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Abstract

We consider the control system of two vibrating beams which are coupled at a
joint. The displacement of the beam is described by an Euler-Bernoulli equation
with control applied at a coupled point. Our purpose is to argue the contorollability
of the system. To this purpose, we discuss the eigenvalue problem related to this
system.

1 Introduction

Let us consider the controllability problem for a system coupled by Euler-Bernoulli beams.
For m. € (0, 1), we put o = 0, ; = m and z, = 1. The displacement of each beam at
time ¢ is described by y;(z, t) on I; = (z;_1, z;), i = 1,2, and satisfies the Euler-Bernoulli
equation:

Pi§i+7}y§4)=0 onI,-x(O, T) L (1)

‘where y;(z, t) = Oy;(z, t)/0t, yl(k)(x, t) = 0%y;(z, t)/0x*. p; is mass density and T} is
flexural rigidity respectively on I;. Let both ends be clamped: :

(Ba)(®) = (a0, ), 4200, 8), 1201, ), 981, ) =0 (2)

At the coupled point £ = m, we apply control F = (fy, fa, f3, f1) as follows:

(B1y)(t) == y1(m, t) — ya(m, t) = f1(2),
(Bay)(2) == yiV(m, t) — 48" (m, ¢) = f(2),
(Bsy)(t) := Tugy” (m, t) — Ty (m, 1) = fa(2),
(Bay)(2) := TiyP (m, t) — ToysP (m, t) = fa(t).

Initial condition is given as follows »

We assume that controls f; belong to L%(0, T), ¢ = 1,2,3,4. In this paper, we treat
controllability of the above system. Roughly speaking, the system (1)(2)(3)(4) is con-
trollable if for any initial value (y?, y!) and final value (22, 2}), i = 1,2, there exists a
control F' = (f1, fs, fs, f1) such that the corresponding solution of the system (1)(2)(3)(4)
satisfies the final condition (y;(z, T), gi(z, T)) = (22(z), z}(z)), i =1,2.

3)
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2 Eigenvalue Problem

Let us identify v € L%(I) with ( :1 € H = L*(I) = L*(I,) x L*(I,) where v; =
2

v, = 1,2, 1 = (0, m), I = (m, 1). Then H becomes a Hilbert space with inner
product

' = v w
(v, w) = pr(v1, wi) L2y + p2(v2, w2)r2q,) forv= ( 'v: ) , W= ( 'w; ) € H.

We define an operator A in H by

_{ @/p)of? (™ - 4
Av = ( (Ty/ oy ) for v = ( o ) € D(A) := H*(I,) x H*(I,)

and an operator A by restricting A to
D(A) := {v € H*(I,) x H*(I;); Bov =0, Bv := (B,v, Byv, Byv, B4v) = 0}.
For this operator A, we have

Lemma 1 The operator A is a selfadjoint operator in H with compact resolvent.

The proof of this lemma is easy to verify. _
Let A be an eigenvalue for A with corresponding eigenfunction ¢. Then we have

Ad = A (1)
with boundary conditions
By =0, B¢ =0. (2)
We introduce functions C,, S by
C.(6) = E’—Sﬂ;c—"s—” S.(0) := %S‘—“” for 6¢R.

Let ¢; = ¢ |1, a; = (p;/T;)%, i =1,2. A system of fundamental solutions to (1) in each
I; is given by {Ci(aiw(z — zi-1)), Si(aiw(z — z;-1))} and we have

¢i(z) = (PiCs +pPiS+ +piC_ +piS_)(cuw(z — i),

(6)(z) = aw(piS- +piCy + P3Sy + PiC-)(aiw(z — 2i-1)),

(6:)P(z) = 0w (PiC- +piS_ + P3Cy + PiSy ) (uw(z — i),

(6)®(z) = 3w (PiSs +p5C- +piS_ + piCy)(cuw(z — 7i-1))

for z € I; where w = A\i. By (2), we have p! = p} = 0 and therefore

$i(z) - = (pC- +piS-)(awwz),
(¢1)(1)($) = aﬂd(p%s-p +piC-)(alwx)7 (3)
(61)P(z) = ofw?(PiCy + piSi)(we),

(#1)®(z) = ofw’(p3S- + piCy)(aaws).
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By (2), we have

pi 7202CL (w) vzazslI(w)' | | |

2 _ Py | _ | meaSi(w) menCl(w) | ( m 4

e =102 | gt = | yanClw) weaSi(w) |\ ol “
P noiSL(w) menCl(w)

where Yi = T‘,;a?, 1= 1)2a ﬁl = aym, S]:i:((U) = S:E(ﬂlw)a C'}t((“)) = Ci(ﬂlw)' By (2)’ we
see

p?

