<table>
<thead>
<tr>
<th>Title</th>
<th>Eigenvalue Problem related to Euler-Bernoulli Equation with Joint Boundary Condition (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tsujioka, Kunio; Uchiumi, Junichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2002), 1246: 139-147</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41722</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Eigenvalue Problem related to Euler-Bernoulli Equation with Joint Boundary Condition

Kunio Tsujioka
Faculty of Science, Saitama University

Junichi Uchiumi
Graduate School of Science and Engineering, Saitama University

Abstract
We consider the control system of two vibrating beams which are coupled at a joint. The displacement of the beam is described by an Euler-Bernoulli equation with control applied at a coupled point. Our purpose is to argue the controllability of the system. To this purpose, we discuss the eigenvalue problem related to this system.

1 Introduction
Let us consider the controllability problem for a system coupled by Euler-Bernoulli beams. For $m \in (0, 1)$, we put $x_0 = 0$, $x_1 = m$ and $x_2 = 1$. The displacement of each beam at time t is described by $y_i(x, t)$ on $I_i = (x_{i-1}, x_i)$, $i = 1, 2$, and satisfies the Euler-Bernoulli equation:

$$\rho_i \ddot{y}_i + T_i y_i^{(4)} = 0 \quad \text{on } I_i \times (0, T)$$

where $\dot{y}_i(x, t) = \partial y_i(x, t)/\partial t$, $y_i^{(k)}(x, t) = \partial^k y_i(x, t)/\partial x^k$. ρ_i is mass density and T_i is flexural rigidity respectively on I_i. Let both ends be clamped:

$$(B_0 y)(t) := (y_1(0, t), y_1^{(1)}(0, t), y_2(1, t), y_2^{(1)}(1, t)) = 0.$$

At the coupled point $x = m$, we apply control $F = (f_1, f_2, f_3, f_4)$ as follows:

$$\begin{align*}
(B_1 y)(t) &:= y_1(m, t) - y_2(m, t) = f_1(t), \\
(B_2 y)(t) &:= y_1^{(1)}(m, t) - y_2^{(1)}(m, t) = f_2(t), \\
(B_3 y)(t) &:= T_1 y_1^{(2)}(m, t) - T_2 y_2^{(2)}(m, t) = f_3(t), \\
(B_4 y)(t) &:= T_1 y_1^{(3)}(m, t) - T_2 y_2^{(3)}(m, t) = f_4(t).
\end{align*}$$

Initial condition is given as follows

$$y_i(x, 0) = y_i^0(x), \quad \dot{y}_i(x, 0) = y_i^1(x), \quad x \in I_i, \ i = 1, 2.$$

We assume that controls f_i belong to $L^2(0, T)$, $i = 1, 2, 3, 4$. In this paper, we treat controllability of the above system. Roughly speaking, the system (1)(2)(3)(4) is controllable if for any initial value (y_i^0, y_i^1) and final value (z_i^0, z_i^1), $i = 1, 2$, there exists a control $F = (f_1, f_2, f_3, f_4)$ such that the corresponding solution of the system (1)(2)(3)(4) satisfies the final condition $(y_i(x, T), \dot{y}_i(x, T)) = (z_i^0(x), z_i^1(x))$, $i = 1, 2$.
2 Eigenvalue Problem

Let us identify $v \in L^2(I)$ with $\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in H = L^2(I) = L^2(I_1) \times L^2(I_2)$ where $v_i = v|_{I_i}$, $i = 1, 2$, $I_1 = (0, m)$, $I_2 = (m, 1)$. Then H becomes a Hilbert space with inner product

$$(v, w) = \rho_1(v_1, w_1)_{L^2(I_1)} + \rho_2(v_2, w_2)_{L^2(I_2)}$$

for $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, $w = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \in H$.

