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1 Introduction

Studies on vector-valued minimax theorems or vector saddle point problems have been extended
widely; see [6] and references cited therein. Existence results for cone saddle points are based on some
fixed point theorems or scalar minimax theorems; see [5]. Recently, this kind of problems is solved
by a different approach in [3], in which a vector variational inequality problem is treated in a finite
dimensional vector space. In this paper, we consider its generalization to vector problems involving the
concept of moving cone in the general setting of a normed space.

2 Problem Formulation and Existence Result

Let K and E be nonempty subsets of a normed space X and a topological vector space Y, respectively,
and let Z be a normed space.

Given a vector-valued function L : K x E — Z and a pointed convex cone C on Z with intC # ¢,
Vector Saddle Point Problem(in short, VSPP) is to find ¢ € X and yo € Y such that

L(zo,¥0) — L(z,p) ¢ intC, Vze K,
L(:Bo, y) - L(ZanO) ¢ inth Vy €EE.

A solution (zg,y0) of (VSPP) is called a weak C-saddle point of the function L.
On the other hand, Vector Variational Inequality Problem(in short, VVIP) is to find zo € K and
yo € T(zo) such that
(L' (zo0,%0), z — Zo) ¢ —intC, Vz € K,

where T : X — Y is a multifunction defined by
T(z) :={y € C | L(z,v) — L(z,y) ¢ intC, Vv € E },

and L'(xp,y0) denotes the Fréchet derivative of L with respect to the first argument at (zo, %o)-
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Definition 2.1 A function f : K — Z, where K is convez set, is called C-convex if for each z,y € K
and X € [0,1],

M)+ 1= Nf) - fOz+ (1 -y e C.

Definition 2.2 A function f : K — Z is called Fréchet differentiable if fqr every z € K and ¢ > 0,
there ezists f, € L(K,Z) and 6 > 0 such that

If(z+h)— f(z) - fo(h)| < forall h € K; ||h]| <6,
where L(K, Z) is the space of all linear continuous operators from K into Z.
First we show an equivalence condition between (VSPP) and (VVIP).

Theorem 2.1 Suppose that K is convez and L is C-convez and Fréchet differentiable. in the first
argument. Then problems (VSPP) and (VVIP) have the same solution set.

Proof. Assume that (xo,y0) € K x E is a solution of (VSPP). Then

L(zo,y0) — L(z,10) ¢ int C, (1)
forall z € K.
L(zo,y) — L(z0, %) ¢ int C, (2)

for all y € E. Since K is convex, We have
zo + a(z — z9) € K,
for all z € K and a € [0,1]. Hence condition(1) implies
a*[L(zo + a(z — o), Yo) — L(zo,%0)] ¢ —int C,

for all z € K and o € (0,1]. Since ’Z\(—int C) is closed and L is Fréchet differentiable in the first
argument, it follows that

(Ll(x(h y())a T — 2:0> ¢ —int C,

for all z € K. yo € T(zo) follows from (2).
Conversely, assume that (zq,y0) € K x E is a solution of (VVIP). Then we have

(Ll(x()) 1/0), xr — 3:0) ¢ —int C, (3)
for all z € K and
L(zo,y) — L(zo,y0) ¢ int C, , (4)

for all y € E. Since L is C-convex with respect to the first argument, we have
aL(z,yo) + (1 — a)L(zo,yo) — L(zo + a(z — xo), %) € C,
for all z € K and « € (0,1), and since C is cone, we have

— — L s
L(:B, yO) - L(manO) - L(zo + a(x wo(z,y()) (zo yO) € C,
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for all z € K and a € (0,1). Since L is Fréchet differentiable with respect to the first argument, if o
converge to 0, then we have

L(:B, yO) - L(Zo, yO) - (Ll(zoi yo))z - z0> € C,

for all z € K. From condition(3), it follows

L(zo, y0) — L(z,30) ¢ int C

for all z € K. Hence (xo,) € K x E is also a solution of (VSPP). |
Now, we introduce Fan-KKM theorem, which is important in the field related to (VVIP), for theorem
2.3.

Theorem 2.2 (Fan-KKM Theorem see;[4]) Let X be a subset of a topological vector space. For each
z € X, let a closed set F(z) in X be given such that F(z) is compact for at least one z € X If the

convez hull of every finite subset {Zi,...,Tn} of X is contained in the corresponding union U F(z;),
i=1
then N F(z) # ¢.
zeX

Next we show an existence result of (VSPP) by using (VVIP).