CGw) Sw) Cw) 2w | |_

(sa(w) Ci(w) () cz(w>) 7| =0 (5)
Py

where 8, = 05(1 — m), S2(w) = S4(Baw), C? (w) = C1(Bow). Let

_ [ Du(w) Dia(w)
D)= Jut o) )
’)’20201_(60) ’)’2023}.(01)
.:(Ci(w) $2 (w) C2(w) Sz_(w)) Y2018} (W) Y204CL (w)
) S?(w) Ci(w) SZ(w) Ci(w) 102CL (W) 71228t (w)
Y1048 (w) 71041Ci(w)

Then
Du(w) = (’)’2012(31 -CL+ ’)’20131 : Si + mapC? - Ci + ma 82 - SL)(w),
Dlz(w) = (72020_2’_ . Sl_ + ’)’2&181 . Cl_ + ’)’1&202_ . S}'_ + 710182— : C-lf)(w)a
Dy(w) = (72028% - CL + 71301C% - S + 71582 - CL + yenC? - S )(w),
Dy(w) = (120252 - St + 71 C% - CL + 71025% - S} + monC? - CL ) (w).
We put

d(w) := 4det D(w)
= dyjonan (83-82 — C3-C}) (8381 — CL-CL)(w)
+ 4yyv108 (S%-C% — S%-C%)-(SL-CL — CL-S!)(w)
+ 8vpv10004 (S%-S2 — C%-C%)-(SL-S} — CL-CL)(w)
+ dy,y0f (S5-C% —~ C2-8%)-(SL-CL —SL-CL)(w)
+ dyfajap (S2-8% — C2-C%)-(SL-SL — CL.Cl)(w). (6)

By (4), (5), we have

P4

D(w) ( ﬁ» ) =0.

Since ¢ is an eigenfunction if and only if (pi, pi) # 0, we see that A = w* is an eigenvalue
of Aif d(w) =0, w > 0. Let wy,, n € N, is the n-th positive zero of d(w). Then A, := wi,
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0 < wy < wy < ---, is the n-th eigenvalue of A. We can verify that A\, is a simple
eigenvalue. Let ¢" be an eigenfunction corresponding to A, normalized in H. In the
following, let ¢(w) be a function defined by

o(w) = Acos fjw cos fow — Bsin fiwsin fow + C'sin(B; — B2)w (7)

where A = (7101 + Ye2)(M102 + Y201), B = mya(oq + ®)?, C = n7a(af — a3). We
denote the n-th positive zero of ¢ by in.

Lemma 2 d(w) is written as
d(w) = e+ (p(w) - h(w)), weR
where h(w) € C'(R) and h(w) = 0, h'(w) = 0 ezponentially as w — oo.

Proof By (6), h(w) = p(w) — e~ Pr+hud(w) and h'(w) converge to 0 exponenrially as
w — 00. : ' o

To discuss controllability, we treat the moment problem on the system (1)(2)(3)(4).
According to Krabs [4] or Russell [12], to solve the moment problem, we need the following
conditions:

. 2n
lim inf(w,.,,” — wy’) > ==, (8)
d -
lim sup lim sup (z+y) - dz) < T (9)
y—00  T—00 Yy 2w

where d(z) = number of w; with w; < z%. The aim of this paper is to prove the following

Theorem 1 We have

(1) There exist M and N such that wp4n — M}v+n -0,
1 . .. .
(2) 0< E(w —sin"'k) < llﬂglf(u)nH —wp) < ll{lrl’solgp(wnﬂ — wy) < 00,

(3) hm ((“Jn+12 - wnz) =00

By this theorem, it is clear that {wp }nen satisfies the codition (8) Moreover, the condition
(8) verify the condition (9).
Some simple facts for p(w) are given in the following

Lemma 3 In the formula (7), we have

(1) A>B >0,
(2) A= B if and only if p\T1 = poT>.

(4 A= B, C =0 if and only if (p1, Tl) = (P2a T3).

)
)
(3) C =0 if and only if p,T5 = paTh.
)
(5) A> B or C 40 if and only if (o1, T) # (p2, T).



143

(6) ¢ is written as

¢(w) = D(cosaw + ksin(bw + 7)), 0< k<1 (10)

where D = (A+B)/2,a=(1+02,b=01—02, k=R/D,R= \/((A — B)/2)* + C?,
7 =cos '(C/R) € [0, 7] for R#0 and 7 =0 for R =0.

