}, φ) for $\mathrm{C}_{1}\cup \mathrm{C}_{2}$. It is known [8] that such (\mathcal{R}, φ) exists if there
are node$\mathrm{a}\dot{\mathrm{e}}z_{1}\in V(\mathcal{R}_{1})$ and $Z2$ $\in V(\mathcal{R}_{2})$ such that

$\varphi^{-1}(z_{1})\cup\varphi^{-1}(z_{2})=V(G)$.

The daaeired cactus \mathcal{R} is produced by $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\infty \mathrm{i}\mathrm{n}\mathrm{g}$ the node z_{1} with z_{2} , which is newly denoted
as z . The node z is a cut point in \mathcal{R} . The mapping $\varphi:V(G)arrow V(\mathcal{R}_{1})\cup V(\mathcal{R}_{2})\cup\{z\}-\{z_{1}, z_{2}\}$

is obtained by setting
$\varphi^{-1}(z)$ \equiv $\varphi_{1}^{-1}(z_{1})\cap\varphi_{2}^{-1}(z_{2})$,

$\varphi^{-1}(x_{1})$ \equiv $\varphi_{1}^{-1}(x_{1})$ for au nod e
$x_{1}\in V(\mathcal{R})-z_{1}$,

$\varphi^{-1}(x_{2})$ \equiv $\varphi_{2}^{-1}(x_{2})$ for au nod e
$x_{2}\in V(\mathcal{R})$ $-z_{2}$.

The node z is called a joint node in the operation. The joint node z is m empty node in (\mathcal{R}, φ)

if md only if $\varphi_{1}^{-1}(z_{1})\cap\varphi_{2}^{-1}(z_{2})=\emptyset$ holds

150

3.3 (s,$t)- \mathrm{M}\mathrm{C}$-partition

The following lemma is the basis for subsequent discussions.

Lemma 3.1 [3] Let { X, $X\neg$ and $\{\mathrm{Y},\overline{\mathrm{Y}}\}$ be any two minimum cuts of G. If these cuts cross
each other, then

(i) $c(V_{1}, V_{2})=c(V_{2}, V_{3})=c(V_{3}, V_{4})=c(V_{4}, V_{1})=\lambda(G)/2$

(ii) $c(V_{1}, V_{3})=c(V_{2}, V_{4})=0$

hold, where $V_{1}=X\cap \mathrm{Y}$, $V_{2}=\overline{X}\cap \mathrm{Y}$, $V_{3}=\overline{X}\cap\overline{\mathrm{Y}}$ and $V_{4}=X\cap\overline{\mathrm{Y}}$. \square

The lemma says that for an edge $e=(s, t)$ with $cc(e)>0$ any two minimum cuts separating
s and t do not cross each other (since otherwise $cc(e)>0$ would contradict $c(V_{1}, Vs)$ $=0$ or
$c(V_{2}, V_{4})=0)$.

Given an 0-partition (V_{1}, \ldots, V_{r}) and two indices h and $k(1\leq h\leq k\leq r)$, we defifine

$V_{(h,k)}\equiv V_{h}\cup V_{h+1}\cup\cdots\cup V_{k}$.

For a subset $\mathrm{C}’\subseteq \mathrm{C}(G)$, an 0-partition (V_{1}, \ldots, V_{r}) of $V(G)$ is called a minimum cut $\mathit{0}- pa\hslash ition$

(or MC-partition, for short) over $\mathrm{C}’$, if

$\{\{V_{(1,k)},\overline{V_{(1,k)}}\}|1\leq k\leq r-1\}\subseteq \mathrm{C}’$.

We say that an edge $e=(s, t)$ in G is critical if $c_{G}(e)>0$ and $\lambda(s, t;G)=\lambda(G)$. Let
$\mathrm{C}(s,t)(G)$ denote the set of all minimum cuts in $\mathrm{C}(G)$ that separate s and t . It is shown that
set $\mathrm{C}(s,t)(G)$ for acritical edge (s, t) has the following structure.

Lemma 3.2 [5, 12] For a critical edge (s, t) in a graph G, all minimum cuts in $\mathrm{C}(s,t)(G)$ are
represented by an MC-pahition over $\mathrm{C}(G)$. \square

An $\mathrm{M}\mathrm{C}$-partition as in the lemma is called an $(s, t)- MC- pa\hslash ition$ over $\mathrm{C}(G)$, and is denoted
by $\pi(s,t)$. It is also known $[5, 12]$ that a $\pi(s,t)$ can be obtained in $O(m+n)$ time from an
arbitrary maximum flow between s and t .