We define an operator A in H by

$$Av = \begin{pmatrix} (T_1/\rho_1)v_1^{(4)} \\ (T_2/\rho_2)v_2^{(4)} \end{pmatrix}$$

for $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \in D(A) := H^4(I_1) \times H^4(I_2)$ and an operator \mathcal{A} by restricting A to

$$D(\mathcal{A}) := \{ v \in H^4(I_1) \times H^4(I_2); \mathcal{B}_0v = 0, \mathcal{B}v := (\mathcal{B}_1v, \mathcal{B}_2v, \mathcal{B}_3v, \mathcal{B}_4v) = 0 \}.$$

For this operator \mathcal{A}, we have

Lemma 1 The operator \mathcal{A} is a selfadjoint operator in H with compact resolvent.

The proof of this lemma is easy to verify.

Let λ be an eigenvalue for A with corresponding eigenfunction ϕ. Then we have

$$A\phi = \lambda\phi$$

with boundary conditions

$$\mathcal{B}_0\phi = 0, \quad \mathcal{B}\phi = 0.$$

We introduce functions C_\pm, S_\pm by

$$C_\pm(\theta) := \frac{\cosh \theta \pm \cos \theta}{2}, \quad S_\pm(\theta) := \frac{\sinh \theta \pm \sin \theta}{2} \quad \text{for} \quad \theta \in \mathbb{R}.$$

Let $\phi_i = \phi|_{I_i}$, $\alpha_i = (\rho_i/T_i)^{\frac{1}{4}}$, $i = 1, 2$. A system of fundamental solutions to (1) in each I_i is given by $\{ C_\pm(\alpha_i \omega(x - x_{i-1}))$, $S_\pm(\alpha_i \omega(x - x_{i-1})) \}$ and we have

$$\phi_i(x) = (p_i^1 C_+ + p_i^1 S_+ + p_i^1 C_- + p_i^1 S_-)(\alpha_i \omega(x - x_{i-1})),
\begin{align*}
(\phi_i)^{(1)}(x) &= \alpha_i \omega(p_i^1 S_+ + p_i^1 C_+ + p_i^1 S_+ + p_i^1 C_-)(\alpha_i \omega(x - x_{i-1})),
(\phi_i)^{(2)}(x) &= \alpha_i^2 \omega^2(p_i^1 C_- + p_i^1 S_- + p_i^1 C_+ + p_i^1 S_+)(\alpha_i \omega(x - x_{i-1})),
(\phi_i)^{(3)}(x) &= \alpha_i^3 \omega^3(p_i^1 S_+ + p_i^1 C_+ + p_i^1 S_- + p_i^1 C_-)(\alpha_i \omega(x - x_{i-1}))
\end{align*}$$

for $x \in I_i$ where $\omega = \lambda^{\frac{1}{4}}$. By (2), we have $p_i^1 = p_i^2 = 0$ and therefore

$$\phi_1(x) = (p_2^1 C_- + p_2^1 S_+)(\alpha_1 \omega x),
\begin{align*}
(\phi_1)^{(1)}(x) &= \alpha_1 \omega(p_2^1 S_- + p_2^1 C_+)(\alpha_1 \omega x),
(\phi_1)^{(2)}(x) &= \alpha_1^2 \omega^2(p_2^1 C_+ + p_2^1 S_-)(\alpha_1 \omega x),
(\phi_1)^{(3)}(x) &= \alpha_1^3 \omega^3(p_2^1 S_- + p_2^1 C_+)(\alpha_1 \omega x).
\end{align*}$$

