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1 Introduction
This work is apart of the joint work with Prof. Kawashima and Prof. Nishibata. We
consider the viscous scalar conservation laws in the half plane:

$\{$

$u_{t}+f(u)_{x}+g(u)_{y}=u_{xx}+u_{yy}$ , $x>0,y\in \mathrm{R}$ $t>0$ ,
$u|_{t=0}=u_{0}(x,y),$ $u_{0}(x,y)arrow u_{+}$ as $xarrow+\infty$ ,
$u(0,y, t)=u_{b}$ ,

(1)

where $f,g$ are smooth under consideration and $u_{+},u_{\mathfrak{t}}$ axe given positive constants with
$u_{+}<u_{b}$ . In this paper, we investigate the stability of stationary waves $\tilde{U}(x)$ connecting
$u_{+}$ and $u_{b}$ , which satisfy the following problem:

$f(\tilde{U})_{x}=\tilde{U}_{xx}$ , $\tilde{U}(0)=u_{b}$ , $\tilde{U}(+\infty)=u_{+}$ . (2)

To discuss more precisely, we state the known results.

1.1 Cauchy problem.
If we assume the initial data:

$u_{0}(x,y)arrow \mathrm{f}\mathrm{i}\mathrm{g}$ $(u_{b}<u_{-})$ as x $arrow\pm\infty$ , (3)

there exist 1-dimensional nonlinear waves (ex. viscous shock wave, rarefaction wave ).
When $u_{+}<u_{-}$ , the Cauchy problem in whole space $x\in \mathrm{R}$ has aunique viscous shock
wave $U(x-st)$ up to ashift with shock speed $s$ :
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Here $s$ , $u_{\pm}$ satisfy the Rankine-Hugoniot condition $-s(u_{+}-u_{-})+f(u_{+})-f(u_{-})=0$
and the Oleinik shock condition $h(U):=-s(U-u_{\pm})+f(U)-f(u_{\pm})<0$ . From these
conditions, we obtain $f’(u_{+})\leq s\leq \mathrm{f}(\mathrm{u}\mathrm{J})$ . Especially, if $f$ is convex, it holds Lax’s
shock condition $f’(u_{+})<s<f’(u$

-

$)$ . When Lax’s shock condition holds, the shock
is called “nondegenerat\"e. When it does not holds, the shock is called “degenerat\"e.
There have been several works on the stability of $U(x-st)$ . J.Goodman [1] has in-
vestegated the stability in the case that $f$ is convex. The author [2] has obtained the
stability and its convergence rate subject to $g\equiv 0$ and nonconvex $f$ .

1.2 Boundary value problem.
There seems to be few results in 2-dimensional case. But in 1-dimensional case, there
have been many works on the asymptotic behavior of the solutions with boundary
conditions $u(0, t)=u_{-}$ and $u(+\infty, t)=u_{+}$ . In this problem, the sign of shock speed $s$

is important. Liu and Nishihara [3] have been considered the stability of viscous shock
wave $U(x-st)$ in the both cases $s>0$ and $s<0$ . Liu and Yu [4] have treated the
remaining case $s\neq 0$ . Our interest corresponds to the case $s<0$ . In this case, there
exists aboundary layer solution from the point of view [3]. In our formulation, we can
regard this solution $\tilde{U}(x)$ as the restiriction $U(x+x_{0})|_{x>0}$ with $U(x_{0})=u_{b}$ . Therefore
the asymptotic property of $\tilde{U}(x)$ is given by

$|\tilde{U}(x)-u_{+}|\leq\{$
$C_{1}\exp(-C_{2}x)$ , nondegenerate case,
$C_{3}(1+x)^{-1}$ , degenerate case (5)

Our main theorems on the stability of $\tilde{U}(x)$ are following.

