Eigenvalue Problem related to Euler-Bernoulli Equation with Joint Boundary Condition

埼玉大学・理学部 辻岡 邦夫 (Kunio Tsujioka)
Faculty of Science, Saitama University
埼玉大学・理工学研究科 内海 順一 (Junichi Uchiumi)
Graduate School of Science and Engineering,
Saitama University

Abstract

We consider the control system of two vibrating beams which are coupled at a joint. The displacement of the beam is described by an Euler-Bernoulli equation with control applied at a coupled point. Our purpose is to argue the contorollability of the system. To this purpose, we discuss the eigenvalue problem related to this system.

1 Introduction

Let us consider the controllability problem for a system coupled by Euler-Bernoulli beams. For $m \in (0, 1)$, we put $x_0 = 0$, $x_1 = m$ and $x_2 = 1$. The displacement of each beam at time t is described by $y_i(x, t)$ on $I_i = (x_{i-1}, x_i)$, i = 1, 2, and satisfies the Euler-Bernoulli equation:

$$\rho_i \ddot{y}_i + T_i y_i^{(4)} = 0 \quad \text{on } I_i \times (0, T)$$

where $\dot{y}_i(x, t) = \partial y_i(x, t)/\partial t$, $y_i^{(k)}(x, t) = \partial^k y_i(x, t)/\partial x^k$. ρ_i is mass density and T_i is flexural rigidity respectively on I_i . Let both ends be clamped:

$$(B_0y)(t) := (y_1(0, t), y_1^{(1)}(0, t), y_2(1, t), y_2^{(1)}(1, t)) = 0.$$
 (2)

At the coupled point x = m, we apply control $F = (f_1, f_2, f_3, f_4)$ as follows:

$$(B_{1}y)(t) := y_{1}(m, t) - y_{2}(m, t) = f_{1}(t),$$

$$(B_{2}y)(t) := y_{1}^{(1)}(m, t) - y_{2}^{(1)}(m, t) = f_{2}(t),$$

$$(B_{3}y)(t) := T_{1}y_{1}^{(2)}(m, t) - T_{2}y_{2}^{(2)}(m, t) = f_{3}(t),$$

$$(B_{4}y)(t) := T_{1}y_{1}^{(3)}(m, t) - T_{2}y_{2}^{(3)}(m, t) = f_{4}(t).$$

$$(3)$$

Initial condition is given as follows

$$y_i(x, 0) = y_i^0(x), \quad \dot{y}_i(x, 0) = y_i^1(x), \qquad x \in I_i, \ i = 1, 2.$$
 (4)

We assume that controls f_i belong to $L^2(0, T)$, i = 1, 2, 3, 4. In this paper, we treat controllability of the above system. Roughly speaking, the system (1)(2)(3)(4) is controllable if for any initial value (y_i^0, y_i^1) and final value (z_i^0, z_i^1) , i = 1, 2, there exists a control $F = (f_1, f_2, f_3, f_4)$ such that the corresponding solution of the system (1)(2)(3)(4) satisfies the final condition $(y_i(x, T), \dot{y}_i(x, T)) = (z_i^0(x), z_i^1(x)), i = 1, 2$.

2 Eigenvalue Problem

Let us identify $v \in L^2(I)$ with $\binom{v_1}{v_2} \in H = L^2(I) = L^2(I_1) \times L^2(I_2)$ where $v_i = v|_{I_i}$, $i = 1, 2, I_1 = (0, m), I_2 = (m, 1)$. Then H becomes a Hilbert space with inner product

$$(v,\,w)=
ho_1(v_1,\,w_1)_{L^2(I_1)}+
ho_2(v_2,\,w_2)_{L^2(I_2)}\quad ext{for }v=\left(egin{array}{c} v_1\ v_2 \end{array}
ight),\,w=\left(egin{array}{c} w_1\ w_2 \end{array}
ight)\in H.$$

We define an operator A in H by

$$Av = \left(\begin{array}{c} (T_1/
ho_1)v_1^{(4)} \\ (T_2/
ho_2)v_2^{(4)} \end{array} \right) \quad ext{for } v = \left(\begin{array}{c} v_1 \\ v_2 \end{array} \right) \in \mathcal{D}(A) := H^4(I_1) imes H^4(I_2)$$

and an operator A by restricting A to

$$\mathcal{D}(\mathcal{A}) := \{ v \in H^4(I_1) \times H^4(I_2); \ B_0v = 0, \ Bv := (B_1v, B_2v, B_3v, B_4v) = 0 \}.$$

For this operator A, we have

Lemma 1 The operator A is a selfadjoint operator in H with compact resolvent.

The proof of this lemma is easy to verify.

