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ON THE STEFAN PROBLEM WITH SURFACE TENSION
IN A VISCOUS INCOMPRESSIBLE FLUID FLOW

BK BIPE BT X8 (YOSHIAKI KUSAKA)
DEPARTMENT OF MATHEMATICS, KEIO UNIV.

Abstract. _A solidiﬁcation/melting process with the supercooling near the interface in the case
where the fluid is flowing is described by the Stefan problem with Gibbs-Thompson law at the
interface and the initial- boundary value problem for the incompressible Navier-Stokes equations.
This paper is devoted to prove ‘that the set of classical solutions of the problem mentioned above
converges to the solution of the problem without the supercoolmg as the surface tension coefficient
tends to zero.

1. Introduction.. Let a region Q with outer boundary ¥ be separated by a
moving boundary I'; into the liquid region le) and the solid region Qfg). Let v, p,
and 0(1) be the velocity , the pressure and the temperature of the liquid, respectively.
They are assumed to satisfy the following equations:

(1.1) V-v=0,
av \ _ (1)
(1.2) E+(v-V)v+Vp—uAv_f(9 )s
o6t 1
e + (v V)g(l) - C’()l)v .4 (n(l)(g(l))vg(l))
(1.3) | C(I)D(v) D(v) in U (9‘” x {t})

0<t<LT

These are the Navier-Stokes equations and the heat equation with the transport and
viscous dissipation terms, where v, p, C(l) and £(1) are a kinematic viscosity, the
density, the specific heat at the constant pressure and the heat conduct1v1ty of the
liquid, respectlvely In Q( ) , we consider only the heat transfer:’ ‘

O
(149) —

e~ . (D@)ywe@) =g i Q@ x {t
T o) =0 w U ).

where pe, C( ) and x(® are the dens1ty, the specific heat at the constant pressure and
the heat conduct1v1ty of the solid, respectively. On the liquid- solid interface I'y, we
impose the following conditions:

(1.5) ; v-n=(—%€)v,

(1.6) IID(v)n = Mv(v — Vn)'n,

(1.7) Ip.V = — (n(l)(g(l))vg(l) _ K(z)(g(z)_)vgm) ‘n



(1) — g = _7
(1.8) o) =g _01(1 ,IH)’
or
(1.9) o) =g =9, on |J (Tux{t}).
0<t<T

These conditions are derived by applying conservation laws of mass, momentum and
energy across the interface. But here we impose thermal equillibrium conditions (1.8)
or (1.9) instead of the normal component of momentum. Especially condition (1.8) is
called the Gibbs-Thompson’s law. Here II, D(v), and H are a projection operator on
I';, the velocity deformation tensor and the twice mean curvature of I';, respectively.
[, 8, and o are the latent heat, the equilibrium temperature and the surface tension,
respectively. To complete the problem, we further impose the initial and boundary
conditions on the rigid boundary ¥ :

1.10 | v='"o,0 or v =7y, S

(1.10) oM =6} or 60 =0 on QW=

(1.11) 00 =02 or 6@ =6 on 0O =0,
v=0,

(112) { 0(1) =0, on Xr.

In the sequal, by (P,) we mean problem (1.1)-(1.8), (1.10)-(1.12), and by (P) problem
(1.1)-(1.7),(1.9)-(1.12). (vo,0,65%,85)) and (vo,85",6(?) are initial data imposed on
problems (P,) and (P), respectively. -.

In [5] and [7], we have proved the unique c]asswal solvability of problems (P,) and
(P), respctively. In this paper, we prove that the problem (P, ) is uniquely solvable on
a certain finite time interval independent of o € (0,0"), 0* << 1, and that problem
(P) is the limit case of problem (P,) as o tends to zero. This is done on the basis of a
uniform estimate of the solution of problem (P,) with respect to ¢ which is obtained
in some wider space of functions than the space defined.in [5]. Bazalii and Degtyarev
[1] also studied such a limit problem of the Stefan problem with Gibbs-Thompson’s
law involving only the process of heat transfer. They showed the convergence in a
class that the space of the limit functions is compactly embedded. We prove this
convergence holds in the same class of the limit functions.

We study the above problem in the function spaces defined as follows. Let Dy be
a cylindorical domain D x (0,T), where D is a donia.in in R*,and T > 0. Let l be a
non-negative integer and a € (0,1). By cHe % 5" (Dr) we denote anlsotroplc Holder
space of functions whose norm are defined by

l

172 — b r U al'i-'
ASHE = 3 Tlgrar AR 4+ (Here T,
2r4|m|=0
where
]
al_.‘.__ " l+o—!22r+|m“
NS = Y e, "+ 3 e ae),

2r +|m|=1-1 2r+jmi|=l
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(A5, = sup [f(z,1)], |
O b - s )
(%) _ sii z,t) — f(=z,
J Iflt,D'r - (t.t).(:.ll’))eDT, It _tll% y
o 1)
z,t) — f(2',t
1), = sup 2O TE0]
! (=,0)i(z!,t)e D, I-'L' 7 l
. \ - I#I,

- and

< - oIml
Im| :;m-, o = o
for a multi index
m=(m;) (m>0,i=1,---,n).
By Citetg® (DT) and C, H'a’ 5 (Dr) we denote the function spaces .

