<table>
<thead>
<tr>
<th>Title</th>
<th>On a New Existence Result for Cone Saddle Point Problems (Nonlinear Analysis and Convex Analysis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kimura, Kenji; Kalmoun, Mostafa; Tanaka, Tamaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2002), 1246: 156-164</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41724</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On a New Existence Result for Cone Saddle Point Problems

Visiting Professor of the Graduate School of Science and Technology, Niigata University.

1 Introduction

Studies on vector-valued minimax theorems or vector saddle point problems have been extended widely; see [6] and references cited therein. Existence results for cone saddle points are based on some fixed point theorems or scalar minimax theorems; see [5]. Recently, this kind of problems is solved by a different approach in [3], in which a vector variational inequality problem is treated in a finite dimensional vector space. In this paper, we consider its generalization to vector problems involving the concept of moving cone in the general setting of a normed space.

2 Problem Formulation and Existence Result

Let K and E be nonempty subsets of a normed space X and a topological vector space Y, respectively, and let Z be a normed space.

Given a vector-valued function $L : K \times E \to Z$ and a pointed convex cone C on Z with int$C \neq \phi$, Vector Saddle Point Problem (in short, VSPP) is to find $x_0 \in X$ and $y_0 \in Y$ such that

$$L(x_0, y_0) - L(x, y_0) \notin \text{int} C, \quad \forall x \in K,$$

$$L(x_0, y) - L(x_0, y_0) \notin \text{int} C, \quad \forall y \in E.$$

A solution (x_0, y_0) of (VSPP) is called a weak C-saddle point of the function L.

On the other hand, Vector Variational Inequality Problem (in short, VVIP) is to find $x_0 \in K$ and $y_0 \in T(x_0)$ such that

$$
\langle L'(x_0, y_0), x - x_0 \rangle \notin \text{int} C, \quad \forall x \in K,
$$

where $T : X \to Y$ is a multifunction defined by

$$
T(x) := \{ y \in C \mid L(x, v) - L(x, y) \notin \text{int} C, \quad \forall v \in E \},
$$

and $L'(x_0, y_0)$ denotes the Fréchet derivative of L with respect to the first argument at (x_0, y_0).

...
Definition 2.1 A function \(f : K \rightarrow Z \), where \(K \) is convex set, is called \(C \)-convex if for each \(x, y \in K \) and \(\lambda \in [0,1] \),

\[
\lambda f(x) + (1 - \lambda) f(y) - f(\lambda x + (1 - \lambda)y) \in C.
\]

Definition 2.2 A function \(f : K \rightarrow Z \) is called Fréchet differentiable if for every \(x \in K \) and \(\varepsilon > 0 \), there exists \(f'_x \in L(K, Z) \) and \(\delta > 0 \) such that

\[
\| f(x+h) - f(x) - f'_x(h) \| < \varepsilon \text{ for all } h \in K; \| h \| < \delta,
\]

where \(L(K, Z) \) is the space of all linear continuous operators from \(K \) into \(Z \).

First we show an equivalence condition between (VSPP) and (VPIP).

Theorem 2.1 Suppose that \(K \) is convex and \(L \) is \(C \)-convex and Fréchet differentiable in the first argument. Then problems (VSPP) and (VPIP) have the same solution set.

Proof. Assume that \((x_0, y_0) \in K \times E \) is a solution of (VSPP). Then

\[
L(x_0, y_0) - L(x, y_0) \notin \text{int } C,
\]

for all \(x \in K \).

\[
L(x_0, y) - L(x_0, y_0) \notin \text{int } C,
\]

for all \(y \in E \). Since \(K \) is convex, We have

\[
x_0 + \alpha (x - x_0) \in K,
\]

for all \(x \in K \) and \(\alpha \in [0,1] \). Hence condition(1) implies

\[
\alpha^{-1} [L(x_0 + \alpha (x - x_0), y_0) - L(x_0, y_0)] \notin \text{int } C,
\]

for all \(x \in K \) and \(\alpha \in (0,1] \). Since \(Z \backslash \text{int } C \) is closed and \(L \) is Fréchet differentiable in the first argument, it follows that

\[
\langle L'(x_0, y_0), x - x_0 \rangle \notin \text{int } C,
\]

for all \(x \in K \). \(y_0 \in T(x_0) \) follows from (2).