For example, Fig 3 shows the $(v_{2}, v_{3})- \mathrm{M}\mathrm{C}$-partition $\pi(v_{2},v_{3})$ of the graph G in Fig. 1.

Figure 3: The $(v_{2}, v\mathrm{s})- \mathrm{M}\mathrm{C}$ -partition $\pi(v_{2},v_{3})$ over $\mathrm{C}(G)$ for the graph G in Fig. 1

151

3.4 (s,$t)$-cactus representation

A cut {X,$\overline{X}\}$ crosses m 0-partition $(V_{1},$
\ldots ,

$V_{r})$ of $V(G)$ if {X, x\urcorner crosses some cut of the
form { $V_{\dot{l}}$, I4}.

Lemma 3.3 [8] Let (s, t) be a $cr\dot{\tau}lical$ edge in a graph G. Then no minimum cut $\{X$,
$X\urcorner\in \mathrm{C}(G)\square$

crosses the $(s, t)- MC- partiiion\pi(s,t)$ over $\mathrm{C}(G)$.

We say that a cut {X, X\urcorner is compatible with m 0-partition $\pi=(V_{1},$
\ldots ,

$V_{r})$ of $V(G)$, if

$V_{\dot{l}}\subseteq X$ or $V_{\dot{1}}$
$\subseteq\overline{X}$ for all i $=1,$ 2, \ldots , r.

We denote by $\mathrm{C}_{\mathrm{c}omp}(\pi)$ the set of au minimum cuts in $\mathrm{C}(G)$ that are compatible with π .
For an $(s, t)- \mathrm{M}\mathrm{C}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\pi(s,t)=(V_{1}, \ldots, V_{r})$, bmma 3.3 claims that my minimum cut
{ $X,X\urcorner\in \mathrm{C}(G)$ satisfies either {X, $X\urcorner\in \mathrm{C}_{comp}(\pi(S,t))$ or $X\subset V_{\dot{l}}$ for some i . Note that

$\mathrm{C}_{comp}(\pi(\mathit{8},t))$ contains the set $\mathrm{C}(s,t)(G)$ of all minimum cuts that separate s md t , and possibly
some other minimum cuts. The next lemma shows how to compute all minimum cuts in
$c_{\omega mp(\pi_{(s,t)})}$.

Lemma 3.4 [8] For a $cr\cdot tical$ edge (s, t) in a graph G, let $\pi(s,t)=(V_{1}, \ldots, V_{r})$ be the (s, t) -MC-
$pa\hslash ition$ over $\mathrm{C}(G)$. Then, any $min\dot{\iota}mum$ cut $\{X,\overline{X}\}\in \mathrm{C}_{com_{\mathrm{P}}}(\pi(s,t))$ satisfies the following:

(i) If $\{X,\overline{X}\}$ separates s and t, then either X $=V(:,r)or\overline{X}=V(:,r)$ for some i $(1<i\leq r)$.

(ii) If $\{X,\overline{X}\}$ does not separate s and t, then X $=V(:,j)or\overline{X}=V(:,j)$ for some i,j $(1<i\leq$

j $<r)$ such that {Vki $\overline{V_{k}}$} $\in \mathrm{C}(G)$ for all k(i $\leq k\leq j)$. \square

It is known [8] that my $(s, t)- \mathrm{M}\mathrm{C}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\pi(s,t)$ for a critical edge (s, t) in G admits a
cactus repreaentation for $c_{c\circ mp(\pi)}(\Leftrightarrow,t)\in \mathrm{C}(G)$, which is called an (s, t) cactus representation
and denoted by $(\mathcal{R})(s,t)’\varphi(s,t)$. A linear time algorithm for constructing such a representation
is $\mathrm{a}\mathrm{k}\mathrm{o}$ known.

Theorem 3.1 [8] $G_{\dot{l}}ven$ an $(s, t)- MC- pa\hslash\dot{l}tion\pi(s,t)$ for a critical edge (s, t) in a graph G, a

(s, t) -cactus representation $(\mathcal{R}(s,t),$ $\varphi(s,t))$ can be constmcted in $O(m+n)$ time. \square

4 Algorithm for Constructing Cactus Representations
In this section, we review an outline of NNI algorithm for constructing acactus representation
for $\mathrm{C}(G)$, and then improve its time and space $\infty \mathrm{m}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{x}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{e}\mathrm{s}$.