{receswniarec-r=r2on}

equipped with the norm

4 a—'L- {1 a," -1+ —lj'—"i
NFISES ) = |78t °)+I6fl( *=)

and

{recreroniopre et or), mi=2)

equipped with the norm

{ m ] i
TS ’_Ilfll“‘" o Y 1orsst S 0> 0),

Im|=2

respectively. By C0+a’ > (Dr), C’l o (DT) and C:;)a (Dr) we denote the func
tion spaces

{fecl-l-d (DT)Iakflt_O-O kzoalx""[H-Ta]}’

{feC‘+“ (DT)latfnt_o-—O k=°’1"“’[l+““‘lz+a]}

é,nd

d+a, it o H+1+a ’ V
{fEC¢l7+ T2 (DT)IB{‘fIt___O.—_O, k:O,l,"_',[—T]}o

'\respectlvely By C'+°‘(D), we define the space of functions f(:c) z € D, with the
norm S

Ifle = Z ID"‘fI“” + <f>£‘,+"), A9 = sup If(x)l

Im|<t



<f>g+a) = Z (Dmf)(H-a) = sup Z |D7* flz) — Dmf(y)l

=,¥€D, |z — yl*

We also need the following seminorm:

(tem = qup L2 =2, A

14a— )
r,t€(0,T), lt - 1—|
T#t
where a,v € (0,1). Furthermore, by H'+*, X, %* and X7 I+ we mean function spaces

Cx+2+a(()(1)) x Cl+3+a(Q1)) x Cl+3+a(Q(2))

Cl+2+a, H2te (UMKT(Q(I) 9 {t})) x Cl+a 32 (U(KKT(QU) x {t}))

« Cl+3+a,ti3te (Uo <eer(@ x {t})) x Cl+3+a,13te (U0<,<T(9(2) x {t}))
C,l+3+a, (UO(t <p(Te % {t})) and the space such that

‘+3+a'_+_+_ (U0<t<T(Ft X {t})) is replaced by Cl+3+a i3t (Uo<¢<T(F' X {t}))

in the definition of X%, respectively.
Now let us describe our main result.
THEOREM 1.1. Assume that

=, eC?*, X ecHe,
FECH*(0,00), «)e€C3%(0,00), v, € C3*(QM),

o) e cte(@®), 6, € CHE (R x (0,T)), 6; € CHE(2y),

and the inequalities

1=1,2 r
. (0)
lb—pol <bo, |3 (-1 O lh)) Vol | < bo
1=1,2 r

hold for some positive constants ko(< 1), agand by < 1/(4C3), C3 in (4.1), where T is
a tangential vector to I'. Moreover we assume that the compatibility conditions up to
order 1 hold. Then problem (P,) has a unique solution (v,Vp,0(1),02) T,) € X,
for some Ty > 0 which is independent of 0.

Furthermore, let {(v,,Vp,,,O(l) 0(2),[‘,,,t)} be a set of solutions of problem (P,)
in the space X;"}" , (0,Vp,01) 0 T) be a solution of problem (P) in the space X§
and (vayo,Bt(,l(),,ﬂ(z)) converyge to (vo,ﬂf,l),0((,2)) in the space H* as o tends to 0, then
(va,Vpa,O(l) 087, T, ) converges to (v, Vp,0(1) (2 T,) in the space X§ as o tends
to 0 on some interval [0, T] which is independent of o.
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2. Reduction of the problem. Let M be a 2-dimensional mamfold which is
isometric to ', w = (w;,ws) be a generic point on M and

M—)F

be a C5+°‘ dlffeomorphlsm We define a mappmg X from M x [-70,70] to a neigh-
borhood Ng of T' in the form

X(w, ) = Xo(w) + n(Xo(w))A

where n(Xp(w)) is a unit normal to T’ at Xo(w) directing into Q(1). Here a positive
number 7o is assumed to be chosen so small that the mapping X is regular and one-
to-one. Let (w(z),A(z)) be the inverse mapping of X, and introduce the following
notation: ~ E ‘ ' e

¢(') (w) A) = Vzwi(x)lx%X(w,A)a t = 1;k2v

P (W, A) = Ve M@)lo=x (w2

32
vax,-axj 1,5=1,2,3|p= X (w,X)
62
M(a) = ( ’\(z))
» Oz;0z; 15=1,2.3 |5 X (w, )

Now, for some T > 0, let us assume that the interface I';,¢ € [0, 7], is represented
by Xo(w(:l:))+n(X0 (w(x)))d(w(x),t) with some function d(w t) satisfying d(w,0) = 0.
Then UO<t<T(Ft x {t}) can be represented as .