Conversely, assume that \((x_0, y_0) \in K \times E \) is a solution of (VPIP). Then we have

\[
\langle L'(x_0, y_0), x - x_0 \rangle \notin \text{int } C,
\]

for all \(x \in K \) and

\[
L(x_0, y) - L(x_0, y_0) \notin \text{int } C,
\]

for all \(y \in E \). Since \(L \) is \(C \)-convex with respect to the first argument, we have

\[
\alpha L(x, y_0) + (1 - \alpha) L(x_0, y_0) - L(x_0 + \alpha (x - x_0), y_0) \in C,
\]

for all \(x \in K \) and \(\alpha \in (0,1) \), and since \(C \) is cone, we have

\[
L(x, y_0) - L(x_0, y_0) - \frac{L(x_0 + \alpha (x - x_0), y_0) - L(x_0, y_0)}{\alpha} \in C,
\]
for all $x \in K$ and $\alpha \in (0,1)$. Since L is Fréchet differentiable with respect to the first argument, if α converge to 0, then we have
\[
L(x, y_0) - L(x_0, y_0) - \langle L'(x_0, y_0), x - x_0 \rangle \in C,
\]
for all $x \in K$. From condition(3), it follows
\[
L(x_0, y_0) - L(x, y_0) \notin \text{int } C
\]
for all $x \in K$. Hence $(x_0, y_0) \in K \times E$ is also a solution of (VSPP).

Now, we introduce Fan-KKM theorem, which is important in the field related to (VVIP), for theorem 2.3.

Theorem 2.2 (Fan-KKM Theorem see[4]) Let X be a subset of a topological vector space. For each $x \in X$, let a closed set $F(x)$ in X be given such that $F(x)$ is compact for at least one $x \in X$. If the convex hull of every finite subset $\{x_1, \ldots, x_n\}$ of X is contained in the corresponding union $\bigcup_{x \in X} F(x)$, then $\bigcap_{x \in X} F(x) \neq \phi$.

Next we show an existence result of (VSPP) by using (VVIP).

Theorem 2.3 Let K and E be a nonempty closed convex subset of a normed space X and a nonempty compact subset of a topological vector space Y, respectively. Assume that the vector-valued function L is continuously differentiable and C-convex in the first argument and L' is continuous in both x and y, and let $T : K \to E$ be the multifunction defined by

\[
T(x) := \{ y \in E \mid L(x, v) - L(x, y) \notin \text{int } C, \quad \forall v \in E \}.
\]

If there exists a nonempty compact subset B of X and $x \in B \cap K$ such that for any $x \in K \setminus B$ and $y \in T(x),$

\[
\langle L'(x, y), x_0 - x \rangle \in -\text{int } C,
\]
then problem (VSPP) has at least one solution.

Proof. In order to proof the theorem, it is sufficient to show that (VVIP) has at least one solution $x_0 \in K$, $y_0 \in T(x_0)$. Define a multifunction $F : K \to K$ by

\[
F(u) = \{ x \in K \mid \langle L'(x, y), u - x \rangle \notin -\text{int } C, \quad \text{for some } y \in T(x) \}, \quad u \in K.
\]

First, we prove that the convex hull of every finite subset $\{x_1, x_2, \ldots, x_n\}$ of K is contained in the corresponding union $\bigcup_{i=1}^{m} F(x_i)$, that is, $\text{Co}\{x_1, x_2, \ldots, x_m\} \subset \bigcup_{i=1}^{m} F(x_i)$. Suppose to the contrary that there exist x_1, x_2, \ldots, x_m and $\alpha_1, \alpha_2, \ldots, \alpha_m$ such that

\[
\hat{x} := \sum_{i=1}^{m} \alpha_i x_i \notin \bigcup_{i=1}^{m} F(x_i), \quad \sum_{i=1}^{m} \alpha_i = 1.
\]

