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1 Introduction

In this paper, we consider efficiency of set-valued optimization problems with weighted
criteria. Let (E, <) be an ordered topological vector space, C the ordering cone in (E, <),
and assume that C is a closed set. Also Ct = {z* € E* | (z*,z) > 0,Vz € C} and we
choose a weight set W, a subset of C*. Let A be the family of all nonempty compact
convex sets in E, and B a nonempty subfamily of .A. Our purpose is to consider about
minimal elements of B with weighted criteria.

In this paper, we introduce some concepts concerned with set-limit and cone-completeness,
to characterize existence of such minimal elements. Also we consider completeness of some
metric space including the whole space A.

Definition 1.1 ) # A, BC E,

A<, B & A+ C)D (2*,B),V2* €W

A<y, B & (2, A c &, B-C),V2* € W

Definition 1.2 (Minimal for a Family with Weight)
By is (I, W)-minimal in B if By € B and condition B <}, B, implies By <}y B.
By is (u, W)-minimal in B if By € B and condition B <}, B, implies By <}, B.

Similarly we can define (I, W)-maximal and (u, W)-maximal. In this paper we treat
only the (I, W)-minimal notion.



2 Characterization of Efficiency

Definition 2.1 ((I, W)-Decreasing, (I, W)-Complete, (I, W)-Section)
A net of sets {A,} in A is said to be (I, W)-decreasing if

A< = Ay Slw Ay

A subfamily D C A is said to be (I, W)-complete if there is no (I, W)-decreasing net {D,}
in D such that

D C {A € A|3)such that A €4, Dy}
Let A€ Aand D C A. Then the family
D(4)={DeD|D <, 4}
is called an (I, W)-section in D

Theorem 2.1 (Existence of (I, W)-minimal sets)
B has an (I, W)-minimal set if and only if B has a nonempty (I, W)-complete section

Definition 2.2 (W-limit, W-set limit)
Let {ax}a be a net of E, z € E, then

limway >z <L vy € W, (y*, ax) = (y*, z).
A

the set limw a, is called W-limit of {as} Also let {Ax}ses be a net of A, z € E, then

def,

Liminfw Ay 3 ¢ < 3{a,} such that a) € A5,V € A and limwa, > z
AEA A

Lim supw A)\ 5z & E{a,\'} C {ar}: a subnet such that ay, € A,\,V)\ € A
AEA

and limw a, >
AI

these are called W-lower and W-upper limits, resp.
Definition 2.3 ((I, W) and (u, W)-Set limits)

Liminfy, 4, = Liminfy (A4, + O)
AEA A€A

Liminfy, Ay = Lim 1nfw(A,\ -0C)
A€EA A€

Lim suply A = Lim supw(A,\ +C)
AEA

Limsupyy, A = Lim supw(AA -C)
XeA e



Proposition 2.1 If A, is (I, W)-decreasing then

A< Ay < A<l Liminfy A,
A€EA

Theorem 2.2 The following are equivalent:
e B has an (I, W)-minimal set
e B has a nonempty (I, W)-complete section
e There exists Ao € A such that B(4y) = {B € B| B <}, Ao} is (I, W)-complete

e For any (I, W)-decreasing net {B,} in B, there exists Ay € A such that Ag <
Liminfy ., Bx

Corollary 2.1 Let F be a set-valued map from a subset X of a topological space into E.
If X is compact and

Ty — To, {F(z2)} : (I, W)-decreasing
= F(zo) < Liminfly,., F(z2)

then there is an (I, W)-minimal set in {F(z) | z € X}.

3 Completeness

In this section, we consider about completeness of metric space (A/=l,d). At first we
define a quotient space A/=}; as follows:

Al=w={[A]| A€ A},

where [A] = {B € A| A=}, B} for each A € A. In this space, we define an order relation.
For [A],[B] € A/=Y,

(4] <l (B] €5 A<y B
Then <!, is an order relation on A/=};,. Next, we define a metric on the space. For [4],

[B] € A/=ly,

d([A4], [B]) = sup, | min (y*, A) — min (y*, B)|

Then d is a metric on A/=,.
Now we have a question. Is d complete?

Counterexample 3.1 E = R?, C = R2, W = [(1,0),(0,1)], A, = {(z1,22) € E |0 <
Z1,T2 < n, 1 < z12,}. Then {[A4,]} is a Cauchy sequence in A/=}y, but {[A,]} does not
converges to any elements of A/=!,. (For example, Ay = {(z1,72) € E |0 < zy,2q9, 1 <
T1Z2}, d(An, Ag) — 0 as n — 00) |



How conditions assure the completeness? Concerning the question, we have the follow-
ing two theorems.

Theorem 3.1 {[A,]} is a Cauchy sequence in .A/=%,, and there exists a compact subset
K of E such that A, C K for each n.

Proof. Let pa, : W — R defined by
pa (y) = nf (y*,a), y" €W

then there exists a continuous function o : W — R such that /JA,, converges to Lo
uniformly on W. For y* € W, there exists a,» € K such that po(y*) = (y*,a,-). Let
Ag = {a, | y* € W}, then po(y*) = infaea, (%, 0) = infaccon, (¥*5 @) = infacema, (¥*, a).
Also we have CT0Ag € A, and then we conclude the proof. m]

Theorem 3.2 {[A,]} is a Cauchy sequence in .A/=};,, and there exists a compact subset
K of E and a sequence {z,} C F such that z, + A, C K for each n. Assume that
C* — C* = E* and E is reflexive, then {[A,]} converges some element of A.

Proof. Let pg, : W — R defined by
pan(y") = inf (y*a), y" €W

then there exists a continuous function py : W — R such that p,4, converges to po
uniformly on W. From condition , + A, C K, there exists M such that |(y*,z,)| < M
for each y* € W and n, and by assumption C* — C* = E*, we have |(y*,z,)| < M for
each y* € E* and n. Using uniform boundedness theorem, we have ||z,|| < M for each
n. Then we can choose a subsequence {z,} and zo € E such that {z,} converges to z,
weakly. » * ’

For y* € W, there exists a,- € K such that (y*,zo) + po(y*) = (¥*,ay+). Let Ag :=
{ay — 0 | y* € W}, then po(y*) = infeea, (y*,a) = infoecos, (¥*) @) = infoewa, (¥*,a) for
each y* € W. Also we have 54, € A, then we complete the proof. m|
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