{(z,t) € No x [0,T]| ®a(=,t) = M) — d(w(z ),t) = 0}.

Accordingly, the Stefan condition (1.7) can be written as

1pe 2 — KD()(Vg - VID) + KD (0) (VS - V8D) = 0
and the twice mean curvature of f‘t as
| 1 o 9d
=1 4 § d w
H(w,1) A (EQaJ(w d, Vid) 5 o -+ b(w,d,V d))

with

a;j(w, d,p1,p2) = (41 - ) [ Y (et ® -6 (pigV -¢<f>)]

ki=1,2
o\ —1

x |1+

> pep®)

k=1,2




b(w,d,p1,p2) = Y peTe(M*)) — Tr(M®)

k=1,2
- Z pepi (6T M g®) Z Pepipm (%) M™ ")
ki=1,2 kim=1,2
g\ -1
14| 3 peo®
k=1,2

where px = 8d/8wi, k = 1,2 (see [2]). Here we denote by (a-b), TrA and aT the scalar
product of the vectors a and b in R3, the trace of the ma.tnx A and the transposed
vector of a, respectively.

Next we introduce a transformation eq (see [4]). Let Xr and Yr be two coordi-
nates (21,22, 3,t) and (y1,y2, y3,t) in R3x[0,T] such that z = X (w, A), y = X (w, 7).
Then the mapping e4 : Yr — X7 is defined by

. X(w,n+ dw,i ,t if (z,t) € No x [0,T],
atxton 0 ={ Ko i D emeom

where x()\) € C*(—00,+00) is a cut-off function satisfying

| 1 for |/\|<A7$
x(2 ) 0 for |,\|>3"° | '(A)I

_3,7

It is obvious that Q(l) QM x (0,7], Q(z) Q® x (0,T) and ' =T x (0,T]

are transformed onto Uy, < (Q(l) x {t}), UD«(T(QQ) x {t}) and Upce<r(Te x {t}),
respectively by e4. By denoting simply the transformed functions () o eq4, 8(2) 0 ey,
voey and poey by 1), (2 v and p, respectively, problem (P,) can be rewritten in

the fixed domain Qg} ) [_JQ,(P2 ) of the variables (y,1). ‘

%v +(ha-V)v+(v-Va)o —vVav+ Vap= F(6))  in Q)
Vs-v=0 in QP

v|t=0 = va,O on Q(l),

(21) ﬁ v = 0 on ET,

V- -Ng = (1 - &e_ V,
{ WDy (v)ng = Hd[v(v - Vng)*Ing on Irp,
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(1)
(90t (ha- V)0 4 (0 V)80 — L vd-(n(l)(a(l))vde(l))
ot oGy
%
C£1)Dd(”) Dy(v) in QY
)
agt + (ha- V)0 — 12)vd-( @ (6®)v,6@) =0 in QF,
evp
(22) { 9(1)| _0() on Q(l),

0 |=p = 0( ) “on QO
) =6, on T,
9d + ._l._m(l)(g(l))(ded . Vd()(l))
ot lpe

_%K(Z)(éﬂ))(vd(pd . Vd9(2)) =0,
(-4

(1) — (2 = _

o) = 9(2) = g, (1 IH) on Tp.

Here we set

Va=(E3)7'V,
Jy Van
hy = —=oey, e
“at [Vanl
D4(v) =D(v)oeq, Igg=1TIlgoeq,

ng =

and Eg = (a;;) is the Jacobian matrix of the mapping‘from y to z, a*’ is the ij—
component of (E'd)—1 and E} as is the transposed matrix of Ejy.

Extentions ") € ct+o* %2 (M), 6 € cHa 5 (QP), d, € C5+* (M x
[0,T]), %, € C3+=* (Q(l)) Vp, € ClHet (Q(l)) of the initial data can be con-
structed to satisfy the condltlons !