Theorem 1.1 Suppose that shock is nondegenerate. If $u_{0}(x, y)-\tilde{U}(x)\in H^{2}(\mathrm{R}_{+}\cross \mathrm{R})$

and $|u_{+}-u_{b}|$ are sufficiently small, then there exists a unique global solution $u(x, y, t)$
to (1) such that

$\sup_{x,y}|u(x, y, t)-\tilde{U}(x)|arrow 0$ as $tarrow\infty$ . (6)

Moreover, if we assume $(1+x)^{a/2}(u_{0}(x,$y) $-U(x+x_{0}))\in L^{2}(\mathrm{R}_{+}\cross \mathrm{R})$ for a given
positive constant $\alpha$ , it holds that

$\sup_{x,y}|u(x, y, t)-\tilde{U}(x)|\leq C(1+t)^{-\frac{\alpha}{2}-\frac{1}{4}}$. (7)

Theorem is proved by an energy method combining the local existence with apriori
estimate. To derive apriori estimate, the Poincare type’s inequality is effective, which
is introduced by Prof. Kawashima. When the decay of $\tilde{U}_{x}(x)$ is so fast, we can apply
this inequality. Hence we can not use it when the shock is $\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{e}\mathrm{n}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}(f’(u_{+})=s=0)$ .
But in this case, it is not necessary to apply that. We have the following result
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Theorem 1.2 Suppose that shock is degenerate. If $u_{0}(x,y)-\tilde{U}(x)\in H^{2}(\mathrm{R}_{+}\cross \mathrm{R})$ is

sufficiently small and $u_{+}<u_{b}<u_{*}$ , then there exists a unique global solution $u(x,y, t)$

to (1) such ffiab
$\sup_{x,y}|u(x,y,t)-\tilde{U}(x)|arrow 0$ as $tarrow\infty$ . (8)

Here $u_{*}$ is a frictional point such that $f’(u_{*})=0,f’(u)\neq 0$ for $u<u*\cdot$

Our plan of this paper is following. After stating the notations, we reformulate our
problem in the next section. In \S .3 and \S .4, we give the proofs of the theorems.

Notation For $s\geq 0$ , $H^{s}=H^{s}(\mathrm{R}_{+}\cross \mathrm{R})$ denotes the usual Lebesgue space over
$\mathrm{R}_{+}\cross \mathrm{R}$ with nom $||\cdot||_{s}$ . We note $H^{0}=L^{2}$ and $||\cdot||_{0}=||\cdot||$ . For the weight function
$w$ , $L_{w}^{2}$ denotes the space of measurable functions $f$ satisfying $\sqrt{w}f\in L^{2}$ with the norm

$|f|_{w}=( \int_{R}\int_{0}^{\infty}w(x)|f(x)|^{2}dxdy)^{1/2}$ (9)

When w $\sim\langle x\rangle^{\beta}=(1+x^{2})^{\xi}$ , we write $L_{w}^{2}=L_{\beta}^{2}$ and | $\cdot|_{w}=|\cdot|_{\beta}$ without confusions.
Moreover, we put $|f| \rho,:=\sum \mathrm{j}_{=1}|\partial_{x}^{j}f|\rho$ .

2Reformulation of the problem
Putting the perturbation as

$\phi(x,y, t)=u(x,y,t)-\tilde{U}(x)$ ,

the problem (1) is reduced to

$\{$

$\phi_{t}+\{f(\phi+\tilde{U})-f(\tilde{U})\}_{x}+g(\phi+\tilde{U})_{y}=\phi_{xx}+\phi_{yy}$ , $x>0,y\in \mathrm{R}$ $t>0$ ,
$\phi|_{t=0}=\phi_{0}(x,y)\equiv u_{0}(x,y)-\tilde{U}(x)$ ,
$\phi(0, y, t)=0$ .

(1)

So our purpose is to show $\phi(x,y, t)arrow \mathrm{O}$ as t $arrow\infty$ and moreover to derive its decay
estimate in nondegenerate case.

3Proof of the Theorem 1.1
We define the solution space as

$X(0,T)=\{\phi|\phi\in C([0,T] : H^{2}(\mathrm{R}_{+}\cross \mathrm{R})),\nabla\phi\in L^{2}(0,T:H^{2}(\mathrm{R}_{+}\cross \mathrm{R}))\}$ .