Proof We see (1) from A = B + a105(1 — 72)* > B > 0. The assertions (2), (3), (4)
and (5) are clear. We have (6) since

A+ B A-B

olw) = 5 cos(B1 + Bo)w + 5 cos(B1 — P2)w + Csin(B; — B2)w

= Dcosaw + Rsin(bw + 7) = D(cos aw + ksin(bw +.7)).

where k > 0 satisfies |
_ _I_%_"’_ _(A+B)?-4(AB-C? _ - 4 + 72)2m1v2 (0 + o) 200
- D? (A+ B)? B ' (A+ B)? '
We assume 3; > B > 0 for simplicity. So we have a > b > 0. We put fi(w) =
cos aw+k sin(bw+T7). Since fi(w) = 0 implies | cos aw| = |k sin(bw+7)| < k, all the positive
zeros of p(w) are in the set {w > 0;|cosaw| < k} = U2, T, (k), Z.(k) = [sn(k); ta(k)] C
In =[(n—1)7/a, nw/a), n =1,2,--- where s,(k) = (2n — 1)7/2a — sin™* k/a, t,(k) =
(2n'—1)7/2a +sin"! k/a. We write I,, = Z,(k), sn = sn(k), tn = to(k) and f(w) = fr(w).
In Theorem 2 below, we prove that there exists exactly one zero of f in each Z,, C J,. -

k? < 1.

‘Theorem 2 For each n € N, there exist u,, v, € I, such that

(1) f(up) =1—k = —f(v,) and f(w) is monotone decreasing on [uy,, v,] for odd n,

(2) f(un) =k —1=—f(v,) and f(w) is monotone increasing on [u,, v,| for even n,
(3) 1f@)] 2 1~k for w € Tp\[un, vn] |

(4) only zero of f exists in (uy, v,) for any n, which implies that u, € I, for anyn € N.
First, we show, for sufficiently small &k, u, € Z, for every n € N.

Lemma 4 Let k € [0, 1/v/2]. Then we have

(1) for odd n, f(s,) > 0> f(t,) and f(w) is monotone decreasing on [svn, in],

(2) for even n, f(t,) >0 > f(sn) and f(w) is monotone increasing on [Sn, tn],

Consegquently, in J,, f(w) has only one zero in [én, tn)-

Proof We only show (1). (2) is proved similarly.
-1
f(sn) = cos ((Q_n_é___)z —sin™! k) — ksin(bs, + 7)

= (=1)""'k — ksin(bs, +7) = k — ksin(bs, +7) > 0
flt,) = (-1)"k —ksin(bs, +7) = —k — ksin(bs, +7) < —k+k=0.
In [s,, t,|, we have sin aw > 1/4/2 and
f'(w) = —asinaw + kbcos(bw + 1) < —a/V2 + b/V2 < 0.



144

In the following, we put k = kb?/a?, 55 = sq(k), T = ta(k), Tn = T(k), and [z, = pa(k),
f(w) = fi(w) and S = {k € [0, 1); un(k) € I,(k) C T, for each n € N}.

Lemma 5 For k € S, the conclusion of Theorem 2 is valid.

Proof We have

f"w) = f'(w) = —a®cosaw — kb*sin(bw + 7) | B 1
= —d?(cosaw + ksin(bw + 7)) = —a’fi(w) = —a*f(w).

Let n be odd. The case where n is even is also treated similarly. Then f((n — 1)7/a) >
1—-k>0>k-1> f(r/a). Since i, is the only zero of f in ((n — 1)n/a, nw/a),
we have f"(w) < 0 for w € ((n—1)/a, i), f"(w) > 0 for w € (@, nw/a). Thus
f(w) is concave on ((n — 1)7/a, p,) and convex on (u,, nm/a). Let yn, zn € J, with
f(yn) = MaX,e1, f(w) >1—kand f(zn) = minyerz, f(w) < k — 1. Then, we find uy,, v,
with s, < yp < ttn < vp < 2, < t, such that f(u,) =1—k and f(v,) = k — 1. Thus, f
is monotone decreasing on [u,, vp] C [Yn, 2n]-

Proof of Theorem 2 There exists N € N such that 0 < (b/a)?N < 1/2. Let k € [0, 1)
and k; = k(b/a)*,i=0,1,2,...,N. Then ky € S by Lemma 4. Therefore, by Lemma 5,
ki€S,i=1,2,...,N — 1. In particular, k; = k(b/a)? = k € S. Thus, by using Lemma 5
again, we can prove Theorem 2.