(. 5(1)
05 (y,0) = 653 (v), %

%)

A(2

05,0 = 08), 25~ (4,0) = 020y,

4 . 6da Bd ’
do(w,0) =0, —Z(w, 0) &lw), Fiw 0 =dlw),

90(y,0) = vo,0(y), (3,0) = v(y),
\ Vﬁo(y, O) —va](y) (”o‘,O(y) . V)va,o(y) + szva,ﬂ(y) + f(oa,O(y))

and the ineauality:

Pt tsD) g (hatin) | oo (et o (a2
(23) ‘lezle“q(.,‘f Hdale, T+ VBl gy + el gdy

<e (Z '9('0'8&0) + Ivo.olﬁ—f’&"‘)) ,

i=1,2

with a constant ¢ being bounded as 7' — 0. Here the functions 0(1)[1] 9(2)[2] 'dm ' dm ‘
[1] are defined from the compatibility conditions between the equations and the data
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n (2.1) and (2.1) (see, [7]). Furthermore, the inequality

Are -y (44 a, 4t - ~(5+a, 2t
(24) Z Iogl) — 0(3)|(Q§:) 5) + |da _ dI;T a,>3%)
i=1,2

. (14 ,l_-tz . 3+ ,_:l'_..
+|Vpo - VPI(Qg)a ) + I”a- I( (1)a )

c ( Z |0£'}, — OSi)Ig('!',a) + |vop0 — vol}f}f,“’) ;

i=1,2

obviously holds, where (9, Vp, (1), §(?) is a extension corresponding to problem (P).
Then by introducing the new unknown functions w() = 66) — éS,‘ ) _ x(Vn - Vé‘(,"))é,
(i=1,2),6=d~-d,, u =v—d, and Vg = Vp— Vj,, problem (2.1)-(2.2) can be
written in the equivalent form _

%“ — vAu+ Vg = Fi(u,Vg,u,8) in Q,
V.u=Fyud) in Q)

(25) < ult:O =0 on Q(l)’
© = —60 on ZT,

u -n = F3(u,d)
| | 2v[ID(u)n = F4(u,8) on TIr,

N (1) A
ou’ 1 g. (s (D) VuD) - ZD(w) : D(5,)

ot pC,(,l) C(l)
=G (v, w),§) in (1)
0w 1 o (n(z)(é@).)vu;(z)) =G(w?,6) in QY
% c® 5 = Ga(w®®, 28
w|eo =0 on QW
w®|=g=0 on QO
w®) =0, -6V on T,

(26) § [ 2,1, 4w @
e I —x'1(6057)(Vy - Vu! )
_v,‘_(?)(g(ﬂ))(v” Vu(?) = Ga(w), w?,§),

ao., 010' 1 )

m 4 =

| Y en T T ;1,“"‘“ 0,0,0) 5080; = 940):

86 910 1 825

@) 4 9% g _9o%

w® 4 26— T o I”Z:;;z.,(c.:,o,o,O)‘,,W?wj

( =Gs(8) on TIr,

whereby F;,i=1,---,4,in (2.5) and G;,i = 1,-- -, 5, in (2.6) we mean nonlinear terms
derived by the above linearization. The explicit representations of F;, 1 = 1,---,4,
and G;, i = 1,---,3, have the same form given in [7], hence we omit them here. The
representations of G4 and Gs will be given in section 4.

104



105

3. The linear problems. In this section we are concerned with the lin
lem

((?;: vAu +Vq=F,, V-d:Fg’ in Q(l)
;=0 =0 on QW)

vu=H; on Xr,
u - -n = Fj3, 2V[ID(u)=F; on TIp,

1
0w 1 o (,c(l)(ggn)wm)-

ot 4pC£1)
c,EUD(") D(¢,)=G, in QY
dw(? 1

ot C,('z)v' ('9(2)(6572))Vw(2)) =Gy in Qg?),

evp _
G1D] wWeo=0 on Q)
wP|—g =0 on Q()
w)=H, on Ir,

06 1 5
[ S+ o) (vn )
__i_~,c(2’)(§(2))(v,7 -Vuw®?) = G,
d Y o0 N
(1)+ an J—TZ a,_,( 000) wJ_G4)
1,j=1,2
60 6 " %8
i,j=1,2 P » .

We treat the above problrem separately, that 18,

%—VAH-}-V(]:FL- V-u=F in Q(l)
(3.2) uli=0 =0 on Q)
‘ uvw=H, on X,

u-n = Fj3, ID(u)n = F, on Ip



r Gw(V) 1 -
= _ v - n(l)(e,(,l))Vw(l)
. 1
= Gl + C(I)D(u) D(”a) m ’(1‘)1

v. (n(2)(032))vw(2>) =G, in QP,

(33)3 wW=H;, on Zr,

(86 1 -

P+ W) .V

T l”fn (657)(Vn - Vu'?)

