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1Introduction and summary
This paper is motivated by the odds-Theorem in Bruss[2], which is directly applicable

to some optimal stopping problems involving independent indicator functions. We first
review the Bruss odds-theorem. Let, for given $n$ , $I_{1}$ , I2, $\cdots$ , $I_{n}$ be indicators of independent
events $A_{1}$ , $A_{2}$ , $\cdots$ , $A_{n}$ defined on some probability space $(\Omega,A, P)$ . We observe $I_{1}$ , $I_{2}$ , $\cdots$

sequentially and may stop at any of these, but may not recall on preceding $I_{k}’ \mathrm{s}$ . If $I_{k}=1$ ,
we say that $k$ is a“success tim\"e. Let $\mathcal{T}$ denote the class of all rules $t$ such that $\{t=$

$k\}\in\sigma$ ( $I_{1}$ , I2, $\cdots$ , $I_{k}$ ), the sigma field generated by $I_{1}$ , I2, $\cdots$ , $I_{k}$ . We wish to stop on the
last success and so seek astopping rule $\tau_{n}\in \mathrm{T}$ maximizing $P(I_{t}=1, I_{t+1}=0, \cdots, I_{n}=0)$

over all $t\in \mathrm{T}$ and its value. Let $p_{j}=P(I_{j}=1)=1-q_{j}$ and $r_{j}=p_{j}/q_{j}$ , $1\leq j\leq n$ . Then
Bruss[2] gives the following theorem.

Theorem 1(Bruss odds-theorem)
An optimal rule $\tau_{n}$ for stopping on the last success exists and is to stop on the first

index (if any) $k$ with $I_{k}=1$ and $k\geq s$ , where

$s= \sup\{1$ , $\sup\{1\leq k$ $\leq n$ : $\sum_{j=k}^{n}r_{j}\geq 1\}\}$ ,

with $\sup\{\phi\}=-\infty$ (This is assumed throughout this paper).
The optimal reward (win probability) is given by $V(n)=( \prod_{j=s}^{n}q_{j})(\sum_{j=s}^{n}r_{j})$ .

Atypical application of the odds-theorem is the celebrated classical secretary problem
where we want to maximize the probability of stopping on rank 1in arandom permuta-
tions of $n$ candidates (all $n!$ permutations being equally likely and the overall best having
rank 1), that is, on the last record. Success is sometimes referred to as record. It is easy
to check that $I_{k}’ \mathrm{s}$ are independent with $p_{k}=1/k$ . Hence $r_{k}=1/(k-1)$ and so the
odds-theorem immediately yields the well known results

$s$ $=$ $\sup\{1$ , $\sup\{1\leq k\leq n$ : $\sum_{j=k}^{n}\frac{1}{j-1}\geq 1\}\}$ ,

$V(n)$ $=$ $\frac{s-1}{n}\sum_{j=s}^{n}\frac{1}{j-1}$ .
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In this note, we attempt to generalize the odds-theorem to include the case of uncertain
selection. This is motivated by Smith[3] who considered aversion of the secretary problem
where each candidate has the right to refuse an offer of selection, that is, $\mathrm{h}\mathrm{e}/\mathrm{s}\mathrm{h}\mathrm{e}$ accepts

an offer only with aknown fixed probability $\beta(0<\beta<1)$ , independent of $\mathrm{h}\mathrm{i}\mathrm{s}/\mathrm{h}\mathrm{e}\mathrm{r}$ rank
and the arrival time. The objective is still to maximize the probability of stopping on
the last record, i.e., selecting the very best candidate. For ease of description, we call
astopping rule threshold or more specifically $r$-threshold if it passes over the first $r-1$

candidates and then makes an offer to records successively until an offer is accepted or
the final stage is reached. The following theorem is the main result of this note.