Theorem 2.3 Let K and E be a nonempty closed convez subset of a normed space X and a nonempty
compact subset of a topological vector space Y, respectively. Assume that the vector-velued function L
is continuously differentiable and C-convez in the first argument and L' is continuous in both = and y,
and let T : K — E be the multifunction defined by

T(z) :=={y € E | L(z,v) — L(z,y) ¢ intC, Vv eE}
If there ezists a nonempty compact subset B of X and Z € BN K such that for any z € K\B and

y € T(z),
(L'(z,y),zo — z) € —int C,

then problem (VSPP) has at least one solution.

Proof. In order to proof the theorem, it is sufficient to show that (VVIP) has at least one solution
zo € K, yo € T(xo). Define a multifunction F : K — K by

Fu)={ze K| (L'(z,y),u—z) ¢ —intC, forsomeyeT(z)}, uckK.

First, we prove that the convex hull of every finite subset {:1:1, Z2,...,Zn} of K is contained in the
corresponding union U F(z;), that is, Co{z1,Z2,...,Zm} C U F(z;). Suppose to the contrary that
i=1 i=1
there exist z1,Z2,...,Zm and a;,@s2,...,Qm such that

m

=Z ,z,¢UF(z,), Za.—l

i=1 i=1

Then, # ¢ F(z;) for all i =1,...,n, and hence for any y € T(z),

(L,(i’ y)) Ti — ﬁ) € —int Ca
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foralli=1,...,m. Since int C is convex, we have
m
Z ai(L'(%,y),z; — &) € —int C.
=1

Since L'(Z,y) is a linear operater, we have

(L' (&,y), Zaﬂ?z) - Zaz(L'(z y),Z) € —int C.

i=1 i=1
Hence
(L,(i’y),é» - (L,(iiy),{&) =0 € —int C7

which is inconsistent. Thus, we deduce that
Co{z1,z2,...,Zm} C U F(x;).

Next, we show the multifunction T satisfied Hogan’s upper semi-continuity. Let {z,} be a sequence
in K such that z, — z € K and let {y,} be a sequence such that y, € T(z,). Since y, € T(z,), we
have ‘

L(zp,v) — L(Zp,yn) ¢ int C,

for all v € E. Since {yn} C E and E is compact we can assume that there exists y € E such that
Yn — Y, without loss of generality. Now the continuity of L and the closedness of (Z\int C) gives that

L(z, v) — L(z,y) € (Z\int C)

for all v € E, which implies that y € T'(z). Thus the multifunction T is upper semicontinuous.
Next, we show that F'(u) is a closed set for each u € K. Let {z,} C F(u) such that z,, » z € K.
Since z,, € F(u) for all n, there exists y, € T(z,) such that '

(L'(Tn, Yn), u — Tn) € (Z2\ — int C)
forallu € K. As {y»} C E, without loss of generality, we can assume that there exists y € E such that
Yn — y. Since L' is continuous, T is upper semicontinous and (Z\ — int C) is closed, we have
(L'"(Zn,yn),u — zp) = (L'(z,y),u — z) € (Z\ — int C).

Hence z € F(u).

Finally, we prove that for Z € BN K, F(Z) is compact. Since F(g) is closed and B is oompact it is
sufficient to show that F(@) C B. Suppose to the contrary that there exists & € F (@) such that £ ¢ B.
Since Z € F(4), there exists § € T(%£) such that

(L'(%,9),4 — &) ¢ —int C. 3
Since £ ¢ B, by the hypothesis, for any y € T(%),
(L'(%,y),4 — £) € —int C,

which contradicts condition(5). Hence F(Z) C B. Since B is compact and F(Z) is also closed, F(Z) is

compact. Consequently by Theorem 2.2, it follows that [\ F(z) # ¢. Thus, there exists zo € K and
zeK
%o € T(yo) such that

(L'(z0,%0), — o) ¢ —int C,
forall z € K. l
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3 An Extension based on Moving Cone

We can extension concepts (VSPP) and (VVIP) by considering a moveing cone. To begin with, we
introduce some parameterized concepts for the extension. Assume that the multifunction C : X — 22
has solid pointed convex cone values. ‘

Definition 3.1 (Parameterized Cone Convexity)
A vector valued function f : K — Z is said to be C(z)-convez if

af(z1) + (1 — @)f(z2) — faz1 + (1 —a)z2) € C(azy + (1 — a)z2),
for all z1, z; € K and o € [0,1].