Then, $\hat{x} \notin F(x_i)$ for all $i = 1, \ldots, n$, and hence for any $y \in T(\hat{x}),$

\[
\langle L' \hat{x}, y \rangle, x_i - \hat{x} \rangle \in \text{int } C,
\]
for all $i = 1, \ldots, m$. Since $\text{int} C$ is convex, we have
\begin{equation}
\sum_{i=1}^{m} \alpha_i \langle L'(\hat{x}, y), x_i - \hat{x} \rangle \in -\text{int} C.
\end{equation}

Since $L'(\hat{x}, y)$ is a linear operator, we have
\begin{equation}
\langle L'(\hat{x}, y), \sum_{i=1}^{m} \alpha_i x_i \rangle - \sum_{i=1}^{m} \alpha_i \langle L'(\hat{x}, y), \hat{x} \rangle \in -\text{int} C.
\end{equation}

Hence
\begin{equation}
\langle L'(\hat{x}, y), \hat{x} \rangle - \langle L'(\hat{x}, y), \hat{x} \rangle = 0 \in -\text{int} C,
\end{equation}

which is inconsistent. Thus, we deduce that
\[\text{Co}\{x_1, x_2, \ldots, x_m\} \subset \bigcup_{i=1}^{m} F(x_i). \]

Next, we show the multifunction T satisfied Hogan’s upper semi-continuity. Let $\{x_n\}$ be a sequence in K such that $x_n \to x \in K$ and let $\{y_n\}$ be a sequence such that $y_n \in T(x_n)$. Since $y_n \in T(x_n)$, we have
\[L(x_n, v) - L(x_n, y_n) \notin \text{int} C, \]
for all $v \in E$. Since $\{y_n\} \subset E$ and E is compact we can assume that there exists $y \in E$ such that $y_n \to y$, without loss of generality. Now the continuity of L and the closedness of $(Z \setminus \text{int} C)$ gives that
\[L(x, v) - L(x, y) \in (Z \setminus \text{int} C) \]
for all $v \in E$, which implies that $y \in T(x)$. Thus the multifunction T is upper semicontinuous.

Next, we show that $F(u)$ is a closed set for each $u \in K$. Let $\{x_n\} \subset F(u)$ such that $x_n \to x \in K$. Since $x_n \in F(u)$ for all n, there exists $y_n \in T(x_n)$ such that
\[\langle L'(x_n, y_n), u - x_n \rangle \notin (Z \setminus \text{int} C) \]
for all $u \in K$. As $\{y_n\} \subset E$, without loss of generality, we can assume that there exists $y \in E$ such that $y_n \to y$. Since L' is continuous, T is upper semicontinuous and $(Z \setminus \text{int} C)$ is closed, we have
\[\langle L'(x_n, y_n), u - x_n \rangle \to \langle L'(x, y), u - x \rangle \in (Z \setminus \text{int} C). \]

Hence $x \in F(u)$.

Finally, we prove that for $\hat{x} \in B \cap K$, $F(\hat{x})$ is compact. Since $F(\hat{u})$ is closed and B is compact, it is sufficient to show that $F(\hat{u}) \subset B$. Suppose to the contrary that there exists $\hat{x} \in F(\hat{u})$ such that $\hat{x} \notin B$. Since $\hat{x} \in F(\hat{u})$, there exists $\hat{y} \in T(\hat{x})$ such that
\[\langle L'(\hat{x}, \hat{y}), \hat{u} - \hat{x} \rangle \notin \text{int} C. \]

Since $\hat{x} \notin B$, by the hypothesis, for any $y \in T(\hat{x})$,
\[\langle L'(\hat{x}, y), \hat{u} - \hat{x} \rangle \in \text{int} C, \]
which contradicts condition (5). Hence $F(\hat{x}) \subset B$. Since B is compact and $F(\hat{x})$ is also closed, $F(\hat{x})$ is compact. Consequently by Theorem 2.2, it follows that $\bigcap_{x \in K} F(x) \neq \emptyset$. Thus, there exists $x_0 \in K$ and $y_0 \in T(y_0)$ such that
\[\langle L'(x_0, y_0), x - x_0 \rangle \notin \text{int} C, \]
for all $x \in K$. \[\square\]
3 An Extension based on Moving Cone

We can extension concepts (VSPP) and (VVIP) by considering a moving cone. To begin with, we introduce some parameterized concepts for the extension. Assume that the multifunction $C : X \rightarrow 2^Z$ has solid pointed convex cone values.