(3)
By (2), we have
\[
\gamma_2 \alpha_2 p^2 = \gamma_2 \alpha_2 \begin{pmatrix} p_1^2 \\ p_2^2 \\ p_3^2 \\ p_4^2 \end{pmatrix} = \begin{pmatrix} \gamma_2 \alpha_2 C^1_1(\omega) & \gamma_2 \alpha_2 S^1_1(\omega) \\ \gamma_2 \alpha_1 S^1_1(\omega) & \gamma_2 \alpha_1 C^1_1(\omega) \\ \gamma_1 \alpha_2 C^1_1(\omega) & \gamma_1 \alpha_2 S^1_1(\omega) \\ \gamma_1 \alpha_1 S^1_1(\omega) & \gamma_1 \alpha_1 C^1_1(\omega) \end{pmatrix} \begin{pmatrix} p_1^3 \\ p_4^3 \end{pmatrix}
\]
(4)

where \(\gamma_i = T_i \alpha_i^2 \), \(i = 1, 2 \), \(\beta_1 = \alpha_1 m \), \(S^2_\pm(\omega) = S_\pm(\beta_1 \omega) \), \(C^2_\pm(\omega) = C_\pm(\beta_1 \omega) \).

By (2), we see
\[
\{ p_1^2, p_2^2, p_3^2, p_4^2 \} = 0,
\]
(5)

where \(\beta_2 = \alpha_2 (1 - m) \), \(S^2_\pm(\omega) = S_\pm(\beta_2 \omega) \), \(C^2_\pm(\omega) = C_\pm(\beta_2 \omega) \).

Let
\[
D(\omega) = \begin{pmatrix} D_{11}(\omega) & D_{12}(\omega) \\ D_{21}(\omega) & D_{22}(\omega) \end{pmatrix}
\]

Then
\[
D_{11}(\omega) = (\gamma_2 \alpha_2 C^2_+ \cdot C^-_1 + \gamma_2 \alpha_2 S^2_+ \cdot S^1_+ + \gamma_1 \alpha_2 C^2_- \cdot C^1_+ + \gamma_1 \alpha_1 S^2_- \cdot S^-_1)(\omega),
\]
\[
D_{12}(\omega) = (\gamma_2 \alpha_2 C^2_+ \cdot S^-_1 + \gamma_2 \alpha_1 S^2_+ \cdot C^-_1 + \gamma_1 \alpha_2 C^2_- \cdot S^1_+ + \gamma_1 \alpha_1 C^2_- \cdot C^1_+)(\omega),
\]
\[
D_{21}(\omega) = (\gamma_2 \alpha_2 S^2_+ \cdot C^1_+ + \gamma_2 \alpha_1 C^2_+ \cdot S^1_+ + \gamma_1 \alpha_2 S^2_- \cdot C^-_1 + \gamma_1 \alpha_1 C^2_- \cdot S^-_1)(\omega),
\]
\[
D_{22}(\omega) = (\gamma_2 \alpha_2 S^2_- \cdot S^-_1 + \gamma_1 \alpha_2 C^2_+ \cdot C^-_1 + \gamma_1 \alpha_2 S^2_- \cdot S^1_+ + \gamma_1 \alpha_1 C^2_- \cdot C^-_1)(\omega).
\]

We put
\[
d(\omega) := 4 \det D(\omega)
\]
\[
= 4 \gamma^2_2 \alpha_2 \alpha_1 (S^2_+ \cdot S^2_- - C^2_+ \cdot C^2_-) \cdot (S^1_+ \cdot S^1_- - C^1_+ \cdot C^1_-)(\omega)
\]
\[
+ 4 \gamma \gamma_1 \alpha_2 (S^2_+ \cdot C^2_- - S^2_- \cdot C^2_+) \cdot (S^1_+ \cdot C^1_- - C^1_+ \cdot S^1_-)(\omega)
\]
\[
+ 8 \gamma \gamma_1 \alpha_2 \alpha_1 (S^2_+ \cdot S^2_- - C^2_+ \cdot C^2_-) \cdot (S^1_+ \cdot S^1_- - C^1_+ \cdot C^1_-)(\omega)
\]
\[
+ 4 \gamma \gamma_1 \alpha_2 (S^2_+ \cdot C^2_- - C^2_+ \cdot S^2_-) \cdot (S^1_+ \cdot C^1_- - S^1_- \cdot C^1_+)(\omega)
\]
\[
+ 4 \gamma \alpha_1 \alpha_2 (S^2_+ \cdot S^2_- - C^2_+ \cdot C^2_-) \cdot (S^1_+ \cdot S^1_- - C^1_+ \cdot C^1_-)(\omega).
\]
(6)