The local existence in $X(0,T)$ for positive constant $T$ depending on the initial data
can be proved in astandard way. So we omit the proof. Hereafter, we devote ourselves
to derive apriori estimate
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3,1 Apriori estimate
Lemma 3.1 Suppose that $|u_{+}-u_{b}|$ is sufficiently small It holds that

$|| \phi(t)||_{H^{2}}^{2}+\int_{0}^{t}||\nabla\phi(\tau)||_{H^{2}}^{2}d\tau\leq C||\phi_{0}||_{H^{2}}^{2}$, (11)

$|| \phi_{t}(t)||_{L^{2}}^{2}+\int_{0}^{t}||\nabla\phi_{t}(\tau)||_{L^{2}}^{2}d\tau\leq C||\phi_{0}||_{H^{2}}^{2}$. (12)

proof Multiplying (10)( $=\mathrm{t}\mathrm{h}\mathrm{e}$ first equation of (10)) by $\phi$ , we have

$( \frac{1}{2}\phi^{2})_{t}+|\nabla\phi|^{2}+\{f(\phi+\tilde{U})-f(\tilde{U})-f’(\tilde{U})\phi\}\tilde{U}_{x}$

$\{(f(\phi+\tilde{U})-f(\tilde{U}))\phi-\int_{\tilde{U}}^{\phi+\tilde{U}}f(s)ds+f(\tilde{U})\phi+\phi_{x}\phi\}$

$+ \{g(\phi+\tilde{U})\phi-\int_{\overline{U}}^{\phi+\tilde{U}}g(s)ds+\phi_{y}\phi\}=0$. (13)

Since $\{f(\phi+\tilde{U})-f(\tilde{U})-f’(\tilde{U})\phi\}\tilde{U}_{x}=\frac{1}{2}f’(\cdots)\tilde{U}_{x}\phi^{2}$ is negative, Prof. Kawashima has
introduced the following Poincare type’s inequality:

$\phi(x,y, t)$ $=$ $\int_{0}^{x}\phi_{\xi}(\xi,y, t)d\xi$

$\leq$ $\sqrt{x}(\int_{0}^{\infty}\phi_{\xi}^{2}d\xi)^{1/2}$ (14)

We apply this inequality to the third term to the left in (13). Since $|\tilde{U}_{x}|$ decays so fast,
we have

$\int_{R}\int_{0}^{\infty}\{f(\phi+\tilde{U})-f(\tilde{U})-f’(\tilde{U})\phi\}\tilde{U}_{x}dxdy$

$\leq C\int_{R}\int_{0}^{\infty}|\tilde{U}_{x}||\phi|^{2}dxdy$

$\leq C\int_{R}(\int_{0}^{\infty}x|\tilde{U}_{x}|dx)(\int_{0}^{\infty}|\phi\xi|^{2}d\xi)dy$

$\leq|u_{+}-u_{b}|^{1-a}\int_{R}\int_{0}^{\infty}|\phi_{x}|^{2}dxdy$ for $0<a<1$ . (15)

Here we used the inequality $|\tilde{U}_{x}|\leq C|u_{+}-u_{b}|^{1-a}|u_{+}-u_{b}|^{a}\leq C|u_{+}-u_{b}|^{1-a}\exp(-cax)$ .
Integrating (13) over $\mathrm{R}_{+}\cross \mathrm{R}\cross[0, t]$ and if $|u_{+}-u_{b}|$ is $\mathrm{s}\mathrm{u}$ fRciehtly small, we have

$|| \phi(t)||_{L^{2}}^{2}+\int_{0}^{t}||\nabla\phi(\tau)||_{L^{2}}^{2}d\tau\leq C||\phi_{0}||_{L^{2}}^{2}(.$ (16)

Higher order estimates are also obtaind if we apply the inequality (14) and maximum
priciple of the parabolic equation. We omit the details
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Remark The property (6) is obtained as follows. By the Sobolev inequality, we have

$\sup_{x,y}|u(x,y,t)-\tilde{U}(x)|=\sup_{x,y}|\phi(x,y,t)|$

$\leq||\phi(t)||^{1/4}||\phi_{x}(t)||^{1/4}||\phi_{y}(t)||^{1/4}||\phi_{xy}(t)||^{1/4}arrow 0$ as $tarrow\infty$ . (17)