Let λ be an eigenvalue for \mathcal{A} with corresponding eigenfunction ϕ . Then we have

$$\mathcal{A}\phi = \lambda\phi\tag{1}$$

with boundary conditions

$$B_0\phi = 0, \quad B\phi = 0. \tag{2}$$

We introduce functions C_{\pm} , S_{\pm} by

$$C_{\pm}(\theta) := \frac{\cosh \theta \pm \cos \theta}{2}, \quad S_{\pm}(\theta) := \frac{\sinh \theta \pm \sin \theta}{2} \qquad \text{for} \quad \theta \in \mathbf{R}.$$

Let $\phi_i = \phi|_{I_i}$, $\alpha_i = (\rho_i/T_i)^{\frac{1}{4}}$, i = 1, 2. A system of fundamental solutions to (1) in each I_i is given by $\{C_{\pm}(\alpha_i\omega(x-x_{i-1})), S_{\pm}(\alpha_i\omega(x-x_{i-1}))\}$ and we have

$$\begin{array}{lll} \phi_{i}(x) & = & (p_{1}^{i}\mathrm{C}_{+} + p_{2}^{i}\mathrm{S}_{+} + p_{3}^{i}\mathrm{C}_{-} + p_{4}^{i}\mathrm{S}_{-})(\alpha_{i}\omega(x-x_{i-1})), \\ (\phi_{i})^{(1)}(x) & = & \alpha_{i}\omega(p_{1}^{i}\mathrm{S}_{-} + p_{2}^{i}\mathrm{C}_{+} + p_{3}^{i}\mathrm{S}_{+} + p_{4}^{i}\mathrm{C}_{-})(\alpha_{i}\omega(x-x_{i-1})), \\ (\phi_{i})^{(2)}(x) & = & \alpha_{i}^{2}\omega^{2}(p_{1}^{i}\mathrm{C}_{-} + p_{2}^{i}\mathrm{S}_{-} + p_{3}^{i}\mathrm{C}_{+} + p_{4}^{i}\mathrm{S}_{+})(\alpha_{i}\omega(x-x_{i-1})), \\ (\phi_{i})^{(3)}(x) & = & \alpha_{i}^{3}\omega^{3}(p_{1}^{i}\mathrm{S}_{+} + p_{2}^{i}\mathrm{C}_{-} + p_{3}^{i}\mathrm{S}_{-} + p_{4}^{i}\mathrm{C}_{+})(\alpha_{i}\omega(x-x_{i-1})) \end{array} \right\}$$

for $x \in I_i$ where $\omega = \lambda^{\frac{1}{4}}$. By (2), we have $p_1^1 = p_2^1 = 0$ and therefore

$$\phi_{1}(x) = (p_{3}^{1}C_{-} + p_{4}^{1}S_{-})(\alpha_{1}\omega x),
(\phi_{1})^{(1)}(x) = \alpha_{1}\omega(p_{3}^{1}S_{+} + p_{4}^{1}C_{-})(\alpha_{1}\omega x),
(\phi_{1})^{(2)}(x) = \alpha_{1}^{2}\omega^{2}(p_{3}^{1}C_{+} + p_{4}^{1}S_{+})(\alpha_{1}\omega x),
(\phi_{1})^{(3)}(x) = \alpha_{1}^{3}\omega^{3}(p_{3}^{1}S_{-} + p_{4}^{1}C_{+})(\alpha_{1}\omega x).$$
(3)

By (2), we have

$$\gamma_{2}\alpha_{2}p^{2} = \gamma_{2}\alpha_{2}\begin{pmatrix} p_{1}^{2} \\ p_{2}^{2} \\ p_{3}^{2} \\ p_{4}^{2} \end{pmatrix} = \begin{pmatrix} \gamma_{2}\alpha_{2}C_{-}^{1}(\omega) & \gamma_{2}\alpha_{2}S_{-}^{1}(\omega) \\ \gamma_{2}\alpha_{1}S_{+}^{1}(\omega) & \gamma_{2}\alpha_{1}C_{-}^{1}(\omega) \\ \gamma_{1}\alpha_{2}C_{+}^{1}(\omega) & \gamma_{1}\alpha_{2}S_{+}^{1}(\omega) \\ \gamma_{1}\alpha_{1}S_{-}^{1}(\omega) & \gamma_{1}\alpha_{1}C_{+}^{1}(\omega) \end{pmatrix} \begin{pmatrix} p_{3}^{1} \\ p_{4}^{1} \end{pmatrix}$$
(4)

where $\gamma_i = T_i \alpha_i^2$, i = 1, 2, $\beta_1 = \alpha_1 m$, $S_{\pm}^1(\omega) = S_{\pm}(\beta_1 \omega)$, $C_{\pm}^1(\omega) = C_{\pm}(\beta_1 \omega)$. By (2), we see