By (4), (5), we have
\[
D(\omega) \begin{pmatrix} p_3^1 \\ p_4^1 \end{pmatrix} = 0.
\]

Since \(\phi \) is an eigenfunction if and only if \((p_3^1, p_4^1) \neq 0 \), we see that \(\lambda = \omega^4 \) is an eigenvalue of \(\mathcal{A} \) if \(d(\omega) = 0, \omega > 0 \). Let \(\omega_n, n \in \mathbb{N} \), is the \(n \)-th positive zero of \(d(\omega) \). Then \(\lambda_n := \omega_n^4 \),
$0 < \omega_1 < \omega_2 < \cdots$, is the n-th eigenvalue of A. We can verify that λ_n is a simple eigenvalue. Let ϕ^n be an eigenfunction corresponding to λ_n, normalized in H. In the following, let $\varphi(\omega)$ be a function defined by

$$\varphi(\omega) = A \cos \beta_1 \omega \cos \beta_2 \omega - B \sin \beta_1 \omega \sin \beta_2 \omega + C \sin(\beta_1 - \beta_2) \omega \quad (7)$$

where $A = (\gamma_1 \alpha_1 + \gamma_2 \alpha_2)(\gamma_1 \alpha_2 + \gamma_2 \alpha_1)$, $B = \gamma_1 \gamma_2 (\alpha_1 + \alpha_2)^2$, $C = \gamma_1 \gamma_2 (\alpha_1^2 - \alpha_2^2)$. We denote the n-th positive zero of φ by μ_n.

Lemma 2 $d(\omega)$ is written as

$$d(\omega) = e^{(\beta_1 + \beta_2) \omega}(\varphi(\omega) - h(\omega)), \quad \omega \in \mathbb{R}$$

where $h(\omega) \in C^1(\mathbb{R})$ and $h(\omega) \to 0$, $h'(\omega) \to 0$ exponentially as $\omega \to \infty$.

Proof By (6), $h(\omega) = \varphi(\omega) - e^{-(\beta_1 + \beta_2) \omega}d(\omega)$ and $h'(\omega)$ converge to 0 exponentially as $\omega \to \infty$.

To discuss controllability, we treat the moment problem on the system (1)(2)(3)(4). According to Krabs [4] or Russell [12], to solve the moment problem, we need the following conditions:

$$\lim_{n \to \infty} \inf_{\omega} (\omega_{n+1}^2 - \omega_n^2) > \frac{2\pi}{T}, \quad \lim_{\omega \to \infty} \frac{d(x+y) - d(x)}{y} < \frac{T}{2\pi} \quad (9)$$

where $d(x) =$ number of ω_j with $\omega_j < x^2$. The aim of this paper is to prove the following

Theorem 1 We have

(1) There exist M and N such that $\omega_{M+n} - \mu_{N+n} \to 0$,

(2) $0 < \frac{1}{a}(\pi - \sin^{-1} k) \leq \lim_{n \to \infty} (\omega_{n+1} - \omega_n) \leq \lim_{n \to \infty} (\omega_{n+1} - \omega_n) < \infty$,

(3) $\lim_{n \to \infty} (\omega_{n+1}^2 - \omega_n^2) = \infty$.

By this theorem, it is clear that $\{\omega_n\}_{n \in \mathbb{N}}$ satisfies the condition (8). Moreover, the condition (8) verify the condition (9).

Some simple facts for $\varphi(\omega)$ are given in the following

Lemma 3 In the formula (7), we have

(1) $A \geq B > 0$,

(2) $A = B$ if and only if $\rho_1 T_1 = \rho_2 T_2$.

(3) $C = 0$ if and only if $\rho_1 T_2 = \rho_2 T_1$.