Theorem 2(generalized odds-theorem)
An optimal rule $\sigma_{n}$ for stopping on the last record (success) exists and is described as

the $s$-threshold rule, where

$s= \sup\{1$ , $\sup\{1\leq k\leq n$ : $\sum_{j=1}^{n-k+1}(1-\beta)^{j-1}\beta R_{j}^{(k)}\geq 1\}\}$ ,

where

$R_{j}^{(k)}= \sum_{k\leq i_{1}<i_{2}<\cdots<i_{j}\leq n}r_{i_{1}}r_{i_{2}}\cdots r_{i_{j}}$
.

The optimal reward (win probability) is given by

$V(n)=( \prod_{j=s}^{n}q_{j})[\sum_{j=1}^{n-s+1}(1-\beta)^{j-1}\beta R_{j}^{(s)}]$ .

Remark :If we call $R_{j}^{(k)}$ the sum of the remaining odds when the $k$-threshold needs to

make $j$ offers until the offer of selection is eventically accepted, the $\Sigma_{j=1}^{n-k+1}(1-\beta)^{j-1}\beta R_{j}^{(k)}$

can be interpreted as the expected sum of the remaining odds. Thus, in this generalized

odds-theorem also optimal stopping rule can be given by so called “stop-at-l algorithm”
(see Bruss, section 2).

2Derivation of results
Let $v_{i}$ denote the reward attainable when we pass over the first $(i-1)$ candidates and

then proceed optimally. Then, from the principle of optimality, we have

$v_{i-1}=p_{i} \max\{\beta a_{i}+(1-\beta)v_{i}, v_{i}\}+q_{i}v_{i}$ , (2.1)

with $v_{n}=0$ and $a_{i} \equiv\prod_{j=i+1}^{n}q_{j}$ , because the optimal rule makes no offer to non-records
and the reward is $a_{i}$ if the $i$-th candidate is arecord and accepts the offer
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Lemma 2.1
The optimal stopping rule is a $s$-threshold with

$s= \sup\{1,\sup\{0\leq k\leq n-1 : a_{k}\leq v_{k}\}$ . (2.2)

Proof. We show this only when $p_{j}<1,1\leq j\leq n$ . Note that Equation (2.1) can be
written as

$v:-1=v:+ \beta p\dot{.}\max\{a:-v:, 0\}$ . (2.3)

Hence, to show that the optimal rule is threshold, it suffices to show that $a$:is increasing
in $i$ , while $v_{i}$ is non-increasing in $i$ . The former is evident ffom its definition and the latter
is also immediate from (2.3). Thus the proof is complete.

We now turn to derivation of $v_{k}$ for $k\geq s-1$ .

Lemma 2.2
Let $X$ denote the total number of records, that is, $X= \sum_{j=1}^{n}I_{j}$ . Then the distribution

of $X$ is given by, for $0\leq k\leq n$ ,

$P(X=k)= \sum_{j=k}^{n}(-1)^{j-k}$ $(\begin{array}{l}jk\end{array})$ $S_{j}$ ,

where

$S_{j} \equiv\sum_{1\leq:_{1}<:_{2}<\cdots<_{\mathrm{j}}\leq n}\dot{.}p:_{1}p:_{2}\cdots p_{\dot{l}_{\mathrm{j}}}$
.

Proof. See, for example, Blom et $\mathrm{a}1[1]$ .

Lemma 2.3
Let $Q_{n}$ be the win probability under the 1-threshold. Then

$Q_{n}=( \frac{\beta}{1-\beta})\sum_{j=1}^{n}(-1)^{\mathrm{j}}(\beta^{\mathrm{j}}-1)S_{j}$.

Proof. It is easy to see, ffom Lemma 2.2,

$Q_{n}$ $=$ $\sum_{k=1}^{n}(1-\beta)^{k-1}\beta P(X=k)$

$=$ $( \frac{\beta}{1-\beta})\sum_{j=1}^{n}[\sum_{k=1}^{j}$ $(\begin{array}{l}jk\end{array})$ $(1-\beta)^{k}(-1)^{j-k}]S_{j}$

$=$ $( \frac{\beta}{1-\beta})\sum_{j=1}^{n}[(1-\beta-1)^{j}-(-1)^{j}]S_{j}$ ,

which is the desired result
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To derive another expression for $Q_{n}$ , the following lemma is helpful.