Definition 3.1 (Parameterized Cone Convexity)
A vector valued function $f : K \rightarrow Z$ is said to be $C(x)$-convex if

$$\alpha f(x_1) + (1 - \alpha)f(x_2) - f(\alpha x_1 + (1 - \alpha)x_2) \in C(\alpha x_1 + (1 - \alpha)x_2),$$

for all $x_1, x_2 \in K$ and $\alpha \in [0, 1]$.

Definition 3.2 Parameterized Vector Saddle Point Problem
The Parameterized Vector Saddle Point Problem, (PVSPP) for short, is to find $x_0 \in K$ and $y_0 \in T(x_0)$ such that

$$(L(x_0, y_0) - L(x, y_0), x - x_0) \notin -\text{int} C(x), \forall x \in K,$$

A solution $(x_0, y_0) \in K \times E$ of (PVSPP) is called a weak $C(x)$-saddle point of function L.

Definition 3.3 Parameterized Vector Variational Inequality Problem
The Parameterized Vector Variational Inequality Problem, (PVVIP) for short, is to find $x_0 \in K$ and $y_0 \in T(x_0)$ such that

$$\langle L'(x_0, y_0), x - x_0 \rangle \notin -\text{int} C(x), \forall x \in K,$$

where $T: X \rightarrow 2^Y$ is a multifunction defined by

$$T(x) := \{y \in C \mid L(x, v) - L(x, y) \notin \text{int} C(x), \forall v \in E \}.$$

Definition 3.4 A multifunction $F : K \rightarrow 2^Z$ is called upper-semicontinuous if for every $x \in K$ and $U_x \subset Z$; neighborhood of $F(x)$ there exists $V_x \subset K$; neighborhood of x such that $F(y) \subset U_x$ for all $y \in V_x$.

Definition 3.5 A multifunction $F : K \rightarrow 2^Z$ is called lower-semicontinuous if for every $x \in K$ there exists $V_x \subset K$; neighborhood of x such that $F(y) \cap V_x \neq \emptyset$ for all $V_x \subset Z$, where V_x is an open set satisfying $F(x) \cap V_x \neq \emptyset$.

Definition 3.6 A multifunction $F : K \rightarrow 2^Z$ is called continuous if F satisfy upper-semicontinuous and lower-semicontinuous.

Definition 3.7 A multifunction $F : K \rightarrow 2^Z$ is called closed if $\{x_n\} \subset K$ converging to x, and $\{z_n\} \subset Z$, with $z_n \in F(x_n)$, converging to z, implies $z \in F(x)$.

Lemma 3.1 Assume that the multifuncion $C : K \rightarrow 2^Z$ is continuous. Then the multifunction C and W are closed, where $W : K \rightarrow 2^Z$ is a multifunction defined by

$$W(x) := Z \setminus \text{int} C(x)$$

Now, we extend the results of Section 2 by using these concepts.
Theorem 3.1 Let K and E be a convex subset of a normed space X and an arbitrary subset of a topological vector space Y. Assume that the multifunction $C : X \to 2^Z$ has solid pointed convex cone values and it is continuous, and L is $C(x)$-convex and Fréchet differentiable in the first argument. Then problems (PVSP) and (PVVIP) have the same solution set.

Proof. Assume that $(x_0, y_0) \in K \times E$ is a solution of (PVSP). Then

$$L(x_0, y_0) - L(x, y_0) \notin \text{int} C(x_0),$$

for all $x \in K$.

$$L(x_0, y) - L(x_0, y_0) \notin \text{int} C(x_0),$$

for all $y \in E$. Since K is convex, We have

$$x_0 + \alpha(x - x_0) \in K,$$

for all $x \in K$ and $\alpha \in [0, 1]$. Hence condition (6) implies

$$\alpha^{-1}[L(x_0 + \alpha(x - x_0), y_0) - L(x_0, y_0)] \notin -\text{int} C(x_0 + \alpha(x - x_0)),$$

for all $x \in K$ and $\alpha \in (0, 1]$. Since $Z(-\text{int} C(x))$ is continuous and L is Fréchet differentiable in the first argument, it follows that

$$\langle L'(x_0, y_0), x - x_0 \rangle \notin -\text{int} C(x_0),$$

for all $x \in K$. $y_0 \in T(x_0)$ follows from (7).