4.1 Decomposition of agraph

For m $(s, t)- \mathrm{M}\mathrm{C}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\pi(\epsilon,t)=(V_{1}, \ldots, V_{r})$ and (s, t) cactus representation $(\mathcal{R}(s,t),$ $\varphi(s,t))$ in
G, let $G_{:}$ be the graph $\infty \mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{d}$ fffom G by contracting $V(G)-V_{i}(i=1,2, \ldots, r)$ into a
single vertex $\hat{v}_{\dot{l}}$. Obviously, $\lambda(G:)\geq\lambda(G)$. The graph $G_{:}$ is called critical if $\lambda(G:)=\lambda(G)$.
Assume that $G_{:}$ is critical, and consider a minimum cut $\{\mathrm{Y}, V(G_{\dot{1}})-\mathrm{Y}\}\in \mathrm{C}(G:)$. By Lemma
3.4, either

(i) {Y,$V(G:)-\mathrm{Y}\}$ separates some two vertices xmd y in V_{i} and satisfies Y $\subset V_{\dot{1}}$ (or
$V(G:)-\mathrm{Y}\subset V_{\dot{l}})$, or

(ii) {Y,$V(G:)-\mathrm{Y}\}=\{V_{\dot{l}},\hat{v}_{\dot{l}}\}$.

152

Note that the cut $\{V_{i},\hat{v}_{i}\}$ in (ii) is already represented in $(\mathcal{R}(s,t),$ $\varphi(s,t))$ as $\{V_{i}, V(G)-V_{i}\}$.
The ordered collection $(G_{1}, G_{2}, \ldots, G_{r})$ of graph is called an (s, t) -decomposition of G . For
every critical graph G_{i} , we try to compute a cactus representation $(\mathcal{R}_{G_{i}}, \varphi c_{i})$ for $\mathrm{C}(G_{i})$ or for
$\mathrm{C}(G_{i})$ –{V4, $v\wedge i$ }. Thus every minimum cut in G is represented in $(\mathcal{R})(s,t)’\varphi(s,t)$ or $(\mathcal{R}c_{:}, \varphi c_{:})$

for some i .

4.2 NNI algorithm

Prom the argument in the previous section, the outline of $\mathrm{N}\mathrm{N}\mathrm{I}$ algorithm is described recursively
as follows.

Procedure CACTUS(G)
Input: a graph G.
Output: a cactus representation (\mathcal{R}, φ) for all minimum cuts $\mathrm{C}(G)$.

1. Choose an edge $e=(s, t)$ with $cc(e)>0$ in G .
2. If $\lambda(s, t;G)>\lambda(G)$, then contract s and t into a single vertex, and apply

Procedure CACTUS(G’) to the resulting network $G’$.
3. Otherwise (if λ (s , $t;G)=\lambda(G)$), compute a maximum flow between s and t .
4. Compute the $(s, t)- \mathrm{M}\mathrm{C}$-partition $\pi(s,t)=(V_{1}, \ldots, V_{r})$ and the corresponding

(s, t) cactus representation $(\mathcal{R}(s,t),$ $\varphi(s,t))$.
5. If all minimum cuts in the $\pi(s,t)=(V_{1}, \ldots, V_{r})$ have been already detected

then contract s and t and return a trivial cactus.
6. Otherwise, fifind the $(s, t)- \mathrm{d}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}(G_{1}, G_{2}, \ldots, G_{r})$of G . Go to 7.
7. Apply Procedure $\mathrm{C}\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{U}\mathrm{S}(G_{i})$ to each G_{i} to obtain the cactus representation

$(\mathcal{R}c_{:}, \varphi_{G}:)$ for $\mathrm{C}(G_{i})$, where Procedure $\mathrm{C}\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{U}\mathrm{S}(G_{i})$ returns a trivial cactus
if G_{i} is not critical. Go to 8.

8. Combine all $(\mathcal{R}c_{:}, \varphi c_{:})$, $i=1$, \ldots , r and $(\mathcal{R}(s,t)$, $\varphi(s,t))$ into a cactus represen-
un ion (\mathcal{R}, φ) for $\mathrm{C}(G)$ by using union operations. Return (\mathcal{R}, φ) .