(4) $A = B$, $C = 0$ if and only if $(\rho_1, T_1) = (\rho_2, T_2)$.

(5) $A > B$ or $C \neq 0$ if and only if $(\rho_1, T_1) \neq (\rho_2, T_2)$.

(6) \(\varphi \) is written as
\[
\varphi(\omega) = D(\cos a\omega + k \sin(b\omega + \tau)), \quad 0 \leq k < 1
\]
where \(D = (A+B)/2, \ a = \beta_1 + \beta_2, \ b = \beta_1 - \beta_2, \ k = R/D, \ R = \sqrt{((A-B)/2)^2 + C^2}, \)
\[
\tau = \cos^{-1}(C/R) \in [0, \pi] \text{ for } R \neq 0 \text{ and } \tau = 0 \text{ for } R = 0.
\]

Proof We see (1) from \(A = B + \alpha_1 \alpha_2 (\gamma_1 - \gamma_2)^2 \geq B > 0 \). The assertions (2), (3), (4) and (5) are clear. We have (6) since
\[
\varphi(\omega) = \frac{A + B}{2} \cos(\beta_1 + \beta_2)\omega + \frac{A - B}{2} \cos(\beta_1 - \beta_2)\omega + C \sin(\beta_1 - \beta_2)\omega
\]
\[
= D \cos a\omega + R \sin(b\omega + \tau) = D(\cos a\omega + k \sin(b\omega + \tau)).
\]
where \(k \geq 0 \) satisfies
\[
k^2 = \frac{R^2}{D^2} = \frac{(A + B)^2 - 4(AB - C^2)}{(A + B)^2} = 1 - \frac{4(\gamma_1 + \gamma_2)^2 \gamma_1 \gamma_2 (\alpha_1 + \alpha_2)^2 \alpha_1 \alpha_2}{(A + B)^2} < 1.
\]

We assume \(\beta_1 \geq \beta_2 > 0 \) for simplicity. So we have \(a > b \geq 0 \). We put \(f_k(\omega) = \cos a\omega + k \sin(b\omega + \tau) \). Since \(f_k(\omega) = 0 \) implies \(|\cos a\omega| = |k \sin(b\omega + \tau)| \leq k\), all the positive zeros of \(\varphi(\omega) \) are in the set \(\{ \omega > 0; |\cos a\omega| \leq k \} = \bigcup_{n=1}^{\infty} \mathcal{I}_n(k), \ \mathcal{I}_n(k) = [s_n(k), \ t_n(k)] \subset \mathcal{J}_n = [(n - 1)\pi/a, n\pi/a], \ n = 1, 2, \cdots \) where \(s_n(k) = (2n - 1)\pi/2a - \sin^{-1}k/a, \ t_n(k) = (2n - 1)\pi/2a + \sin^{-1}k/a \). We write \(\mathcal{I}_n = \mathcal{I}_n(k), \ s_n = s_n(k), \ t_n = t_n(k) \) and \(f(\omega) = f_k(\omega) \). In Theorem 2 below, we prove that there exists exactly one zero of \(f \) in each \(\mathcal{I}_n \subset \mathcal{J}_n \).

Theorem 2 For each \(n \in \mathbb{N} \), there exist \(u_n, v_n \in \mathcal{I}_n \) such that
1. \(f(u_n) = 1 - k = -f(v_n) \) and \(f(\omega) \) is monotone decreasing on \([u_n, v_n]\) for odd \(n \),
2. \(f(u_n) = k - 1 = -f(v_n) \) and \(f(\omega) \) is monotone increasing on \([u_n, v_n]\) for even \(n \),
3. \(|f(\omega)| \geq 1 - k \) for \(\omega \in \mathcal{J}_n \setminus [u_n, v_n] \)
4. only zero of \(f \) exists in \((u_n, v_n)\) for any \(n \), which implies that \(\mu_n \in \mathcal{I}_n \) for any \(n \in \mathbb{N} \).