—,——n"’(éS,”)(Vn -Vu®) = Gs,

{4 05 o >> 325

w 3 é ] jzna._,(w 0,0, 0)a ; = Ga,

a6 6,0 i)
24 20 5 z ' . _vo _

For problem (3.2) we have already obtained the following theorem (see [6]).
THEOREM 3.1. Let us assume that

Fy e Cy3(QY), erCS*"'=(Q§~"), H,eCt™™7 (57),

c““' 2(r), FaeCit ¥ (0p).

and there erist a vector field r € CS‘ ’%(Qg_,,l )) and a tensor R satisfying

OF G.F,=V.r, r=V-R, ((R)HI* < oo,
ot Qr

in the sense of distribution and A

/dezz—/FadI‘—/Gl-ndE.
Q r b

Then probrem (3.2) has a unique solution u € Cz+a' 2 (Q(l)) Vg € C:'%(Q(Tl))
which satisfies

2 ,3_';2 , 2 l+a,—+—— 24a,2
Gy ) + Vel < © (|F1|g’(,,°’ FIRGe ) + HE =
T

HBIE ) LR 4 I("(;?)+((R>)S€T“"))

where a constant C does not depend on Fj, j =1,---,4, Hy, and remains bounded as
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For problem (3.3), we first consider the model problem in the half space:

¢ 6 .
—1—U—l——a1Aw1 =g, 1n Dgo,
Jt
6‘(1)2 . ~

5 ~RAw2=g2 in D3,

w1|t=0=0 on Ra,

(34) < w2|t =0 = 0 on R:i,
at +dy— 923 —dy— 623 =gs on Rooa

wy + b6 —coA, 6 =g4 on RZ
| wo+byd—coA,d =g5 on R2

Here D¥, = {(21,22,23,t) € R*|23 > 0,t > 0} D3, = {(21,22,23,t) € R‘Iza <
0,t > 0}, R% = {(z1,22,t) € R3|t > 0}, R} {(21,22,23) € R3|z3 > 0}, R?

{(21, 22, z3) € R3|2z3 < 0}, and a1, az,b1,b2,c, d1,d2 are positive constants. We begm
with the derivation of a estimate of a solution to the following homogeneous problem:

p ’
Oui '=0 in D3,
o i
5=0 in D2,
at | | 0 3
Wy |t=0 = on )
(35) < w’2‘t=0 =0 on Ra_-;
aé ow Jws 9
§+d1 B7a —dzaza =g3 on R,
w,+ b6 —coA,6=0 on RZ,
\  wh+bad —‘caAZIJ =0 on RZ.

Making use of the Fourier transformation with respect to z/ = (zy, 22) and the Laplace
transformation with respect to ¢:

FLIfI(€', 23,5) = f(§',73,5) = [0 et /R e f (2 20, )d

we have a representation of a solution of the transformed problem of >(3.5) as'fpilqw'sf:

| - L g len\ M2
(3.6) &, = —(by + colé’[P)fexp [— (—*—1'—“—) | ;3],'
o 1/2
(3.7) wh = —(bz + col¢’'|?)dexp [(fy-}_‘;ﬂf_li) Za]
2 .
and
(3.8) §= v 9 "2 1/2
s+ Y dibi+eole' )(—t—'iL)

1=1,2

The following theorem in [3] makes it possible to estimate these transformed
functions in Holder norms.
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THEOREM 3.2. Suppose that a function f(z,t) belongs to Cg'%(Rgo) for some
a > 0 and a symbol K(,s) (s = a + ip,a > 0), satisfies the condition:

Vi iry — *® dZo o d21 o d22

=[5 zfﬂ/o EE
0

x||A0(20) A1 (21)Az(22) [ ®(n, m0) K (nn, 88))llLa(rs3 , )

7,70
< CH

for sufficiently large v;, j = 0,1,2, where g, = n/h,sy = a + i€o/h2, (if j = 0), 1 (if
j=1,2) and C is a positive constant independent of h.
Then the convolution u = K * f satisfies the inequality

14a
()i ™ ") < Clhaas?,

where the notation f, means the function defined as f, = F~[([FL]f)), and C is a

positive constant independent of f,. Here A;(z;) are finite difference of step size z; in
N

the variable 1; and ®(z,t) = ¢(z1)P(z2)$(t), where ¢(z) = Z %—l(l]\):%l:)l:%u (%) , N
k=1 "~ )

is a sufficiently large positive integer and w is a function belongs to C*°(R) satisfying
suppw C [0,1],w > 0 and [w(z)dz = 1.
Introduce the notaion

qeri2 1/2
R(¢',s)=s+ di(b; + col¢')? (S_t_eiél_) ,
(€)= 0+ 32 dilh +cole' K |
YV 1/2 e 1/2
P =o+ b (D) T e = (S12ED) Ty,

i=1,2
then considering argr;, argre € (—n/4,7/4), we have
IR(¢', 8) > CIP(£', 5)],

where C is an arbitraly positive constant satisfying 0 < C < (2 — 21/2)1/2/2. This
inequality plays essential role to derive uniform estimates of R(£’,s) with respect to
o > 0. Indeed, by the caluculation given in [7] with this inequality, it is easily seen
that R({’, s) satisfies the following lemma.