Lemma 2.4

$S_{j}=( \prod_{j=1}^{n}q_{j})\sum_{k=j}^{n}$ $(\begin{array}{l}kj\end{array})$ $R_{k}$ ,

where $R_{k}\equiv R_{k}^{(1)}$ .

Proof.

$S_{j}$ $/$ ($\prod_{j=1}^{n}$ $q_{j}$ ) $=$

$i1$ $<i$

$2 \sum_{<}\ldots$

$<ij$

$\frac{p_{i}1p_{i\mathrm{z}}}{Q1Q2}$. $\cdot\cdot\cdot\cdot\cdot q_{n}p_{i_{j}}$

$=$
$\sum_{i_{1}<i_{2}<\cdots<i_{j}}(r_{i_{1}}r_{i_{2}}\cdots r_{i_{j}})\prod_{t\neq i_{1},\cdots,i_{j}}(1+r_{t})$

$=$ $\sum_{i_{1}<i_{2}<\cdots<i_{j}}(r_{i_{1}}r_{i_{2}}\cdots r_{i_{j}})(1+\sum_{i\neq i_{1},\cdots,i_{j}}r_{i}+\sum_{i,j\neq i_{1},\cdots,i_{j}}r_{i}r_{j}+\cdots)$

$=$ $\sum_{k=j}^{n}$
$(\begin{array}{l}kj\end{array})$ $R_{k}$ ,

which completes the proof.

Lemma 2.5

$Q_{n}=( \prod_{j=1}^{n}q_{j})[\sum_{j=1}^{n}(1-\beta)^{j-1}\beta R_{j}]$ .

Proof. Prom Lemmas 2.3 and 2.4, we have

$Q_{n}/( \prod_{j=1}^{n}q_{j})$ $=$ $( \frac{\beta}{1-\beta})\sum_{j=1}^{n}(-1)^{j}(\beta^{j}-1)[S_{j}/\prod_{i=1}^{n}q_{i}]$

$=$ $( \frac{\beta}{1-\beta})\sum_{j=1}^{n}(-1)^{j}(\beta^{j}-1)[\sum_{k=j}^{n}$ $(\begin{array}{l}kj\end{array})$ $R_{k}]$

$=$ $( \frac{\beta}{1-\beta})\sum_{k=1}^{n}[\sum_{j=1}^{k}$ $(\begin{array}{l}kj\end{array})$ $\{(-\beta)^{j}-(-1)^{j}\}]R_{k}$

$=$ $\beta\sum_{k=1}^{n}(1-\beta)^{k-1}R_{k}$ ,

which is the desired result
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The following result is an immediate consequence from Lemma 2.5.

Lemma 2.6
Let $Q_{n}^{(k)}$ be the win probability under the $k$-threshold. Then

$Q_{n}^{(k)}=( \prod_{j=k}^{n}q_{j})[\sum_{j=1}^{n-k+1}(1-\beta)^{j-1}\beta R_{j}^{(k)}]$ .

Proof. Appling Lemma 2.6 to Lemma 2.1 yields Theorem 2, because, for k $\geq s$ –1,
$v_{k}=Q_{n}^{(k+1)}$ .

Remark :Smith’s results is immediate ffom Theorem 2because

$\sum_{j=1}^{n-k+1}(1-\beta)^{j-1}\beta R_{j}^{(k)}=(\frac{\beta}{1-\beta})[\prod_{j=k}^{n}\{1+(1-\beta)r_{j}\}-1]$ ,

from the identity

$\prod_{j=k}^{n}(1+r_{j}x)=1+\sum_{j=1}^{n-k+1}R_{j}^{(k)}x^{j}$ .
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