Conversely, assume that $(x_0, y_0) \in K \times E$ is a solution of (PVVIP). Then we have

$$\langle L'(x_0, y_0), x - x_0 \rangle \notin -\text{int} C(x_0),$$

for all $x \in K$.

$$L(x_0, y) - L(x_0, y_0) \notin \text{int} C(x_0),$$

for all $y \in E$. Since L is C-convex with respect the first argument, we have

$$\alpha L(x, y_0) + (1 - \alpha)L(x_0, y_0) - L(x_0 + \alpha(x - x_0), y_0) \in C(x_0 + \alpha(x - x_0)),$$

for all $x \in K$ and $\alpha \in (0, 1)$, and since $C(x)$ is cone, we have

$$L(x, y_0) - L(x_0, y_0) - \frac{L(x_0 + \alpha(x - x_0), y_0) - L(x_0, y_0)}{\alpha} \in C(x_0),$$

for all $x \in K$ and $\alpha \in (0, 1)$. Since L is Fréchet differentiable with respect to the first argument, if α converges to 0, then we have

$$L(x, y_0) - L(x_0, y_0) - \langle L'(x_0, y_0), x - x_0 \rangle \in C(x_0),$$

for all $x \in K$. From (8), it follows

$$L(x_0, y_0) - L(x, y_0) \notin \text{int} C(x_0),$$

for all $x \in K$. Hence $(x_0, y_0) \in K \times E$ is also a solution of (PVSP).
Theorem 3.2 Let K and E be a nonempty closed convex subset of a normed space X and a nonempty compact subset of a topological vector space Y, respectively. Assume that the multifunction $C : X \rightarrow 2^Z$ has solid pointed convex cone values and it is continuous. Assume that the vector valued function L is $C(z)$-convex and Fréchet differentiable in the first argument, L' is a continuous function in both x and y, and let $T, K \rightarrow E$ be the multifunction defined by

$$T(x) := \{ y \in E \mid L(x,v) - L(x,y) \notin \text{int} C(x), \forall v \in E \}.$$

If there exist a nonempty compact subset B of X and $x_0 \in B \cap K$ such that for any $x \in K \setminus B$, $y \in T(x)$,

$$\langle L'(x,y), x_0 - x \rangle \in -\text{int} C(x),$$

then problem (PVSSP) has at least one solution.

Proof. It is sufficient to show that the (PVVIP) has at least one solution $x_0 \in K$ and $y_0 \in T(x_0)$. Define a multifunction $F : K \rightarrow K$ by

$$F(u) = \{ x \in K \mid \langle L'(x,y), u - x \rangle \notin -\text{int} C(x), \text{ for some } y \in T(x) \}, \quad u \in K.$$

We first prove that the convex hull of any finite subset $\{x_1, x_2, \ldots, x_n\}$ of K is contained in the corresponding union $\bigcup_{i=1}^{m} F(x_i)$, that is, $\text{Co}\{x_1, x_2, \ldots, x_m\} \subset \bigcup_{i=1}^{m} F(x_i)$. Suppose that there exists x_1, x_2, \ldots, x_m and $\alpha_1, \alpha_2, \ldots, \alpha_m$ such that

$$\hat{x} = \sum_{i=1}^{m} \alpha_i x_i \notin \bigcup_{i=1}^{m} F(x_i), \quad \sum_{i=1}^{m} \alpha_i = 1.$$

Then for any $y \in T(\hat{x})$,

$$\langle L'(\hat{x},y), x_i - \hat{x} \rangle \in -\text{int} C(\hat{x}),$$

for all $i = 1, \ldots, m$. Since $\text{int} C(x)$ is convex, we have

$$\sum_{i=1}^{m} \alpha_i \langle L'(\hat{x},y), x_i - \hat{x} \rangle \in -\text{int} C(\hat{x}).$$