First, we show, for sufficiently small \(k \), \(\mu_n \in \mathcal{I}_n \) for every \(n \in \mathbb{N} \).

Lemma 4 Let \(k \in [0, 1/\sqrt{2}] \). Then we have
1. for odd \(n \), \(f(s_n) \geq 0 \geq f(t_n) \) and \(f(\omega) \) is monotone decreasing on \([s_n, t_n]\),
2. for even \(n \), \(f(t_n) \geq 0 \geq f(s_n) \) and \(f(\omega) \) is monotone increasing on \([s_n, t_n]\),

Consequently, in \(\mathcal{J}_n \), \(f(\omega) \) has only one zero in \([s_n, t_n]\).

Proof We only show (1). (2) is proved similarly.
\[
f(s_n) = \cos \left(\frac{(2n-1)\pi}{2} - \sin^{-1}k \right) - k \sin(bs_n + \tau)
\]
\[
= (-1)^{n+1}k - k \sin(bs_n + \tau) \geq 0
\]
\[
f(t_n) = (-1)^n k - k \sin(bs_n + \tau) = -k - k \sin(bs_n + \tau) \leq -k + k = 0.
\]
In \([s_n, t_n]\), we have \(\sin a\omega \geq 1/\sqrt{2} \) and
\[
f'(\omega) = -a \sin a\omega + k b \cos(b\omega + \tau) \leq -a/\sqrt{2} + b/\sqrt{2} < 0.
\]
In the following, we put \(\bar{k} = kb^{2}/a^{2}, \bar{s}_{n} = s_{n}(k), \bar{t}_{n} = t_{n}(k), \bar{I}_{n} = I_{n}(k), \) and \(\bar{\mu}_{n} = \mu_{n}(k), \)
\(\bar{f}(\omega) = f_{k}(\omega) \) and \(S = \{ k \in [0, 1); \mu_{n}(k) \in I_{n}(k) \subset J_{n} \) for each \(n \in N \}.

Lemma 5 For \(\bar{k} \in S \), the conclusion of Theorem 2 is valid.

Proof We have
\[
f''(\omega) = f''(\omega) = -a^{2} \cos \omega - kb^{2} \sin(b \omega + \tau) = -a^{2}(\cos \omega + \bar{k} \sin(b \omega + \tau)) = -a^{2} f_{k}(\omega) = -a^{2} \bar{f}(\omega).
\]

Let \(n \) be odd. The case where \(n \) is even is also treated similarly. Then \(\bar{f}((n-1)\pi/a) \geq 1 - k > 0 \) \(k - 1 \geq \bar{f}(\pi/a) \). Since \(\bar{\mu}_{n} \) is the only zero of \(\bar{f} \) in \(((n-1)\pi/a, n\pi/a) \), we have \(f''(\omega) < 0 \) for \(\omega \in ((n-1)\pi/a, \bar{\mu}_{n}) \), \(f''(\omega) > 0 \) for \(\omega \in (\bar{\mu}_{n}, n\pi/a) \). Thus \(f(\omega) \) is concave on \(((n-1)\pi/a, \mu_{n}) \) and convex on \((\mu_{n}, n\pi/a) \). Let \(y_{n}, z_{n} \in J_{n} \) with \(f(y_{n}) = \max_{\omega \in I_{n}} f(\omega) \geq 1 - k \) and \(f(z_{n}) = \min_{\omega \in I_{n}} f(\omega) \leq k - 1 \). Then, we find \(u_{n}, v_{n} \) with \(s_{n} \leq y_{n} < \mu_{n} < v_{n} \leq z_{n} \leq t_{n} \) such that \(f(u_{n}) = 1 - k \) and \(f(v_{n}) = k - 1 \). Thus, \(f \) is monotone decreasing on \([u_{n}, v_{n}] \subset [y_{n}, z_{n}] \).