Definition 3.2 Parameterized Vector Saddle Point Problem
The Parameterized Vector Saddle Point Problem, (PVSPP) for short, is to find zo € K and yo € T(zo)
such that

L(zo,%) — L(z, ) ¢ intC(x0), Vz € K,

L(zo,y) — L(z0, %) ¢ intC(z0), Vy€E.

A solution (o,40) € K x E of (PVSPP) is called a weak C(z)-saddle point of function L.
Definition 3.3 Parameterized Vector Variational Inequality Problem

The Parameterized Vector Variational Inequality Problem, (PVVIP) for short, is to find zo € K and
yo € T(zo) such that

(L'(-’Do,yo),z - ﬂ:o) ¢ —int C(I), Vz € K1
where T : X — 2Y is a multifunction defined by
T(z) := {y € C | L(z,v) — L(z,y) ¢ mt C(z), Vv € E'}.

Definition 3.4 A multifunction F : K — 22 is called upper-semicontinuous if for every z € K and
U, C Z; neighborhood of F(z) there erists V., C K; neighborhood of z such that F(y) Cc U; for all
y€e V.

Definition 3.5 A multifunction F : K — 9Z ig called lower-semicontinuous if for every x € K there
ezists V, C K; neighborhood of x such that F(y) NV, # ¢ for all V; C Z, where V; is an open set
satisfying F(z) NV, # ¢.

Definition 3.6 A multifunction F : K — 9Z is called continuous if F satisfy upper-semicontinuous
and lower-semicontinuous.

Definition 3.7 A multifunction F : K — 2% is called closed if {zo} C K converging to z, and
{zn} C Z, with 2z, € F(z,), converging to z, implies z € F(z).

Remma 3.1 Assume that the multifuncion C : K — 22 is continuous. Then the multifunction C and
W are closed, where W : K — 2% is a mulitfunction defined by

W(z) = Z\int C(z)

Now, we extend the results of Section 2 by using these concepts.
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Theorem 3.1 Let K and E be a conver subset of a normed space X and an a.fbitrary subset of a
topological vector space Y. Assume that the multifunction C : X — 2% has solid pointed convez cone
values and it is continuous, and L is C(z)-convez and Fréchet dzﬁerentzable in the first argument. Then
problems (PVSPP) and (PVVIP) have the same solution set.

Proof. Assume that (zg,yo) € K x E is a solution of (PVSPP). Then

L(zo,y0) — L(z, yo) ¢ int C(o), ‘ (6)
forall z € K.
L(zo,y) — L(zo, yo0) ¢ int C(zo), - (M

for all y € E. Since K is convex, We have
zo + a(z — xp) € K,
for all z € K and a € [0,1]. Hence condition(6) implies
a Y[L(zo + a(z — zo),y0) — L(xo, %0)] ¢ —int C(zo + a(z — z0)),

for all z € K and o € (0,1]. Since Z\(—int C(z)) is continuous and L is Frechet differentiable in the
first argument, it follows that
(L’(-'Eo,yo), T — 1'0) ¢ —int C(Q:O)a

for all z € K. yo € T(xo) follows from (7).
Conversely, assume that (zg,%) € K x E is a solution of (PVVIP). Then we have

(L' (z0,%0), T — zo) ¢ —int C(z0), (8)
forall z € K.
L(zo,y) — L(zo,y0) ¢ int C(zo), (9)

for all y € E. Since L is C-convex with respect the first argument, we have
aL(:z:, yO) + (1 - a)L(anyO) - L(ZO + a(:z: - 20), yO) € C(mo + a(m - 170)),

for all z € K and a € (0,1), and since C(x) is cone, we have

L{zo + a(z — o), %0) — L(zo, o) € C(xo),
«a

L(z,y0) — L(zo, yo)

for all z € K and a € (0,1). Since L is Fréchet differentiable with respect to the first argument, if o
converges to 0, then we have