$$\begin{pmatrix}
C_{+}^{2}(\omega) & S_{+}^{2}(\omega) & C_{-}^{2}(\omega) & S_{-}^{2}(\omega) \\
S_{-}^{2}(\omega) & C_{+}^{2}(\omega) & S_{+}^{2}(\omega) & C_{-}^{2}(\omega)
\end{pmatrix}
\begin{pmatrix}
p_{1}^{2} \\
p_{2}^{2} \\
p_{3}^{2} \\
p_{4}^{2}
\end{pmatrix} = 0,$$
(5)

where $\beta_2 = \alpha_2(1 - m)$, $S_{\pm}^2(\omega) = S_{\pm}(\beta_2\omega)$, $C_{\pm}^2(\omega) = C_{\pm}(\beta_2\omega)$. Let

$$D(\omega) = \begin{pmatrix} D_{11}(\omega) & D_{12}(\omega) \\ D_{21}(\omega) & D_{22}(\omega) \end{pmatrix}$$

$$:= \begin{pmatrix} C_{+}^{2}(\omega) & S_{+}^{2}(\omega) & C_{-}^{2}(\omega) & S_{-}^{2}(\omega) \\ S_{-}^{2}(\omega) & C_{+}^{2}(\omega) & S_{+}^{2}(\omega) & C_{-}^{2}(\omega) \end{pmatrix} \begin{pmatrix} \gamma_{2}\alpha_{2}C_{-}^{1}(\omega) & \gamma_{2}\alpha_{2}S_{-}^{1}(\omega) \\ \gamma_{2}\alpha_{1}S_{+}^{1}(\omega) & \gamma_{2}\alpha_{1}C_{-}^{1}(\omega) \\ \gamma_{1}\alpha_{2}C_{+}^{1}(\omega) & \gamma_{1}\alpha_{2}S_{+}^{1}(\omega) \\ \gamma_{1}\alpha_{1}S_{-}^{1}(\omega) & \gamma_{1}\alpha_{1}C_{+}^{1}(\omega) \end{pmatrix}.$$

Then

$$D_{11}(\omega) = (\gamma_{2}\alpha_{2}C_{+}^{2} \cdot C_{-}^{1} + \gamma_{2}\alpha_{1}S_{+}^{2} \cdot S_{+}^{1} + \gamma_{1}\alpha_{2}C_{-}^{2} \cdot C_{+}^{1} + \gamma_{1}\alpha_{1}S_{-}^{2} \cdot S_{-}^{1})(\omega),$$

$$D_{12}(\omega) = (\gamma_{2}\alpha_{2}C_{+}^{2} \cdot S_{-}^{1} + \gamma_{2}\alpha_{1}S_{+}^{2} \cdot C_{-}^{1} + \gamma_{1}\alpha_{2}C_{-}^{2} \cdot S_{+}^{1} + \gamma_{1}\alpha_{1}S_{-}^{2} \cdot C_{+}^{1})(\omega),$$

$$D_{21}(\omega) = (\gamma_{2}\alpha_{2}S_{-}^{2} \cdot C_{-}^{1} + \gamma_{2}\alpha_{1}C_{+}^{2} \cdot S_{+}^{1} + \gamma_{1}\alpha_{2}S_{+}^{2} \cdot C_{+}^{1} + \gamma_{1}\alpha_{1}C_{-}^{2} \cdot S_{-}^{1})(\omega),$$

$$D_{22}(\omega) = (\gamma_{2}\alpha_{2}S_{-}^{2} \cdot S_{-}^{1} + \gamma_{2}\alpha_{1}C_{+}^{2} \cdot C_{-}^{1} + \gamma_{1}\alpha_{2}S_{+}^{2} \cdot S_{+}^{1} + \gamma_{1}\alpha_{1}C_{-}^{2} \cdot C_{+}^{1})(\omega).$$

We put

$$d(\omega) := 4 \det D(\omega)$$

$$= 4\gamma_{2}^{2}\alpha_{2}\alpha_{1} \left(\mathbf{S}_{+}^{2} \cdot \mathbf{S}_{-}^{2} - \mathbf{C}_{+}^{2} \cdot \mathbf{C}_{+}^{2} \right) \cdot \left(\mathbf{S}_{+}^{1} \cdot \mathbf{S}_{-}^{1} - \mathbf{C}_{-}^{1} \cdot \mathbf{C}_{-}^{1} \right) (\omega)$$

$$+ 4\gamma_{2}\gamma_{1}\alpha_{2}^{2} \left(\mathbf{S}_{+}^{2} \cdot \mathbf{C}_{+}^{2} - \mathbf{S}_{-}^{2} \cdot \mathbf{C}_{-}^{2} \right) \cdot \left(\mathbf{S}_{+}^{1} \cdot \mathbf{C}_{-}^{1} - \mathbf{C}_{+}^{1} \cdot \mathbf{S}_{-}^{1} \right) (\omega)$$

