Efficiency of Set Optimization with Weighted Criteria

Department of Mathematics and Computer Science
Interdisciplinary Faculty of Science and Engineering, Shimane University
1060 Nishikawatsu, Matsue, Shimane 690-8504, JAPAN

1 Introduction

In this paper, we consider efficiency of set-valued optimization problems with weighted criteria. Let (E, \leq) be an ordered topological vector space, C the ordering cone in (E, \leq), and assume that C is a closed set. Also $C^+ = \{ x^* \in E^* \mid \langle x^*, x \rangle \geq 0, \forall x \in C \}$ and we choose a weight set W, a subset of C^+. Let \mathcal{A} be the family of all nonempty compact convex sets in E, and \mathcal{B} a nonempty subfamily of \mathcal{A}. Our purpose is to consider about minimal elements of \mathcal{B} with weighted criteria.

In this paper, we introduce some concepts concerned with set-limit and cone-completeness, to characterize existence of such minimal elements. Also we consider completeness of some metric space including the whole space \mathcal{A}.

Definition 1.1 $\emptyset \neq A, B \subset E,$

$$A \leq_B W B \iff \langle z^*, A + C \rangle \supset \langle z^*, B \rangle, \forall z^* \in W$$

$$A \leq_U W B \iff \langle z^*, A \rangle \subset \langle z^*, B - C \rangle, \forall z^* \in W$$

Definition 1.2 (Minimal for a Family with Weight)

B_0 is (l, W)-minimal in \mathcal{B} if $B_0 \in \mathcal{B}$ and condition $B \leq_B W B_0$ implies $B_0 \leq_B W B$.

B_0 is (u, W)-minimal in \mathcal{B} if $B_0 \in \mathcal{B}$ and condition $B \leq_U W B_0$ implies $B_0 \leq_U W B$.

Similarly we can define (l, W)-maximal and (u, W)-maximal. In this paper we treat only the (l, W)-minimal notion.
2 Characterization of Efficiency

Definition 2.1 \((l, W)\)-Decreasing, \((l, W)\)-Complete, \((l, W)\)-Section
A net of sets \(\{A_\lambda\}\) in \(\mathcal{A}\) is said to be \((l, W)\)-decreasing if
\[\lambda < \lambda' \implies A_{\lambda'} \leq_W A_\lambda \]
A subfamily \(D \subset \mathcal{A}\) is said to be \((l, W)\)-complete if there is no \((l, W)\)-decreasing net \(\{D_\lambda\}\) in \(D\) such that
\[D \subset \{A \in \mathcal{A} | \exists \lambda \text{ such that } A \not\leq_W D_\lambda\} \]
Let \(A \in \mathcal{A}\) and \(D \subset \mathcal{A}\). Then the family
\[\mathcal{D}(A) = \{D \in D | D \leq_W A\} \]
is called an \((l, W)\)-section in \(\mathcal{D}\)

Theorem 2.1 (Existence of \((l, W)\)-minimal sets)
\(B\) has an \((l, W)\)-minimal set if and only if \(B\) has a nonempty \((l, W)\)-complete section

Definition 2.2 \((W\)-limit, \(W\)-set limit\)
Let \(\{a_\lambda\}_{\Lambda}\) be a net of \(E, x \in E\), then
\[\lim_W a_\lambda \ni x \iff \forall y^* \in W, \langle y^*, a_\lambda \rangle \to \langle y^*, x \rangle. \]
the set \(\lim_W a_\lambda\) is called \(W\)-limit of \(\{a_\lambda\}\) Also let \(\{A_\lambda\}_{\lambda \in \Lambda}\) be a net of \(\mathcal{A}, x \in E\), then
\[\operatorname{Llim}_W A_\lambda \ni x \iff \exists \{a_\lambda\}\text{ such that } a_\lambda \in A_\lambda, \forall \lambda \in \Lambda \text{ and } \lim_W a_\lambda \ni x \]
\[\operatorname{Llim}^u_W A_\lambda \ni x \iff \exists \{a'_\lambda\} \subset \{a_\lambda\}: \text{a subnet such that } a_\lambda \in A_\lambda, \forall \lambda \in \Lambda \]
and \(\lim_W a'_\lambda \ni x\)
these are called \(W\)-lower and \(W\)-upper limits, resp.

Definition 2.3 \((l, W)\) and \((u, W)\)-Set limits
\[\operatorname{Llim}_W^l A_\lambda = \operatorname{Llim}_W (A_\lambda + C) \]
\[\operatorname{Llim}_W^u A_\lambda = \operatorname{Llim}_W (A_\lambda - C) \]
\[\operatorname{Llim}^l_W A_\lambda = \operatorname{Llim}_W (A_\lambda + C) \]
\[\operatorname{Llim}^u_W A_\lambda = \operatorname{Llim}_W (A_\lambda - C) \]
Proposition 2.1 If A_λ is (l,W)-decreasing then
\[A \leq_W A_\lambda \iff A \leq_{W}^{l} \text{Lim inf}_{\lambda \in \Lambda} A_{\lambda} \]

Theorem 2.2 The following are equivalent:

- B has an (l,W)-minimal set
- B has a nonempty (l,W)-complete section
- There exists $A_0 \in A$ such that $B(A_0) = \{B \in B \mid B \leq_W A_0\}$ is (l,W)-complete
- For any (l,W)-decreasing net $\{B_\lambda\}$ in B, there exists $A_0 \in A$ such that $A_0 \leq_W \text{Lim inf}_{W\lambda\in\Lambda} B_\lambda$

Corollary 2.1 Let F be a set-valued map from a subset X of a topological space into E. If X is compact and
\[x_\lambda \to x_0, \{F(x_\lambda)\} : (l,W)\text{-decreasing} \]
\[\implies F(x_0) \leq_W \text{Lim inf}_{W\lambda\in\Lambda} F(x_\lambda) \]
then there is an (l,W)-minimal set in $\{F(x) \mid x \in X\}$.