LEMMA 3.3. The symbol R(¢', s) satisfies

T,’(R(¢,s))<Ch, j=0,1,2,

where C is a positive constant independent of h and o > 0, and v}s are sufficiently
large positive constants.
Then firstly we have the estimate

(3+a,42) (240, 2=)
ldlng‘ *°< Cl!]?!lng~ L
Furthermore the following lemma obviously holds because of the homogeneity of the

symbol r;.
LEMMA 3.4. The symbols r; (i=1,2) satisfy

IJ(ri)<Ch, j=0,1,2,
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where C is a positive constant independent of h, and vjs are sufficiently large positive
constants.
Then the relation

s+ Ca|£’|2 Z djrj 6= — E djbjfjg+ gs |
. i=1,2 j=1,2 )

implies the estimate

(24a,242)

96 +alA, 6|(3+a’

—(9? Rz
a,? a2t a2t
< C('5|(3+ S |93|g; ’ )) < CI 3I(2+ ),

He)

Hence we have

618855 < Claalizy =™,

where C'’s are positive constants which is independent of o. Since w/, i = 1,2, in (3.5)
can be considered as solutions of the Dirichlet problem of heat equations, we have
also the estimate:

|(3+a, %

II(3+013_12:_) |w
-3 2

|w1 D3

o 24a
< C (b +b2) 8ligg ™) + eold S 5) < Claslig 5.

The solution of the non—homogeneous problem (3.4) is given by adding the above w}
to a solution of the problem

4 6’!1);/

ot

6wll

—aqAwf =g, in D3,

—a3Auwl =g in D3,
< wilt=0=0 on R3
"Ig =0=0 on R;
w/=g4 on RZ,
w) =g¢gs5 on Rgo.

\

Hence we have the following theorem:
THEOREM 3.5. Suppose that

1+a, l4a,4= =~
91€C+a 2 (D%)’ 92 €Cy" " % (DY),

a, 2 a, , ,-3—'*'25
g3 €CT T (RE), ¢4 €CT T (RE), gs€Cat™ T (R3),

then problem (3.4) has a unique solution

o, 3t o; .
wi € CY (DY), wy € PN (DR), sec
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satisfying

3+a, e
55 4 5+ 150

a, a_‘L
(I |(1+ 5 )+Ig I(1+ )

2 ._:L. e
HoallZr ) 1104l 4 sl ™),

where C is a constant independent of o, gi, i = 1,---,5, and remains bounded as
T —0.

On the basis of this theorm, we can solve problem (3.3) by the method of regu-
larizer (see {8], [7], [5])-

THEOREM 3.6. Let us assume that

a a dao @, 3t
G eCH (@), G eGTT(QP), H eGP (1),

P a, 3t a,dte
Gs € I 55 (y), Ga€CIY™™ 7 (T1), Gse€Cyt™ 7 (I'r).

Then probnem (3.3) has a unique solution w®) € Ca+°’ 3 (Q ), i=1,246¢
Cf,’f,"" 3 (T'r) which satisfies

i) B+, 2= 3+ 14a,lt= 1+a,1=
¥ S 4510 < ¢ (1l + G
i=1,2

34a,3te 24a,2te 34a,2e e
HESH ) 4 Ga ) 4 1G5 1G5l ))

where a constant C does not depend on o, G, j = 1,---,5, Ha, and remains bounded
asT — 0. z

4. Proof of Theorem 1.1.

LEMMA 4.1. Let 0 < a < 1. The following inequalities hold for any u;,u, €
24a
(Y U Vai, Va2 € G52 (QF),
61,62 € 25 (), 0, wf € G (Q“’), ™, w® € cr = Q).

(o, %)
|f1(“1,V01,w§1),51) — Fi(u3, Vgz, wl' ,52)| (1:
< C(T) (lul - ‘uzl(z(t)a’ ) + qu1 VQ2| (1)

3+ yﬁﬂ 34a, e
6 - A 1 ol - uf (G,

o
|Falw,61) — Faluz, )00 *
T

24a 3_«&
< ¢(T) (l“l - "2|(Q?(T+u)a'+) + 61 — 52|¢(:1f:' ? )) )



|Fa(w1,6d1) — F3(uz,02)|r, (24 25%)
< (etry 412

2

2ta 34a
(l“l - "2l( (1) =) + |6 —52|(3+a’ ? )) )

o,I'r
14a
|Fa(uy,81) — Fy(uz, 6) 01075

24a,3te 3+a,it2
S C(T) (|u1 —_ uglg’(rl)a 2 ) + Ial —62|£’p: : )) ’

lGI (uls w, )61) - GI(u2y w2 162) (l)
24a
< o?) (Jus — wallf ¥
T

3ta o 3y
+Huf?) = uf (5 45— sl ),
T

(1+a, —*—)
(2)