$$+ 8\gamma_{2}\gamma_{1}\alpha_{2}\alpha_{1} \left(\mathbf{S}_{+}^{2} \cdot \mathbf{S}_{+}^{2} - \mathbf{C}_{+}^{2} \cdot \mathbf{C}_{-}^{2} \right) \cdot \left(\mathbf{S}_{+}^{1} \cdot \mathbf{S}_{+}^{1} - \mathbf{C}_{+}^{1} \cdot \mathbf{C}_{-}^{1} \right) (\omega)$$

$$+ 4\gamma_{2}\gamma_{1}\alpha_{1}^{2} \left(\mathbf{S}_{+}^{2} \cdot \mathbf{C}_{-}^{2} - \mathbf{C}_{+}^{2} \cdot \mathbf{S}_{-}^{2} \right) \cdot \left(\mathbf{S}_{+}^{1} \cdot \mathbf{C}_{+}^{1} - \mathbf{S}_{-}^{1} \cdot \mathbf{C}_{-}^{1} \right) (\omega)$$

$$+ 4\gamma_{1}^{2}\alpha_{1}\alpha_{2} \left(\mathbf{S}_{+}^{2} \cdot \mathbf{S}_{-}^{2} - \mathbf{C}_{-}^{2} \cdot \mathbf{C}_{-}^{2} \right) \cdot \left(\mathbf{S}_{+}^{1} \cdot \mathbf{S}_{-}^{1} - \mathbf{C}_{+}^{1} \cdot \mathbf{C}_{+}^{1} \right) (\omega). \tag{6}$$

By (4), (5), we have

$$D(\omega) \left(egin{array}{c} p_3^1 \ p_4^1 \end{array}
ight) = 0.$$

Since ϕ is an eigenfunction if and only if $(p_3^1, p_4^1) \neq 0$, we see that $\lambda = \omega^4$ is an eigenvalue of \mathcal{A} if $d(\omega) = 0$, $\omega > 0$. Let ω_n , $n \in \mathbb{N}$, is the *n*-th positive zero of $d(\omega)$. Then $\lambda_n := \omega_n^4$,

 $0 < \omega_1 < \omega_2 < \cdots$, is the *n*-th eigenvalue of \mathcal{A} . We can verify that λ_n is a simple eigenvalue. Let ϕ^n be an eigenfunction corresponding to λ_n , normalized in H. In the following, let $\varphi(\omega)$ be a function defined by

$$\varphi(\omega) = A\cos\beta_1\omega\cos\beta_2\omega - B\sin\beta_1\omega\sin\beta_2\omega + C\sin(\beta_1 - \beta_2)\omega \tag{7}$$

where $A = (\gamma_1 \alpha_1 + \gamma_2 \alpha_2)(\gamma_1 \alpha_2 + \gamma_2 \alpha_1)$, $B = \gamma_1 \gamma_2 (\alpha_1 + \alpha_2)^2$, $C = \gamma_1 \gamma_2 (\alpha_1^2 - \alpha_2^2)$. We denote the *n*-th positive zero of φ by μ_n .

Lemma 2 $d(\omega)$ is written as

$$d(\omega) = e^{(eta_1 + eta_2)\omega}(arphi(\omega) - h(\omega)), \quad \omega \in \mathbf{R}$$

where $h(\omega) \in C^1(\mathbf{R})$ and $h(\omega) \to 0$, $h'(\omega) \to 0$ exponentially as $\omega \to \infty$.

Proof By (6), $h(\omega) = \varphi(\omega) - e^{-(\beta_1 + \beta_2)\omega} d(\omega)$ and $h'(\omega)$ converge to 0 exponentially as $\omega \to \infty$.

To discuss controllability, we treat the moment problem on the system (1)(2)(3)(4). According to Krabs [4] or Russell [12], to solve the moment problem, we need the following conditions:

$$\liminf_{n \to \infty} (\omega_{n+1}^2 - \omega_n^2) > \frac{2\pi}{T},$$
(8)

$$\limsup_{y \to \infty} \limsup_{x \to \infty} \frac{d(x+y) - d(x)}{y} < \frac{T}{2\pi}$$
 (9)

where d(x) = number of ω_j with $\omega_j < x^2$. The aim of this paper is to prove the following

Theorem 1 We have

(1) There exist M and N such that $\omega_{M+n} - \mu_{N+n} \to 0$,

$$(2) \ 0 < \frac{1}{a}(\pi - \sin^{-1} k) \le \liminf_{n \to \infty} (\omega_{n+1} - \omega_n) \le \limsup_{n \to \infty} (\omega_{n+1} - \omega_n) < \infty,$$

(3)
$$\lim_{n\to\infty} (\omega_{n+1}^2 - \omega_n^2) = \infty.$$

By this theorem, it is clear that $\{\omega_n\}_{n\in\mathbb{N}}$ satisfies the codition (8). Moreover, the condition

(8) verify the condition (9).