Prom the argument so far, we see that the above algorithm computes a cactus representation
for $\mathrm{C}(G)$. We use an $\mathrm{M}\mathrm{A}\mathrm{O}$ to choose an edge $e=(s, t)$ and to compute a maximum flow between
s and t . Rom an MAO v_{1} , v_{2} , \ldots , v_{n} , we choose the vertex v_{p} with the largest index p such
that v_{p} and v_{n} are joined by an edge with positive weight. Then let $s=v_{n}$ and $t=vp$.
Note that v_{1} , v_{2} , \ldots , v_{p} , v_{n} is an $\mathrm{M}\mathrm{A}\mathrm{O}$ in the graph $G’$ obtained from G by deleting vertices
v_{p+1} , v_{p+2} , \ldots , v_{n-1} . Hence, by Lemma 2.1, $\lambda(s, t;G)=\lambda(s, t;G’)=c(\{s\}, V(G’)-\{s\})$ holds,
and by Lemma 2.2 amaximum flow between s and t can be found in $O(m\log n)$ time. After
computing a maximum flow between s and t in Step 3, the $(s, t)- \mathrm{M}\mathrm{C}- \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\pi(s,t)$ and the
(s, t) cactus representation $(\mathcal{R}(s,t),$ $\varphi(s,t))$ can be computed in linear time.

The entire time complexity of CACTUS is dominated by the time for fifinding MAOs and
for computing maximum flows. As to these time complexities, the following result is shown.

Lemma 4.1 [10] The total time to compute all $MAOdur\dot{\mathrm{v}}ng$ the execution of CACTUS is
O ($mn+n^{2}$ logyz). Also, the total time to compute all maximum flows $dur\cdot ng$ the execution
of CACTUS is $O(n\cdot M(m, n))$, where $M(n, m)$ denotes the time to compute a maximum fflow
between two adjacent vertices s and t , which are allowed to be chosen arbitrarily in the given
graph. \square

Since we have seen $M(n, m)=O(m\log n)$, the time complexity of CACTUS is $O(nm\log n)$

(note that M (n , m) does not include the time for choosing adequate s and t). Nagamochi,
Nakao and Ibaraki reduced the number of iterations of maximum fflow computations to improve

153

the time complexity to 0($mn+n^{2}\log n\ovalbox{\tt\small REJECT}^{-7}\mathrm{r}\mathrm{n}$ logn) where $\ovalbox{\tt\small REJECT} 7$ is the number of cycles in the
resulting cactus representation. To improve the time complexity, we here use the following
recent result by Arikati and Mehlhorn’s maximum flow algorithm [1].

Lemma 4.2 [1] A maximum flow between the last two vertices v_{n-1} and v_{n} of MAO can be
computed in $O(m)$ time. \square

Hence, for $s=v_{n}\mathrm{m}\mathrm{d}$ $t=v_{p}$ in an $\mathrm{M}\mathrm{A}\mathrm{O}$, we cm fifind a maximum flow in $O(m)$ time.
Thus, $M(n, m)=O(m)$. Therefore, by Lemma 4.1, CACTUS cm be implemented to run in
$O(mn+n^{2}\log n)$ time.

We next consider the space complexity of CACTUS. We use m adjacency list for adata
structure to store a graph, which takes $O(m+n)$ space to store a graph with n vertices and
m edges. We see that a naive implementation of CACTUS takes $O(mn)$ space. Indeed, in
Step 7, procedure CACTUS(Gi) needs information of $G_{:}\mathrm{m}\mathrm{d}$ one may make a copy of G_{i} as an
input of $\mathrm{C}\mathrm{A}\mathrm{C}\mathrm{T}\mathrm{U}\mathrm{S}(G_{i})$, which will be maintained until the recursive process of CACTUS(G:) is
done. Notice that at the same depth of recursive calls, the total size of $G_{:}$ is $O(n+m)$ because
each $G_{:}$ is obtained from G by contracting $\overline{V_{\dot{l}}}$ to single vertex $\hat{v}_{\dot{l}}$. However, $\sin 0\mathrm{o}\mathrm{e}$ the depth of
recursive $\mathrm{c}\mathrm{a}\mathrm{u}$ of Procedure CACTUS is $O(n)$, the space complexity of this implementation is
$O(mn)$.

We improve this to $O(m)$ by introducing a data structure for handling contraction of ver-
ticaae. Let us consider a data structure by which we cm easily restore G fffom each $G_{:}$ after
procedure CACTUS(G:) is fifinished. A graph G with n vertices is stored by n adjacency lists
$L(u)$, $u\in V$, such that each element of the list $L(u)$ corresponds to an edge (u, v) . Note that
the same edge (v, u) is also stored in the adjacency list $L(v)$. Then m edge (u, v) cm be viewed
as a pair of directed edges (u, v) and (u, v) oppositely oriented. This is because if we remove
the element (u, v) from $L(u)$ then we can traverse e fffom v to u but not from u to v . We use
this property to restore G from $G_{:}$.