3ta, e Sta, 3=
< ¢(T) (|w§2>—w2’>|§?;;;' )11 — 6O )),
T

gz(w§ ),51) - 92("’2 162)

(2+a,242)
Ig3(w£1))w§,2)161) g3( (1))1”22)1J l

< () -+ (0008 - w2(0f2) v (1~ T110) #[”)

34a,te
X (lwgl) - “’gl)l(q(x)a =)

e o, 2t
+lw® — (2)1‘33;, ) 161 — 65 ’),

’ a,te o, —L
1Ga(d1) — Ga(82)|EF ™ < o(e, 116, — 621“"* =)

O‘FT

a o 3t
1G5(61) — Ga(EIE ) < cfe, Ty — 8010 E)

o'r

where ¢(T) is a positive constant depending on T, u;,us,q1,q2, wg ), (1) wgz)’wgz)’
41,082 which converges to 0 as T — 0 and c(¢, T) s a positive constant depending not
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only on T and the above functions but also on ¢ which will appear below, and

be taken arbitrally small for suitably chosen ¢ and T.
Proof. Terms F; (i=1,---,7) and G; (i = 1,---,3) can be treated by ji
same way as in [7], hence here we give the estimates only for G: (i=4,5).

Set A
%6

. 00 1
Ga(8) = —00) + 61 - _ll_m > 6ii(,0,0,0) Ow; Ow;
m;i=1,2 I
6o 1 3 o 6%(d, +9)
+ l IVJ.+6’7| .-,,2:;,2 Gij (“”d" +9, Vd.+6(d° +6)) Ow;0w;

bro 1 . :
20T Ly (w.do +6,V4,45(ds +9))

T IVJ,-HS"‘
= —60) + 0, — A7 (A(8) + BO)),
where
1 8%
Ad) = ——=—= a;$(w,0,0,0) s7—5—
( ) Iv’ﬂ ,"jz-_-;’g J( )aw'_awj
1 A - 9*(d, + )
T p— ij (w,do +6,V i 5(do —_
* IV d, 4571 .',};za ’ (w +0 Vil +6)) Ow;Bw;
and
1 . .
B(8) = —mb (w, d, +8,V4 ,s(do+ 5)) .

Firstly we rewrite A(J) as follows:

A@) = [ o - — Y ai5(w,0,0 023
Vol Vi) o, 0 Owidw;
1

T E (aij(w$ 0) 01 0)
Iv«i.+6 | ij

—a;j (w,tf,, +6, Vi 45 (do + 6))) (')cf;éwj

8%d,
Ow;Ow;

+__1____ Z aij (W,Jg + J,Vd‘a_‘_‘;(({a +6))

Vi, +s | ij=1,2

For example, the first term is evaluated as follows:

6%6,

1 1
( ) Z aij(w’o’o’o)m

IV, 45,7 Vi, +a,0 i,j=1,2

(3+a,2

1 1 92(81 — 62)
+ _ i(w,0,0,00 200 = %2)
(lV'ﬂ |V¢‘,+.s,’l|) Z @i ) Ow;Ow;

i,j=1,2 I'r
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’ (3+a,3%2) (0)
1 1 ‘ 0%4,
- a;;j=12(w,0,0,0
T
(0) : (3+a,242)
+ | ! > (w 0,0,0) o4,
- a;;
lvd“,+617l| lvdj,+5,’7| Iy lij=1,2 J 6w,6wj .
‘ : : T
I (B4, AN A
1 . 1 82(81 — 8,)
+ - k a,-j(W,O,'0,0)-——-—
lVﬂl '|Vd',+6,7’| Iy 'ZJ: v : 5(4).'(9(41_,' o
1 . ;(0) . 5 (6 6) (3+a,3—’2ﬂ’-)
1 1 —02
+ - aij (w 0, 0 0) ————2~
Vol Fpantlly, | 2 by |

a_:f_
< e(T)|Ap (8, — 8o [ 75),

where by Ar we denote the operator 3,  @ij(w, 0,0,0)5-2%— aw 8w . Taking into account
the definition of a;;, the second and the last terms are also estimated by |Arp(6; —

)[(3"'“’ ) . Furthermore, considering the following estimate

Ib (“"’ dy + 61, Vd‘,+61(‘i° + Jl))

b (w,dy + 65,V s, (do + 5)) I(:’L“'ﬁ’&)

3ta
< LIV (8 — &) |5

a,3te
< C1 (dar(@ - &5 + c(Ov(E - &)L

T

B(d1) — B(d2) is obviously estimated in the form

a3t a,—'t-—
B(81) — B82)Ior ™3 < Cy (e + e(T)C(€)) |Ar (81 — 63)|EF= ),

where Cy and C, are positive constants independent of ¢. O
Now, on the basis of this lemma, we construct a solution of problem (2.5)-(2.6)
in the function space:

( (u, Vg, wD, w®, §) € ¥iie .
1w, w®,8,u, Vg)||xsse = Iul(k(f,”" Atita)
Xoh =4 +IV<1|$(T)0,"—1;—) » (1)1("+3+a e g
+lw (2)|("(42f)3+a (Etite) 4 Mlgk;r:m A43ta)
( | KM J

where
a, a’_:t_'t_
= |%1(0,0,0, 0)1(’2’:, S IR0,

a, _+__+_ a, _i_
H1F3(0,0)[H2H T 417 (0, 0) TS
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k , 3o k41 _1'_+_
+161(0,0,0) 55+ ”+|92(0 Olge ™"

+1G5(0,0,0)|&+2+= 555 4 (g, (g)|F3+e
_:l-_:L
HiGs(0) T

k+3ta )
2

)

and K and T are positive constants to be determined later. Choose (u, Vg, wD), w(?),
) € X2 arbitrarily, and (4, V4§, w1, 92, §) be a solution of problem (3.1) with
(Fl, Fz,O Hl, F3,F4,G1 Gz,O 0 Hz,Ga,G4,Gs) replaced by (.7:1,]:2,0, v,,]-'a,
F4,G1,G2,0,0,0,— S ,ga,g4,g5). Let P be a mapping corresponds (u, Vg, w(!), w(?,
8) to (&, V4, "), w?, 4§). Then theorem 3.1 and theorem 3.6 garantee that P maps
Xg 7 into itself. Actually, it is shown as follows.

1P (s, Vg, w™, 0, 8)lIxz,. = (&, V4, o, 0, 8)lIxe,
1) (2
< ||P(u, Vg, wM,w® §) — P(0,0,0,0,0)||xz .
+||P(0,0,0,0,0)||x°

<Cjs [e +e(T)CE)+1) +(|1- 2

+|(=08) - Do) (vo) -7

+i;'_|(,c(l)(a(()1)) x@(65)) V(81 Ho) - T|( )] KM

+M
= (L(¢, T)K + 1) M,

where Hj is the twice mean curvature of I' and Cj is a positive constant independent
of 0. Considerting the smallness assumptions for |p — pe| and IIC(I)(B(()I)) - n(z)(of,z)u
given in theorem 1.1, we can take o satisfying

(4.1) C3l |(n<1>(o(”) nm(o(z))) V(6,Ho) - T
% 03( +|( M (6§) - x@(6§7)) (v6y) - 1-| )

Hence, for some ¢q satisfying Cseq < 1/2, there exsist Tp > 0 independent of o €
(0,0%) such as L(eg,Tp) < 1. Here by o we denote the upperbound of o satisfying
(4.1). Then taking K > 0 larger than 1/(1— L(eo, Tp)), we have ||P(u,, Vg, wih, ws?
,Ja)llx:% <KM.

Contractiveness of mapping P also follows from L(¢o,70) < 1. Hence the con-
tractive mapping theorem yields a unique solution of the problem.

Moreover, the convergence of the solution of problem (P,) can be proved as

I()

follows. Let (uo,,an,,wgl,),w,l ,60,) in XZ;"_;O and (ua,,Vq,,,wgl,),wt(,,), 80,) in

X g:’;o be solutions of problems (P,,) and (P,,), respectively. Then we have

”(udnqunw(l) w(z)s‘sdn) - (“a,,VQoz, wglz),w,(,i),é z)“fl’go
< Call(v0,,0,0826,020) = (92,,0,05)0, 652 )¢

01,077 0,,0 02,00
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+Cs (c(To) + ]

) o )

x”(uolqudnwgll H 5721)1601) - (u027vq02?wg12):w((722)>602)|lxgo

222 (1 (006) - 20 w0,0) 7.

0)
+ Cs)

% (102, Va0, w82, 02,80 llxsse + (000,000,020 lsrs)
= M(TO)”(ual ’ Vq01 ’ wc(rll)’ wgzl)i 601) - (u0’2) anzv wglz)’ ¢(723)’ 602)”3';0

+loy — 0‘2|K M,

where C;, i=4,5,6, are positive constants independent of o, and K is a positive con-
stnant satisfying K’ > K. Noting that M(T;) < L(eg,Tp) < 1, we have

”“ﬁaVQﬂ’wc(vll)’wa; ) 01) - (uaz’ an,, wt(rlz)’wg)va 2)"3';0

- K'M
< oy — o

< I—M(To) —3 0 (0’1,0’2-—-—-)0).

Thus {(uo, Vo, w (1) wt? 100)} is a Cauchy sequence in X as o — 0. Hence the
proof of theorem 1 1 is completed
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