3.2 Convergence rate
By Theorem 1.1 (6), there exists apositive constant $t_{1}=t_{1}(\epsilon)$ for any $\epsilon>0$ such that

$\sup_{x,y}|\phi(x,y,t)|\leq\epsilon$ for $t\geq t_{1}$ . (18)

Multiplying (10) by $(1+x)^{\beta}\phi$ and integrate it over $\mathrm{R}\cross \mathrm{R}_{+}\cross[0,t]$ , we have

$0=$

Since

$I_{1}$
$=f( \phi+\tilde{U})-\int_{\overline{U}}^{\phi+\overline{U}}f(s)ds$

$=F’(\phi+\tilde{U})\phi-(F(\phi+\tilde{U})-F(\tilde{U}))$

$=- \{\int_{0}^{1}\frac{\partial}{\partial\theta}F(\theta\phi+\tilde{U})d\theta-F’(\phi+\tilde{U})\phi\}$

$=- \int_{0}^{1}\{F’(\theta\phi+\tilde{U})-F’(\phi+\tilde{U})d\theta\}\phi$

$= \int_{0}^{1}\int_{\theta}^{1}F’(\xi\phi+\tilde{U})\not\in d\theta\phi^{2}$

$= \int_{0}^{1}\int_{\theta}^{1}f’(\xi\phi+\tilde{U})d\xi d\theta\phi^{2}$

$= \int_{0}^{1}\int_{\theta}^{1}f’(u_{+})oed\theta\phi^{2}+\int_{0}^{1}\int_{\theta}^{1}f’(\cdots)(\tilde{U}-u_{+}+\xi\phi)d\xi d\theta\phi^{2}$ (20)
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where $F( \phi)=\int_{0}^{\phi}f(s)ds$ , if $|u_{+}-u_{b}|$ is sufficienty small, we obtain

$\frac{1}{2}\frac{d}{dt}\int_{R}\int_{0}^{\infty}(1+x)^{\beta}\phi^{2}dxdy+\int_{R}\int_{0}^{\infty}(1+x)^{\beta}|\nabla\phi|^{2}$dxdy

$+ \frac{1}{2}\beta(-f’(u_{+}))\int_{R}\int_{0}^{\infty}(1+x)^{\beta-1}\phi^{2}dxdy$

$\leq$ $C \int_{R}\int_{0}^{\infty}\beta(1+x)^{\beta-1}|\phi|^{3}dxdy+C|\beta(\beta-1)|\int_{R}\int_{0}^{\infty}(1+x)^{\beta-2}|\phi|^{2}$ dxdy

$+C \int_{R}\int_{0}^{\infty}(1+x)^{\beta}|\tilde{U}_{x}||\phi|^{2}dxdy$

$\equiv$ $I_{2}+I_{3}+I_{4}$ . (21)

$I_{4}$ will be absorbed to the left hand side if we apply the inequality (14) and assume
$|u_{+}-u_{b}|$ is sufficienty small. The other terms are estimated as follows:

$I_{2} \leq C\beta\sup_{0\leq\tau\leq t_{1}}||\phi(\tau)||_{L}\infty C\int_{R}\int_{0}^{\infty}\beta(1+x)^{\beta-1}|\phi|^{2}dxdy$ (22)

and

$I_{3}$ $\leq C\beta\int_{R}(\int_{0}^{R}(1+x)^{\beta-1}|\phi|^{2}+\int_{R}^{\infty}(1+x)^{\beta-1}\frac{1}{1+x}|\phi|^{2})$dxdy

$\leq C_{R}\beta\int_{R}\int_{0}^{R}|\phi_{x}|^{2}dxdy+\frac{1}{2}\int_{R}^{\infty}(1+x)^{\beta-1}|\phi|^{2}$dxdy. (23)

for sufficiently large constant R. Here we used the Poincare inequality. So we obtain

$\frac{d}{dt}\int_{R}\int_{0}^{\infty}(1+x)^{\beta}\phi^{2}dxdy+\int_{R}\int_{0}^{\infty}(1+x)^{\beta}|\nabla\phi|^{2}dxdy+\beta\int_{R}.\int_{0}^{\infty}(1+x)^{\beta-1}\phi^{2}$dxdy