Some simple facts for $\varphi(\omega)$ are given in the following

Lemma 3 In the formula (7), we have

- (1) $A \ge B > 0$,
- (2) A = B if and only if $\rho_1 T_1 = \rho_2 T_2$.
- (3) C = 0 if and only if $\rho_1 T_2 = \rho_2 T_1$.
- (4) A = B, C = 0 if and only if $(\rho_1, T_1) = (\rho_2, T_2)$.
- (5) A > B or $C \neq 0$ if and only if $(\rho_1, T_1) \neq (\rho_2, T_2)$.

(6) φ is written as

$$\varphi(\omega) = D(\cos a\omega + k\sin(b\omega + \tau)), \quad 0 \le k < 1 \tag{10}$$

where D = (A+B)/2, $a = \beta_1 + \beta_2$, $b = \beta_1 - \beta_2$, k = R/D, $R = \sqrt{((A-B)/2)^2 + C^2}$, $\tau = \cos^{-1}(C/R) \in [0, \pi]$ for $R \neq 0$ and $\tau = 0$ for R = 0.

Proof We see (1) from $A = B + \alpha_1 \alpha_2 (\gamma_1 - \gamma_2)^2 \ge B > 0$. The assertions (2), (3), (4) and (5) are clear. We have (6) since

$$\varphi(\omega) = \frac{A+B}{2}\cos(\beta_1+\beta_2)\omega + \frac{A-B}{2}\cos(\beta_1-\beta_2)\omega + C\sin(\beta_1-\beta_2)\omega$$

= $D\cos a\omega + R\sin(b\omega + \tau) = D(\cos a\omega + k\sin(b\omega + \tau)).$

where k > 0 satisfies

$$k^{2} = \frac{R^{2}}{D^{2}} = \frac{(A+B)^{2} - 4(AB-C^{2})}{(A+B)^{2}} = 1 - \frac{4(\gamma_{1} + \gamma_{2})^{2} \gamma_{1} \gamma_{2} (\alpha_{1} + \alpha_{2})^{2} \alpha_{1} \alpha_{2}}{(A+B)^{2}} < 1.$$

We assume $\beta_1 \geq \beta_2 > 0$ for simplicity. So we have $a > b \geq 0$. We put $f_k(\omega) = \cos a\omega + k \sin(b\omega + \tau)$. Since $f_k(\omega) = 0$ implies $|\cos a\omega| = |k \sin(b\omega + \tau)| \leq k$, all the positive zeros of $\varphi(\omega)$ are in the set $\{\omega > 0; |\cos a\omega| \leq k\} = \bigcup_{n=1}^{\infty} \mathcal{I}_n(k), \ \mathcal{I}_n(k) = [s_n(k), \ t_n(k)] \subset \mathcal{J}_n = [(n-1)\pi/a, \ n\pi/a], \ n=1,2,\cdots$ where $s_n(k) = (2n-1)\pi/2a - \sin^{-1}k/a$, $t_n(k) = (2n-1)\pi/2a + \sin^{-1}k/a$. We write $\mathcal{I}_n = \mathcal{I}_n(k)$, $s_n = s_n(k)$, $t_n = t_n(k)$ and $f(\omega) = f_k(\omega)$. In Theorem 2 below, we prove that there exists exactly one zero of f in each $\mathcal{I}_n \subset \mathcal{J}_n$.

Theorem 2 For each $n \in \mathbb{N}$, there exist $u_n, v_n \in \mathcal{I}_n$ such that

- (1) $f(u_n) = 1 k = -f(v_n)$ and $f(\omega)$ is monotone decreasing on $[u_n, v_n]$ for odd n,
- (2) $f(u_n) = k 1 = -f(v_n)$ and $f(\omega)$ is monotone increasing on $[u_n, v_n]$ for even n,
- (3) $|f(\omega)| \ge 1 k$ for $\omega \in \mathcal{J}_n \setminus [u_n, v_n]$
- (4) only zero of f exists in (u_n, v_n) for any n, which implies that $\mu_n \in \mathcal{I}_n$ for any $n \in \mathbb{N}$. First, we show, for sufficiently small k, $\mu_n \in \mathcal{I}_n$ for every $n \in \mathbb{N}$.

Lemma 4 Let $k \in [0, 1/\sqrt{2}]$. Then we have

- (1) for odd n, $f(s_n) \ge 0 \ge f(t_n)$ and $f(\omega)$ is monotone decreasing on $[s_n, t_n]$,
- (2) for even n, $f(t_n) \geq 0 \geq f(s_n)$ and $f(\omega)$ is monotone increasing on $[s_n, t_n]$, Consequently, in \mathcal{J}_n , $f(\omega)$ has only one zero in $[s_n, t_n]$.