Proof of Theorem 2 There exists \(N \in N \) such that \(0 \leq (b/a)^{2N} \leq 1/2 \). Let \(k \in [0, 1) \) and \(k_{i} = k(b/a)^{2i}, i = 0, 1, 2, \ldots, N \). Then \(k_{N} \in S \) by Lemma 4. Therefore, by Lemma 5, \(k_{i} \in S, i = 1, 2, \ldots, N - 1 \). In particular, \(k_{1} = k(b/a)^{2} = \bar{k} \in S \). Thus, by using Lemma 5 again, we can prove Theorem 2.

Next, we want to show that, for sufficiently large \(n \), there exists only one zero of \(d(\omega) \) in each \(J_{n} \). More precisely, we have

Theorem 3 There exists \(M, N \in N \) such that \(\omega_{M+n} \in J_{N+n} \) for \(n = 0, 1, \ldots \).

To prove the above theorem, we prepare Lemma 6 and lemma 7 given below:

Lemma 6 For any \(n \in N \), the following inequality holds:
\[
|f'(\mu_{n})| \geq \delta = \sqrt{(1 - k^{2})(a^{2} - b^{2})}.
\]

Proof Since \(\mu_{n}, n \in N \), are zeros of \(f \), we have
\[
f(\mu_{n}) = \cos a \mu_{n} + k \sin(b \mu_{n} + \tau) = 0, \tag{12}
f'(\mu_{n}) = -a \sin a \mu_{n} + kb \cos(b \mu_{n} + \tau). \tag{13}
\]

If \(b = 0 \), then \((f'(\mu_{n}))^{2} = a^{2} \sin^{2} a \mu_{n} = a^{2}(1 - \cos^{2} \tau) \geq a^{2}(1 - k^{2}) \). Hence we have (11). If \(b \neq 0 \), then
\[
f'(\mu_{n})^{2} = \left(\frac{a^{2} - b^{2}}{b^{2}} \right) \left(\sin a \mu_{n} - \frac{a f'(\mu_{n})}{a^{2} - b^{2}} \right)^{2} + (1 - k^{2})(a^{2} - b^{2}) \geq (1 - k^{2})(a^{2} - b^{2}).
\]

Thus we have (11).
Lemma 7 There exists an interval \([a_n, b_n] \subset [u_n, v_n]\) and \(l \in [0, 1 - k]\) such that
\[
|f(\omega)| \leq l, \quad |f'(\omega)| \geq \delta/2 \quad \text{for } \omega \in [a_n, b_n],
\]
\[
|f(\omega)| \geq l \quad \text{for } \omega \in \mathcal{J}_n \backslash [a_n, b_n].
\]

Proof By uniform continuity of \(f'(\omega)\) and Lemma 6, there exists \(c > 0\) with \(l = \delta c/2 < 1 - k\) such that
\[
|f'(\omega)| \geq \delta/2 \quad \text{for } \omega \in [\mu_n - c, \mu_n + c].
\]
Therefore, we have \(|f(\omega)| \geq (\delta/2)|\omega - \mu_n|\) on \([\mu_n - c, \mu_n + c]\). If \(n\) is odd (resp. even), we define \(a_n, b_n\) with \(\mu_n - c < a_n < b_n < \mu_n + c\) by \(f(a_n) = l\) (resp. \(-l\)) and \(f(b_n) = -l\) (resp. \(l\)). Hence we have
\[
\{\omega \in [\mu_n - c, \mu_n + c]; |f(\omega)| \leq l\} = [a_n, b_n].
\]
By (16) and (17), we see (14), and by Theorem 3, (15).

We put \(g(\omega) = \varphi(\omega) - h(\omega) = Df(\omega) - h(\omega)\). Since \(h(\omega), h'(\omega) \to 0\) as \(\omega \to \infty\), there exists \(N \in \mathbb{N}\) such that \(|h(\omega)| < DI\) and \(|h'(\omega)| < D\delta/2\) for \(\omega > (N - 1)\pi/a\).