$\leq C\beta\int_{R}\int_{0}^{\infty}|\phi_{x}|^{2}dxdy+C\beta\sup_{0\leq\tau\leq t_{1}}||\phi(\tau)||_{L^{\infty}}C\int_{R}\int_{0}^{\infty}\beta(1+x)^{\beta-1}|\phi|^{2}dxdy$ . (24)

Integrating (24) over $[0, t](t\leq t_{1})$ and applying induction with respect to $\beta$ and (11),
we have

$| \phi(t)|_{\beta}^{2}+\int_{0}^{t}|\nabla\phi(\tau)|_{\beta}^{2}d\tau+\beta\int_{0}^{t}|\phi(\tau)|_{\beta-1}^{2}d\tau\leq C(t_{1})|\phi_{0}|_{\beta}^{2}$, for $0\leq t\leq t_{1}$ . (23)

Multiplying (24) by $(1+t-t_{1})^{\gamma}$ for some constant $\gamma$ and integrating it over $[t_{1}, t]$ , we
have

$(1+t-t_{1})^{\gamma}| \phi(t)|_{\beta}^{2}+\int_{0}^{t}(1+\tau-t_{1})^{\gamma}|\nabla\phi(\tau)|_{\beta}^{2}d\tau+\beta\int_{0}^{t}(1+\tau-t_{1})^{\gamma}|\phi(\tau)|_{\beta-1}^{2}d\tau$

$\leq$ $C(| \phi(t_{1})|_{\beta}^{2}+\gamma\int_{t_{1}}^{t}(1+\tau-t_{1})^{\gamma-1}|\phi(\tau)|_{\beta}^{2}d\tau+\beta\int_{t_{1}}^{t}(1+\tau-t_{1})^{\gamma}||\phi_{x}(\tau)||^{2}d\tau$

$+ \beta\sup_{t_{1}\leq\tau\leq t}||\phi(\tau)||_{L^{\infty}}\int_{t_{1}}^{t}(1+\tau-t_{1})^{\gamma}\int_{R}\int_{0}^{\infty}(1+x)^{\beta-1}|\phi|^{2}dxdyd\tau)$ . (21)
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From (18) for sufficiently small $\epsilon_{0}>0$ , the final term of right hand side is absorbed to
the left. Hence we have

$(1+t-t_{1})^{\gamma}| \phi(t)|_{\beta}^{2}+\int_{0}^{t}(1+\tau-t_{1})^{\gamma}|\nabla\phi(\tau)|_{\beta}^{2}d\tau+\beta\int_{0}^{t}(1+\tau-t_{1})^{\gamma}|\phi(\tau)|_{\beta-1}^{2}d\tau$

$\leq C\{|\phi(t_{1})|_{\beta}^{2}+\gamma\int_{t_{1}}^{t}(1+\tau-t_{1})^{\gamma-1}|\phi(\tau)|_{\beta}^{2}d\tau+\beta\int_{t_{1}}^{t}(1+\tau-t_{1})^{\gamma}||\phi_{x}(\tau)||^{2}d\tau\}$.

(27)

By the induction with respect to $\beta$ and $\gamma$ , we have folowing lemma. For detail, see
Kawashima and Matsumura [3], Matsumura and Nishihara [4] and the author [5] etc.

Lemma 3.2 $If|u_{+}-u_{b}|$ is sufficiently small, it holds that, for arbitrary given positive
constants $\alpha$ and $\epsilon$ ,

$(1+t-t_{1})^{a+\epsilon}|| \phi(t)||^{2}+\int_{0}^{t}(1+\tau-t_{1})^{a+\epsilon}||\phi_{x}(\tau)||^{2}d\tau\leq C(1+t-t_{1})^{\epsilon}|\phi_{0}|_{a}^{2}$. (28)

For derivatives of $\phi$ , we can derive the similar estimate.