Proof We only show (1). (2) is proved similarly.

$$f(s_n) = \cos\left(\frac{(2n-1)\pi}{2} - \sin^{-1}k\right) - k\sin(bs_n + \tau)$$

$$= (-1)^{n+1}k - k\sin(bs_n + \tau) = k - k\sin(bs_n + \tau) \ge 0$$

$$f(t_n) = (-1)^nk - k\sin(bs_n + \tau) = -k - k\sin(bs_n + \tau) \le -k + k = 0.$$

In $[s_n, t_n]$, we have $\sin a\omega \ge 1/\sqrt{2}$ and

$$f'(\omega) = -a\sin a\omega + kb\cos(b\omega + \tau) \le -a/\sqrt{2} + b/\sqrt{2} < 0.$$

In the following, we put $\bar{k} = kb^2/a^2$, $\overline{s_n} = s_n(\bar{k})$, $\overline{t_n} = t_n(\bar{k})$, $\overline{I_n} = \mathcal{I}_n(\bar{k})$, and $\overline{\mu_n} = \mu_n(\bar{k})$, $\bar{f}(\omega) = f_{\bar{k}}(\omega)$ and $S = \{k \in [0, 1); \mu_n(k) \in \mathcal{I}_n(k) \subset \mathcal{J}_n \text{ for each } n \in \mathbb{N}\}.$

Lemma 5 For $\bar{k} \in S$, the conclusion of Theorem 2 is valid.

Proof We have

$$f''(\omega) = f''_k(\omega) = -a^2 \cos a\omega - kb^2 \sin(b\omega + \tau)$$
$$= -a^2 (\cos a\omega + \bar{k}\sin(b\omega + \tau)) = -a^2 f_{\bar{k}}(\omega) = -a^2 \bar{f}(\omega).$$

Let n be odd. The case where n is even is also treated similarly. Then $\bar{f}((n-1)\pi/a) \ge 1-k>0>k-1\ge \bar{f}(\pi/a)$. Since $\overline{\mu_n}$ is the only zero of \bar{f} in $((n-1)\pi/a, n\pi/a)$, we have $f''(\omega)<0$ for $\omega\in((n-1)\pi/a,\overline{\mu_n})$, $f''(\omega)>0$ for $\omega\in(\overline{\mu_n},n\pi/a)$. Thus $f(\omega)$ is concave on $((n-1)\pi/a,\mu_n)$ and convex on $(\mu_n,n\pi/a)$. Let $y_n,z_n\in\mathcal{J}_n$ with $f(y_n)=\max_{\omega\in\mathcal{I}_n}f(\omega)\ge 1-k$ and $f(z_n)=\min_{\omega\in\mathcal{I}_n}f(\omega)\le k-1$. Then, we find u_n,v_n with $s_n\le y_n<\mu_n< v_n\le z_n\le t_n$ such that $f(u_n)=1-k$ and $f(v_n)=k-1$. Thus, f is monotone decreasing on $[u_n,v_n]\subset [y_n,z_n]$.

Proof of Theorem 2 There exists $N \in \mathbb{N}$ such that $0 \le (b/a)^{2N} \le 1/2$. Let $k \in [0, 1)$ and $k_i = k(b/a)^{2i}$, $i = 0, 1, 2, \ldots, N$. Then $k_N \in \mathbb{S}$ by Lemma 4. Therefore, by Lemma 5, $k_i \in \mathbb{S}$, $i = 1, 2, \ldots, N - 1$. In particular, $k_1 = k(b/a)^2 = \bar{k} \in \mathbb{S}$. Thus, by using Lemma 5 again, we can prove Theorem 2.

Next, we want to show that, for sufficiently large n, there exists only one zero of $d(\omega)$ in each \mathcal{J}_n . More precisely, we have

Theorem 3 There exists $M, N \in \mathbb{N}$ such that $\omega_{M+n} \in \mathcal{J}_{N+n}$ for $n = 0, 1, \ldots$

To prove the above thoerem, we prepare Lemma 6 and lemma 7 given below:

Lemma 6 For any $n \in \mathbb{N}$, the following inequality holds:

$$|f'(\mu_n)| \ge \delta = \sqrt{(1-k^2)(a^2-b^2)}.$$
 (11)

Proof Since μ_n , $n \in \mathbb{N}$, are zeros of f, we have

$$f(\mu_n) = \cos a\mu_n + k\sin(b\mu_n + \tau) = 0, \tag{12}$$

$$f'(\mu_n) = -a\sin a\mu_n + kb\cos(b\mu_n + \tau). \tag{13}$$

If b = 0, then $(f'(\mu_n))^2 = a^2 \sin^2 a \mu_n = a^2 (1 - \cos^2 \tau) \ge a^2 (1 - k^2)$. Hence we have (11). If $b \ne 0$, then

$$f'(\mu_n)^2 = \frac{(a^2 - b^2)}{b^2} \left(\sin a\mu_n - \frac{af'(\mu_n)}{a^2 - b^2} \right)^2 + (1 - k^2)(a^2 - b^2)$$

 $\geq (1 - k^2)(a^2 - b^2).$

Thus we have (11).