3 Completeness

In this section, we consider about completeness of metric space $(\mathcal{A}/\equiv_W, d)$. At first we define a quotient space \mathcal{A}/\equiv_W as follows:
\[\mathcal{A}/\equiv_W = \{[A] \mid A \in \mathcal{A}\}, \]
where $[A] = \{B \in \mathcal{A} \mid A \equiv_W B\}$ for each $A \in \mathcal{A}$. In this space, we define an order relation. For $[A], [B] \in \mathcal{A}/\equiv_W$,
\[[A] \leq_W [B] \iff A \leq_W B \]
Then \leq_W is an order relation on \mathcal{A}/\equiv_W. Next, we define a metric on the space. For $[A], [B] \in \mathcal{A}/\equiv_W$,
\[d([A], [B]) = \sup_{y^* \in W} |\min\langle y^*, A\rangle - \min\langle y^*, B\rangle| \]
Then d is a metric on \mathcal{A}/\equiv_W.

Now we have a question. Is d complete?

Counterexample 3.1 $E = \mathbb{R}^2$, $C = \mathbb{R}^2_+$, $W = [(1,0), (0,1)]$, $A_n = \{(x_1, x_2) \in E \mid 0 \leq x_1, x_2 \leq n, 1 \leq x_1x_2\}$. Then $\{[A_n]\}$ is a Cauchy sequence in \mathcal{A}/\equiv_W, but $\{[A_n]\}$ does not converges to any elements of \mathcal{A}/\equiv_W. (For example, $A_0 = \{(x_1, x_2) \in E \mid 0 \leq x_1, x_2, 1 \leq x_1x_2\}$, $d(A_n, A_0) \to 0$ as $n \to \infty$)
How conditions assure the completeness? Concerning the question, we have the following two theorems.

Theorem 3.1 \{[A_n]\} is a Cauchy sequence in A/\equiv_W, and there exists a compact subset K of E such that $A_n \subset K$ for each n.

Proof. Let $\mu_{A_n} : W \to \mathbb{R}$ defined by

$$\mu_{A_n}(y^*) := \inf_{a \in A_n} \langle y^*, a \rangle, \quad y^* \in W$$

then there exists a continuous function $\mu_0 : W \to \mathbb{R}$ such that μ_{A_n} converges to μ_0 uniformly on W. For $y^* \in W$, there exists $a_{y^*} \in K$ such that $\mu_0(y^*) = \langle y^*, a_{y^*} \rangle$. Let $A_0 := \{a_{y^*} \mid y^* \in W\}$, then $\mu_0(y^*) = \inf_{a \in A_0} \langle y^*, a \rangle = \inf_{a \in \text{co}A_0} \langle y^*, a \rangle = \inf_{a \in \overline{\text{co}}A_0} \langle y^*, a \rangle$. Also we have $\overline{\text{co}}A_0 \subset A$, and then we conclude the proof.

Theorem 3.2 \{[A_n]\} is a Cauchy sequence in A/\equiv_W, and there exists a compact subset K of E and a sequence $\{x_n\} \subset E$ such that $x_n + A_n \subset K$ for each n. Assume that $C^+ - C^+ = E^*$ and E is reflexive, then $\{[A_n]\}$ converges some element of A.

Proof. Let $\mu_{A_n} : W \to \mathbb{R}$ defined by

$$\mu_{A_n}(y^*) := \inf_{a \in A_n} \langle y^*, a \rangle, \quad y^* \in W$$

then there exists a continuous function $\mu_0 : W \to \mathbb{R}$ such that μ_{A_n} converges to μ_0 uniformly on W. From condition $x_n + A_n \subset K$, there exists M such that $|\langle y^*, x_n \rangle| \leq M$ for each $y^* \in W$ and n, and by assumption $C^+ - C^+ = E^*$, we have $|\langle y^*, x_n \rangle| \leq M$ for each $y^* \in E^*$ and n. Using uniform boundedness theorem, we have $\|x_n\| \leq M$ for each n. Then we can choose a subsequence $\{x_{n'}\}$ and $x_0 \in E$ such that $\{x_{n'}\}$ converges to x_0 weakly.

For $y^* \in W$, there exists $a_{y^*} \in K$ such that $\langle y^*, x_0 \rangle + \mu_0(y^*) = \langle y^*, a_{y^*} \rangle$. Let $A_0 := \{a_{y^*} - x_0 \mid y^* \in W\}$, then $\mu_0(y^*) = \inf_{a \in A_0} \langle y^*, a \rangle = \inf_{a \in \text{co}A_0} \langle y^*, a \rangle = \inf_{a \in \overline{\text{co}}A_0} \langle y^*, a \rangle$ for each $y^* \in W$. Also we have $\overline{\text{co}}A_0 \subset A$, then we complete the proof.

References