Next, we want to show that, for sufficiently large n, there exists only one zero of d(w)
in each J,,. More precisely, we have

Theorem 3 There erists M, N € N such that wayin € In4n forn=0,1,....

To prove the above thoerem, we prepare Lemma 6 and lemma 7 given below:
Lemma 6 For any n € N, the following inequality holds:

| ()] > 6 = /(1 — k2)(a? - B?). (11)

Proof Since pu,, n € N, are zeros of f, we have

f(pn) = cosapy + ksin(bp, +7) =0, (12)
f'(un) = —asinap, + kbcos(bpn + 7). (13)

If b= 0, then (f'(1s))? = a?sin® ap, = a®(1 — cos?7) > a?(1 — k?). Hence we have (11).
If b # 0, then

P = S50 (sinan - L) 1 - a2 - )

aZ — b2
> (1 - k?)(a? - b2).

Thus we have (11).



145

Lemma 7 There exists an interval [an, by] C [un, v,] and | € [0, 1 — k) such that

[f) <1, [f(w)]=6/2 forw € [an, bnl, (14)
Nf@) =21 for we Tn\[an, bal. | (15)

Proof By uniform continuity of f’(w) and Lemma 6, there exists ¢ > 0 with [ = de/2 <
1 — k such that

|f'(w)] >6/2 forw € [y — ¢, i + c]. . - (16)

Therefore, we have |f(w)| > (6/2)|w — pa| o0 [pn — ¢, ptn + ¢]. If n is odd (resp. even),
we define a,, b, with pu, —c < a, < b, < g, + ¢ by f(a,) =1 (resp. —1) and f(b,) = —I
(resp. l). Hence we have

{w € [tn — ¢, ptn + s | f(w)] < 1} = [an, ba). (17)
By (16) and (17), we see (14), and‘by‘ Theorem 3, (15).

We put g(w) = ¢(w) — h(w) = Df(w) — h(w). Since h(w), h'(w) — 0 as w — oo, there
exists N € N such that |h(w)| < Dl and |W'(w)| < D6/2 for w > (N — 1)7/a.

Let n be odd with n > N. Then, by Lemma 7, we have f(a,) = I, f(b,) = —I
and f'(w) < —0/2 for w € [an, by). Hence g(a,) = Df(a,) — h(a,) = DI — h(a,) >
Dl — Dl = 0 and g(b,) = Df(b,) — h(b,) = DI — h(b,) < —DIl + DI = 0. Thus, for
w € [ap, by}, ¢'(w) = Df'(w) — W' (w) < —D§/2 + |W'(w)| < —D§/2 + D§/2 = 0 which
implies that g(w) has a unique zero in (an, by,). For w € J,\[an, b,], by (14), we have
lg(w)| > |Df(w)| — |h(w)| > DI — DI = 0. Therefore, g(w) has a unique zero in 7,. The
case with even n > N is also similarly proved. Let wp be a zero of g(w) in Jy. Thus
WhMtn € INyn forn=0,1,2,....

Proof of Theorem 1 Since f(unin) = 9(war4+n) = 0, we have

h(wa4n) = Df(Wrm+n) = 9(Wr+n) = D(f (War4n) = fF(in4n))- (18)
By Mean Value Theorem, there exists § € (0, 1) such that f(wprin) — f(tN+n) = (Wrren—
ﬂN+n)f’(/-"N+n + O(WM+n - ,ufM—}—n))- Thus, by (14) and (18)7

|f(wM+n) - f(,UIN+n)' < i

h 2)]—0
If,(/‘N-C-n +0(wM+n —‘/‘M+n))l - Dél (wM+ )l

IwN+n - ﬂN+nl S

as n — oo. Therefore,

im inf(wyp4q — = liminf -
liminf(wni; —ws) = liminf(warinsr — Waren)
= ligl_)glf(wMﬁLnJrl — UN+n+1 T AN+n+1 — BN+n + EN4n — WM4n)
= liminf - = liminf — ln).
1n. 1n (UN+n+1 = BN+n) m 10 (Bn+1 — n)

By Sp < fn < tn < Snt1 < Upt1 < tn+1, we have

2n+1 sin 1k 2n —1 sin"1k
Mol — Mn 2 Spy1—tp = ™= - ™+

2a a 2a a

in"'k 1
_ T _2sn = —(m —2sin"tk)
a a a

The above theorem implies that

liminf(w,,,* — w,*) > Hminf(wnt1 + wn) iminf(wp1 — wa) = co. (19)
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3 Concluding Remarks

This paper is only a first step to the controllability theory for the Euler-Bernoulli equation
using the moment problem method [4], [12].
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