Lemma 7 There exists an interval $[a_n, b_n] \subset [u_n, v_n]$ and $l \in [0, 1-k)$ such that

$$|f(\omega)| \le l, |f'(\omega)| \ge \delta/2 \quad \text{for } \omega \in [a_n, b_n],$$
 (14)

$$|f(\omega)| \ge l \quad \text{for } \omega \in \mathcal{J}_n \setminus [a_n, b_n].$$
 (15)

Proof By uniform continuity of $f'(\omega)$ and Lemma 6, there exists c > 0 with $l = \delta c/2 < 1 - k$ such that

$$|f'(\omega)| \ge \delta/2 \quad \text{for } \omega \in [\mu_n - c, \, \mu_n + c].$$
 (16)

Therefore, we have $|f(\omega)| \ge (\delta/2)|\omega - \mu_n|$ on $[\mu_n - c, \mu_n + c]$. If n is odd (resp. even), we define a_n , b_n with $\mu_n - c < a_n < b_n < \mu_n + c$ by $f(a_n) = l$ (resp. -l) and $f(b_n) = -l$ (resp. l). Hence we have

$$\{\omega \in [\mu_n - c, \, \mu_n + c]; |f(\omega)| \le l\} = [a_n, \, b_n]. \tag{17}$$

By (16) and (17), we see (14), and by Theorem 3, (15).

We put $g(\omega) = \varphi(\omega) - h(\omega) = Df(\omega) - h(\omega)$. Since $h(\omega)$, $h'(\omega) \to 0$ as $\omega \to \infty$, there exists $N \in \mathbb{N}$ such that $|h(\omega)| < Dl$ and $|h'(\omega)| < D\delta/2$ for $\omega > (N-1)\pi/a$.

Let n be odd with n > N. Then, by Lemma 7, we have $f(a_n) = l$, $f(b_n) = -l$ and $f'(\omega) < -\delta/2$ for $\omega \in [a_n, b_n]$. Hence $g(a_n) = Df(a_n) - h(a_n) = Dl - h(a_n) > Dl - Dl = 0$ and $g(b_n) = Df(b_n) - h(b_n) = Dl - h(b_n) < -Dl + Dl = 0$. Thus, for $\omega \in [a_n, b_n]$, $g'(\omega) = Df'(\omega) - h'(\omega) \le -D\delta/2 + |h'(\omega)| < -D\delta/2 + D\delta/2 = 0$ which implies that $g(\omega)$ has a unique zero in (a_n, b_n) . For $\omega \in \mathcal{J}_n \setminus [a_n, b_n]$, by (14), we have $|g(\omega)| \ge |Df(\omega)| - |h(\omega)| \ge Dl - Dl = 0$. Therefore, $g(\omega)$ has a unique zero in \mathcal{J}_n . The case with even $n \ge N$ is also similarly proved. Let ω_M be a zero of $g(\omega)$ in \mathcal{J}_N . Thus $\omega_{M+n} \in \mathcal{J}_{N+n}$ for $n = 0, 1, 2, \ldots$

Proof of Theorem 1 Since $f(\mu_{N+n}) = g(\omega_{M+n}) = 0$, we have

$$h(\omega_{M+n}) = Df(\omega_{M+n}) - g(\omega_{M+n}) = D(f(\omega_{M+n}) - f(\mu_{N+n})).$$
(18)

By Mean Value Theorem, there exists $\theta \in (0, 1)$ such that $f(\omega_{M+n}) - f(\mu_{N+n}) = (\omega_{M+n} - \mu_{N+n})f'(\mu_{N+n} + \theta(\omega_{M+n} - \mu_{M+n}))$. Thus, by (14) and (18),

$$|\omega_{N+n} - \mu_{N+n}| \le \frac{|f(\omega_{M+n}) - f(\mu_{N+n})|}{|f'(\mu_{N+n} + \theta(\omega_{M+n} - \mu_{M+n}))|} \le \frac{2}{D\delta} |h(\omega_{M+n})| \to 0$$

as $n \to \infty$. Therefore,

$$\lim_{n \to \infty} \inf (\omega_{n+1} - \omega_n) = \lim_{n \to \infty} \inf (\omega_{M+n+1} - \omega_{M+n})
= \lim_{n \to \infty} \inf (\omega_{M+n+1} - \mu_{N+n+1} + \mu_{N+n+1} - \mu_{N+n} + \mu_{N+n} - \omega_{M+n})
= \lim_{n \to \infty} \inf (\mu_{N+n+1} - \mu_{N+n}) = \lim_{n \to \infty} \inf (\mu_{n+1} - \mu_n).$$