L(z,y0) — L(xo0,y0) — (L' (%0, %0), T — Zo) € C(zo0),
for all z € K. From (8), it follows
L((Eo,yo) - L(.’l}, yO) ¢ int C((Eo),

for all z € K. Hence (zo,y0) € K X E is also a solution of (PVSPP). [
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Theorem 3.2 Let K and E be a nonempty closed convez subset of a normed space X and a nonempty
compact subset of a topological vector space Y, respectively. Assume that the multifunction C : X — 2%
has solid pointed convex cone values and it is continuous. Assume that the vector valued function L is
C(z)-convez and Fréchet differentiable in the first argument, L' is a continuous function in both z and
y, and let T, K — E be the multifunction defined by

T(z):={y € FE | L(z,v) — L(z,y) ¢ ntC(z), VveE}.
If there ezist a nonempty compact subset B of X and xo € BNK such that for any z € K\B, y € T(z),
(L' (z,y), zo — z) € —int C(z),
then problem (PVSPP) has at least one solution.

Proof. 1t is sufficient to show that the (PVVIP) has at least one solution zo € K and yo € T'(zo).
Define a multifunction F : K — K by

Fu)={ze K| (L'(z,y),u—z) ¢ —intC(z), forsomeyecT(z)}, u€K.

We first prove that the convex hull of every finite subset {z,z2,...,Z,} of K is contained in the
m m

corresponding union |J F(z;), that is, Co{z1,z2,...,Z2m} C | F(zi). Suppose that there exists
i=1 i=1

T1,T2,...,Tm and a3, asg,...,a., such that

m m m
:‘:‘:=Za,~zg ¢ UF(:::.-), Za,-=l.
i=1 i=1

i=1
Then for any y € T(%),
(L/(2,1),2: - 2) € ~int C(8),

foralli=1,...,m. Since int C(z) is convex, we have

Y ai(L'(2,y), 7 — %) € —int C(3).

=1

Since L'(%,y) is a linear operater, we have

i=1

(L'(£,9), Y ouzs) — Z ai(L'(2,y), ) € —int C().

Hence
(L'(%,y),%) — (L'(%,9),%) =0 € —int C(2),

which is inconsistent. Thus, we deduce that

Co{z1,z2,...,Zm} C U F(z;).
i=1
Next, we show the multifunction T satisfied Hogan’s upper semi-continuity. Let {z,} be a sequence
in K such that z,, = = € K and let {y,} be a sequence such that y, € T(z,). Since yn € T(z,), we
have

L(zﬂ’v) - L(zn; yn) ¢ int C(.’l!,.)
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for all v € E. Since {y,} C E and E is compact we can assume that there exists y € E such that
Yn — Yy, without loss of generality. Now the continuity of L and the closedness of (Z\int C(z)) gives
that

L(z,v) — L(z,y) € (Z\int C(z))

for all v € E, which implies that y € T(z). Thus the multifunction T is upper semicontiﬁuous.
Next, we show that F(u) is closed for each u € K. Indeed, let {z,} C F(u) such that z, —+ z € K.
Since z,, € F(u) for all n, there exists y, € T(z,) such that

(Ll(x'rn y'n)’u - zn) € (Z\ — int C(xn))

for all u € K. As {y»} C E we can assume that there exists y € E such that y, — y, without loss of
generality. Since L’ is continuous, T is upper semicontinous and (Z\ — int C(z)) is closed, we have

(L'(@n,Un), u = zn) = (L' (z,9),u — 2) € (Z\ - int C(x)).

Hence z € F(u).

Finally, we prove that for Z € BN K, F(Z) is compact. Since F(4) is closed and B is compact, it is
sufficient to show that F(& C B). Suppose that there exists # € F (i) such that £ ¢ B. Since # € F(i),
there exists § € T'() such that

(L'(%,9), i — 2) ¢ —int C(&). (10)
Since & ¢ B, by hypothesis, for any y € T'(2),
(L'(%,y),4 — &) € —int C(2),
which contradicts (10). Hence F(Z) C B. Since B is compact and F(Z) is closed, F(Z) is compact. By

Theorem 2.2, it follows that (| F(z) # ¢. Thus, there exists zo € K, yo € T(y) such that
z€EK

(L’(.’Bo, yO)’ T — $0) ¢ —int C(Zo),

forall z € K. .

4 Conclusions

In this paper, we have extended an existence theorem established Kazmi and Khan to a more
generalized one. We have also extended the theorem by using a concept of moving cone, which first
entered in game theory to cope with turning the purpose of a situation.
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