Let \(n\) be odd with \(n > N\). Then, by Lemma 7, we have \(f(a_n) = l, f(b_n) = -l\) and \(f'(\omega) < -\delta/2\) for \(\omega \in [a_n, b_n]\). Hence \(g(a_n) = Df(a_n) - h(a_n) = DI - h(a_n) > DI - DI = 0\) and \(g(b_n) = Df(b_n) - h(b_n) = DI - h(b_n) < -DI + DI = 0\). Thus, for \(\omega \in [a_n, b_n]\), \(g'(\omega) = Df'(\omega) - h'(\omega) \leq -D\delta/2 + |h'(\omega)| < -D\delta/2 + D\delta/2 = 0\) which implies that \(g(\omega)\) has a unique zero in \((a_n, b_n)\). For \(\omega \in \mathcal{J}_n \backslash [a_n, b_n]\), by (14), we have \(|g(\omega)| \geq |Df(\omega)| - |h(\omega)| \geq DI - DI = 0\). Therefore, \(g(\omega)\) has a unique zero in \(\mathcal{J}_n\). The case with even \(n > N\) is similarly proved. Let \(\omega_M\) be a zero of \(g(\omega)\) in \(\mathcal{J}_n\). Thus \(\omega_{M+n} \in \mathcal{J}_{N+n}\) for \(n = 0, 1, 2, \ldots\).

Proof of Theorem 1 Since \(f(\mu_{N+n}) = g(\omega_{M+n}) = 0\), we have
\[
h(\omega_{M+n}) = Df(\omega_{M+n}) - g(\omega_{M+n}) = D(f(\omega_{M+n}) - f(\mu_{N+n})).
\]
By Mean Value Theorem, there exists \(\theta \in (0, 1)\) such that \(f(\omega_{M+n}) - f(\mu_{N+n}) = (\omega_{M+n} - \mu_{N+n})f'(\mu_{N+n} + \theta(\omega_{M+n} - \mu_{N+n}))\). Thus, by (14) and (18),
\[
|\omega_{N+n} - \mu_{N+n}| \leq \frac{|f(\omega_{M+n}) - f(\mu_{N+n})|}{|f'(\mu_{N+n} + \theta(\omega_{M+n} - \mu_{N+n}))|} \leq \frac{2}{D\delta}|h(\omega_{M+n})| \to 0
\]
as \(n \to \infty\). Therefore,
\[
\liminf_{n \to \infty}(\omega_{N+n} - \omega_M) = \liminf_{n \to \infty}(\omega_{M+n+1} - \omega_{M+n}) = \liminf_{n \to \infty}(\omega_{M+n+1} - \mu_{N+n+1} + \mu_{N+n+1} - \mu_{N+n} + \mu_{N+n} - \omega_{M+n}) = \liminf_{n \to \infty}(\mu_{N+n+1} - \mu_{N+n}) = \liminf_{n \to \infty}(\mu_{N+n+1} - \mu_{N+n}).
\]

By \(s_n < \mu_n < t_n < s_{n+1} < \mu_{n+1} < t_{n+1}\), we have
\[
\mu_{n+1} - \mu_n \geq s_{n+1} - t_n = \left(\frac{2n + 1}{2a}\pi - \frac{\sin^{-1}k}{a}\right) - \left(\frac{2n - 1}{2a}\pi + \frac{\sin^{-1}k}{a}\right) = \frac{\pi}{a} - \frac{2\sin^{-1}k}{a} = \frac{1}{a}(\pi - 2\sin^{-1}k).
\]
The above theorem implies that
\[
\liminf_{n \to \infty}(\omega_{n+1} - \omega_n) \geq \liminf_{n \to \infty}(\omega_{n+1} + \omega_n) \liminf_{n \to \infty}(\omega_{n+1} - \omega_n) = \infty.
\]
3 Concluding Remarks

This paper is only a first step to the controllability theory for the Euler-Bernoulli equation using the moment problem method [4], [12].

References