Since $L'(\hat{x},y)$ is a linear operator, we have

$$\langle L'(\hat{x},y), \sum_{i=1}^{m} \alpha_i x_i \rangle - \sum_{i=1}^{m} \alpha_i \langle L'(\hat{x},y), \hat{x} \rangle \in -\text{int} C(\hat{x}).$$

Hence

$$\langle L'(\hat{x},y), \hat{x} \rangle - \langle L'(\hat{x},y), \hat{x} \rangle = 0 \in -\text{int} C(\hat{x}),$$

which is inconsistent. Thus, we deduce that

$$\text{Co}\{x_1, x_2, \ldots, x_m\} \subset \bigcup_{i=1}^{m} F(x_i).$$

Next, we show the multifunction T satisfied Hogan's upper semi-continuity. Let $\{x_n\}$ be a sequence in K such that $x_n \rightarrow x \in K$ and let $\{y_n\}$ be a sequence such that $y_n \in T(x_n)$. Since $y_n \in T(x_n)$, we have

$$L(x_n,v) - L(x_n,y_n) \notin \text{int} C(x_n)$$
for all $v \in E$. Since $\{y_n\} \subset E$ and E is compact we can assume that there exists $y \in E$ such that $y_n \to y$, without loss of generality. Now the continuity of L and the closedness of $(Z \setminus \text{int} C(x))$ gives that

$$L(x,v) - L(x,y) \in (Z \setminus \text{int} C(x))$$

for all $v \in E$, which implies that $y \in T(x)$. Thus the multifunction T is upper semicontinuous.

Next, we show that $F(u)$ is closed for each $u \in K$. Indeed, let $\{x_n\} \subset F(u)$ such that $x_n \to x \in K$. Since $x_n \in F(u)$ for all n, there exists $y_n \in T(x_n)$ such that

$$\langle L'(x_n, y_n), u - x_n \rangle \in (Z \setminus \text{int} C(x_n))$$

for all $u \in K$. As $\{y_n\} \subset E$ we can assume that there exists $y \in E$ such that $y_n \to y$, without loss of generality. Since L' is continuous, T is upper semicontinuous and $(Z \setminus \text{int} C(x))$ is closed, we have

$$\langle L'(x_n, y_n), u - x_n \rangle \to \langle L'(x, y), u - x \rangle \in (Z \setminus \text{int} C(x))$$

Hence $x \in F(u)$.

Finally, we prove that for $\tilde{x} \in B \cap K$, $F(\tilde{x})$ is compact. Since $F(\hat{u})$ is closed and B is compact, it is sufficient to show that $F(\hat{u} \subset B)$. Suppose that there exists $\hat{x} \in F(\hat{u})$ such that $\hat{x} \notin B$. Since $\hat{x} \in F(\hat{u})$, there exists $\hat{y} \in T(\hat{x})$ such that

$$\langle L'(\hat{x}, \hat{y}), \hat{u} - \hat{x} \rangle \notin -\text{int} C(\hat{x}).$$

(10)

Since $\hat{x} \notin B$, by hypothesis, for any $y \in T(\hat{x})$,

$$\langle L'(\hat{x}, y), \hat{u} - \hat{x} \rangle \in -\text{int} C(\hat{x}),$$

which contradicts (10). Hence $F(\tilde{x}) \subset B$. Since B is compact and $F(\tilde{x})$ is closed, $F(\tilde{x})$ is compact. By Theorem 2.2, it follows that $\bigcap_{x \in K} F(x) \neq \phi$. Thus, there exists $x_0 \in K$, $y_0 \in T(y_0)$ such that

$$\langle L'(x_0, y_0), x - x_0 \rangle \notin -\text{int} C(x_0),$$

for all $x \in K$.

4 Conclusions

In this paper, we have extended an existence theorem established Kazmi and Khan to a more generalized one. We have also extended the theorem by using a concept of moving cone, which first entered in game theory to cope with turning the purpose of a situation.

参考文献