In order to restore G fffom $G_{:}$, we need to know which vertices are contracted and which
edges are deleted in constructing $G_{:}$ fffom G. Assume that we have just constructed a $G_{:}$ ffom
G by contracting $\overline{V_{\dot{l}}}$ into a single vertex $\hat{v}_{\dot{l}}$ in Step 6. For a newly created vertex $\hat{v}_{\dot{l}}$, we construct
an adjacency list $L(\hat{v}_{\dot{l}})$ which contains edges between $\hat{v}_{i}\mathrm{m}\mathrm{d}$ $V(G)-\overline{V_{\dot{l}}}$. As to edges $e=(u, v)$
between a vertex $v\in\overline{V_{\dot{2}}}$ and a vertex $u\in V_{\dot{l}}$, we remove e fffom $L(u)$ (but not from $L(v)$) so
that we cannot traverse e fffom u to v (but we can still traverse e from v to u , although this
property is not necessarily during execution of CACTUS). Note that in the $G_{:}$ we cmnot
reach any of vertices in $\overline{V_{\dot{l}}}$, and the existence of such edges in the list $L(v)$, $v\in\overline{V_{\dot{l}}}$ doae not affect
the subsequent computation of the algorithm. Notice that we only remove edges $e=(u, v)$
with $u\in V_{\dot{l}}\mathrm{m}\mathrm{d}$ $v\in\overline{V_{i}}$ fffom $L(v)$ (hence edges whose end vertices are in $\overline{V_{\dot{l}}}$ are not deleted).
Let $E_{i}(G)$ denote the set of these edges. To store the information of $\overline{V_{\dot{l}}}$, we construct a linear
list $P(\hat{v}_{i})$ consisting of \hat{v}_{i} and $\overline{V.\cdot}$. With $P(\hat{v}_{\dot{l}})$ and edges in the lists $L(v)$ for $v\in\overline{V_{i}}$, we can
easily $\mathrm{r}\mathrm{e}\omega \mathrm{n}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}$ G fffom G_{i} . We fifirst traverse $P(\hat{v}_{i})$ to identify all vertices v contracted into
\hat{v}_{i} when G_{i} is constructed, and for each $v\in\overline{V_{\dot{l}}}$, we traverse $L(v)$ to identify all $\mathrm{e}\mathrm{d}\mathrm{g}\mathrm{e}$ e incident
to v . If an edge $e=(v, u)$ incident to $v\in\overline{V_{\dot{l}}}$ joins v and a vertex $u\in V_{\dot{l}}$, then we insert edge
(u, v) in the list $L(u)$ (where such edge (u , v) must have been removed when $G_{:}$ constructed).
Therefore, to perform the recursive calls in CACTUS, we only need to maintain the linear lists
$P(\hat{v}_{i})$, whose size in total is $O(n)$ since each vertex in the input graph G appears in at most
one linear list. Therefore, the space complexity of this implementation is $O(m+n)$.

$\mathrm{R}\mathrm{o}\mathrm{m}$ above discussion, the next theorem is established.

Theorem 4.1 A cactus representation for all minimum cuts in a graph G can be constructed
in O($mn+n^{2}$ logn) time and $O(m+n)$ space. \square

154

5Experiment

To evaluate the practical improvement of space complexity of algorithm CACTUS, we imple-
mented the existing method and our new method and measured the maximum memory size
used during execution of CACTUS. In our experiment, we used the following three different
problems.

(a) Complete binary trees, where weight of each edge is 1.

(b) Union of k Hamilton cycles on n vertices (where each edge in a Hamilton cycle has weight
1, and the resulting graph satisfifies $c(v, V-v)=k$ for all $v\in V$)

(c) Spherical surface graphs, which are graphs obtained as follows. Put n vertices randomly
on aspherical surface, and create an edge between two vertices u and v if the central
angle $\angle uOv$ is less than a threshold d (where O denotes the center of the sphere) Also,
all edges have weight 1.