By $s_n < \mu_n < t_n < s_{n+1} < \mu_{n+1} < t_{n+1}$, we have

$$\mu_{n+1} - \mu_n \geq s_{n+1} - t_n = \left(\frac{2n+1}{2a}\pi - \frac{\sin^{-1}k}{a}\right) - \left(\frac{2n-1}{2a}\pi + \frac{\sin^{-1}k}{a}\right)$$
$$= \frac{\pi}{a} - \frac{2\sin^{-1}k}{a} = \frac{1}{a}(\pi - 2\sin^{-1}k)$$

The above theorem implies that

$$\liminf_{n\to\infty} (\omega_{n+1}^2 - \omega_n^2) \ge \liminf_{n\to\infty} (\omega_{n+1} + \omega_n) \liminf_{n\to\infty} (\omega_{n+1} - \omega_n) = \infty.$$
 (19)

3 Concluding Remarks

This paper is only a first step to the controllability theory for the Euler-Bernoulli equation using the moment problem method [4], [12].

References

- [1] Ho, L.F., Controllability and stabilizability of coupled strings with control applied at the coupled points, SIAM J. Control. Optim. 31, 1416-1437 (1993).
- [2] Ingham, A.E., Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41, 367-379 (1936).
- [3] Komornik, V., Exact Controllability and Stabilization: The Multiplier Method, Masson, Paris, and John Wiley & Sons, Chicester, 1994.
- [4] Krabs, W., On Moment Theory and Controllability of One-Dimensional Vibrating Systems and Heating Processes, Lecture Notes in Control and Information Sciences, Springer-Verlag, 1991.
- [5] Lasiecka, I. and Triggiani, R., A cosine operator approach to modeling $L_2(0, T; L_2(\Gamma))$ bouldary input hyperbolic equations, Appl. Math. Optim. 7, 35-93 (1981).
- [6] Lions, J.L. and Magenes, E., Nonhomogeneous Boundary Value Problems and its Applications I, Springer-Verlag, 1972.
- [7] Ma, J.P., Exact controllability of a coupled vibrating membrane system, Saitama Math. J. 16, 39-51 (1998).
- [8] Ohnari, S., Approximate controllability of coupled vibrating strings with coupled point control, Adv. Math. Sci. Appl. 6, 641-651 (1995).
- [9] Ohnari, S., Controllability of coupled vibrating beams with control applied at a coupled point, Saitama Math.J. 13, 69-80 (1995)
- [10] Ohnari, S., Controllability of coupled vibrating systems, Doctoral Dissertation, Saitama University, 1-76 (1996).
- [11] Redheffer, R.M., Remarks on incompleteness of $\{e^{i\lambda_n x}\}$, nonaveraging sets, and entire functions, Proc. Amer. Math. Soc. 14, 242-244 (1939)
- [12] Russell, D.L., Non-harmonic Fourier series in control theory of distributed parameter systems, J. Math. Anal. Apll. 18, 542-560 (1967).
- [13] Russell, D.L., Controllability and stabilization theory for linear partial differential equations, Recent progress and open questions, SIAM Review, 20, 639-659 (1987).
- [14] Sakawa, Y. and Luo, Z.H., Modeling and control of a coupled bending and torsional vibrations of flexible beams, IEEE Trans. Autom. Control 34, 970-977 (1987).

- [15] Schmidt, E.J.P.G., On the modelling and controllability of networks of vibrating strings, SIAM J. Control Optim. 30, 229-245 (1992).
- [16] Schwartz, L., Approximation d'une fonction quelconque, Ann. Fac. Sci., Univ. Toulouse, 4 Ser. 6, 111-174 (1942).
- [17] Tsujioka, K., Remarks on controllability of second order evolution equations in Hilbert spaces, SIAM J. Control 34, 90-99 (1970).
- [18] Tsujioka, K., On a hyperbolic equation in robotics with a singular boundary condition, Saitama Math. J. 7, 23-47 (1989).
- [19] Tsujioka, K., On a damped wave equation with a singular boundary condition, Saitama Math.J. 8, 31-39 (1990).
- [20] Tsujioka, K., On controllability of Euler-Bernoulli equation with a singular boundary condition, Saitama Math. J. 13, 59-67 (1996).
- [21] Tsujioka, K., Remarks on controllability of Euler-Bernoulli equation with a singular boundary condition, Saitama Math.J. 15, 73-83 (1997).
- [22] Yosida, K., Functional Analysis Sixth Edition, Springer-Verlag, 1980.
- [23] Young, R.M., An Introduction to Nonharmonic Fourier Series, Academic Press, 1980.