Tables 1,2 and 3show results of the experiments for graphs $(\mathrm{a}),(\mathrm{b})$ and (c), where each
data is the average over 30 instances:

Table 1: Complete binary tree

Table 2: Union of Hamilton cycle $(n=1000)$

Table 3: Spherical surface graph $(n=100)$

In case of (a), the memory size is reduced drastically by our method. This is because the
depth of recursive calls is large and hence the previous method requires large memory size. In
case of (b)and (c), there are no big difference between the previous method and our method,
since minimum cuts always appear around a single vertex and hence the depth for recursive
calls is very small

155

6 Conclusion

In this paper, we show that the complexity of $\mathrm{N}\mathrm{N}\mathrm{I}$ algorithm cm be improved to $O(mn+$
$n^{2}\log n)$ time $\mathrm{m}\mathrm{d}$ $O(m+n)$ space by using Arikati and Mehlhorn’s maximum flow algorithm
and devising adata structure for graph contraction.

There are several interesting open problems. For example: (1) Can we construct a cactus
representation for nearly minimum cuts of undirected graph? (2) Is there a simple representa-
tion for all minimum cuts of an other type of graph (directed graph, hypergraph, etc.)?

References
[1] S. R. Arihti and K. Mehlhorn, A correctness certificate for the Stoer- Wagner $m\dot{l}n$ cut

algorithm’ Information Processing Letters, vol. 70, 1999, pp. 251-254.

[2] A. A. Bencz\’ur, $Augment\dot{\iota}ng$ undirected connectivity in RNC and in randomized $\tilde{O}(n^{3})$

time, Proc. 26th ACM Symposium on theory of Computing, 1994, pp.658-667.

[3] E. A. Dinits, A. V. Karzanov md M. V. Lomonosov, On the structure of a family of
minimal weighted cuts in a graph, Studies in Discrete Optimization (in Russian) A. A.
Ridmm (Ed.) Nauka, Moscow, 1976, pp. 290-306.

[4] H. N. Gabow, A representation for crossing set $famil_{\dot{l}}es$ with $appl_{\dot{l}}cations$ to submodular
fflow problems, Proc. 4th ACM Symposium on Discrete Algorithms, 1993, pp. 202-211.

[5] A. V. Karzanov md E. A. Timofeev, Efficient algor.thm for finding all minimal edge cuts
of a nonoriented gmpt Kibernetih, vol. 2, 1984, pp. &12; translated in Cybernetics,
1986, pp. 156-162.

[6] H. Nagamochi md T. Ibaraki, $Comput_{\dot{l}}ngedge- connect_{\dot{l}}vity$ of multigraphs and capacitated
graphs, SIAM J. Disc. Math., vol. 5, 1992, pp. 54-66.

[7] H. Nagamochi, T. Ishii and T. Ibaraki, A simple proof of $a \min_{\dot{l}}mum$ cut $algor\dot{\tau}thm$ and
its applicat:ons, Institute of Electronics, Information and Communication Engineers trans,
fundamentals, vol E82-A, no. 10, 1999, pp. 2231-2236.

[8] H. Nagamochi and T. Kameda, $Construct_{\dot{l}}ng$ cactus $\mathrm{r}epresentat\dot{\iota}on$ for all minimum cub
$\dot{l}n$ an undirected networh Operations Research Society of Japan, vol.39,1996, pp. 135-158.

[9] H. Nagamochi, S. Nakamura and T. Ibaraki, A $S\dot{l}mpliffied\tilde{O}(nm)$ time $edge- spl:tt_{\dot{l}}ng$ algo-
$r\dot{\mathrm{v}}thm$ in undirected gmphs, Algorithmica, vo1.26,2M0, pp.56-67.

[10] H. Nagamochi, Y. Nakao md T. Ibaraki, A fast $algor\dot{r}thm$ for cactus representations of
minimum cuts, Journal of Japan Society for Industrial and Applied Mathematics, vol. 17,
$20\mathfrak{M}$, pp. 245-264.

[11] D. Naor, D. Gusfield and C. Martel, A fast $algor\dot{\tau}thm$ for $opt_{\dot{l}}mally\dot{l}ncreasingfhe$ edge
connectivity, SIAM J. Computing, 26, 1997, pp.1139-1165.

[12] D. Naor and V. V. Vazirani, Represeniing and $enumerat_{\dot{l}}ng$ edge connectivity cuts in RNC,
Proc. 2nd Workshop on Algorithms and Data Structures (F. Dehne, J. R. Sack and N.
Santoro, $\alpha 1\mathrm{s}.$), Lecture Notes in Computer Science, 519, Springer Verlag, 1991, pp. 273-
285.

[13] M. Stoer and F. Wagner: A simple $m\dot{l}n$ cut algorithm’ JACM, 44, 1997, PP.585-591

156