Lemma 3.3 $If|u_{+}-u_{b}|$ are sufficiently small, then it holds that, for arbitrar$ry$ positive
constants $\alpha$ and $\epsilon$ ,

$\sum_{i=0}^{2}(1+t)^{a+\epsilon}||\dot{\theta}_{x}\phi(t)||^{2}+\sum_{\dot{|}=0}^{2}\int_{0}^{t}(1+\tau)^{a+\epsilon}||\partial_{x}^{\dot{1}}\nabla\phi(\tau)||^{2}d\tau$

$\leq C\{(1+t)^{\epsilon}|\phi_{0}|_{a}^{2}+||\nabla h||_{H^{1}}^{2}\}$ , (29)

$\dot{.}\sum_{=0}^{1}(1+t)^{a+1+\epsilon}||\dot{\theta}_{x}\phi_{y}(t)||^{2}+(1+t)^{a+1+\epsilon}||\phi_{t}(t)||^{2}$

$+ \dot{.}\sum_{=0}^{1}\int_{0}^{t}(1+\tau)^{a+1+\epsilon}(||\partial_{x}^{\dot{1}}\nabla\phi_{y}(\tau)||^{2}+||\nabla\phi_{t}(\tau)||^{2})d\tau$

$\leq C\{(1+t)^{\epsilon}|\phi_{0}|_{a}^{2}+||\nabla h||_{H^{1}}^{2}\}$ , (30)

$(1+t)^{a+2+\epsilon}|| \phi_{yy}(t)||^{2}+\int_{0}^{t}(1+\tau)^{a+2+\epsilon}||\nabla\phi_{yy}(\tau)||^{2}d\tau$

$\leq C\{(1+t)^{\epsilon}|\phi_{0}|_{a}^{2}+||\nabla\phi_{0}||_{H^{1}}^{2}\}$ . (31)

Combinig Lemma 3.2 and Lemma 3.3, the convergence rate (7) is obtained by the same
method as that in Remark. So we complete the proof of Theorem 1.1.

4Proof of the Theorem 1.2
In this section, we devote ourselves to derive the apriori estimate similarity to \S .3
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4.1 Apriori estimate
Lemma 4.1 If we assume $\phi_{0}\in H^{2}(\mathrm{R}_{+}\cross \mathrm{R})$ and $|u_{+}-u_{b}|$ are sufficiently small, then
it holds that

$|| \phi(t)||_{H^{2}}^{2}+\int_{0}^{t}||\nabla\phi(\tau)||_{H^{2}}^{2}d\tau\leq C||\phi_{0}||_{H^{2}}^{2}$, (32)

$|| \phi_{t}(t)||_{L^{2}}^{2}+\int_{0}^{t}||\nabla\phi_{t}(\tau)||_{L^{2}}^{2}d\tau\leq C||\phi_{0}||_{H^{2}}^{2}$. (33)

proof Integrating (13) over $\mathrm{R}\cross \mathrm{R}_{+}$ , we have

$\frac{1}{2}\frac{d}{dt}\int_{R}\int_{0}^{\infty}\phi^{2}dxdy+\int_{R}\int_{0}^{\infty}|\nabla\phi|^{2}$ dxdy

$+ \frac{1}{2}\int_{R}\int_{0}^{\infty}f’(\theta\phi+\tilde{U})\tilde{U}_{x}\phi^{2}dxdy$

$=0$ , for $0<\exists\theta<1$ (34)

By maximam principle, if the intial data and $|u_{+}-u_{b}|$ are sufficiently small, we find
that

$\theta\phi+\tilde{U}<||\phi(t)||_{L^{\infty}}+||\tilde{U}||_{L^{\infty}}<||\phi_{0}||_{L^{\infty}}+|u_{+}-u_{b}|<u_{*}$ . (35)

Since $f”(\theta\phi+\tilde{U})$ is non-positive, we have the basic estimate. Higher order estimates
are also obtaind in the similar way to the nondegenerate case. To derive these, we will
use the following inequality.

Lemma 4.2 Suppose that the case is degenerate, $i.e$ . $f’(u_{+})=f’(u_{+})=\cdots=$
$f^{(k)}+(u_{+})=0$ , $f^{(k+1)}+(u_{+})\neq()$ for some integer $k_{+}>0$ . There exists a positive
constant $\tilde{a}$ such that for $\frac{2k+}{k_{+}+1}<\tilde{a}\leq 2$ , it holds that

$\int_{R}\int_{0}^{\infty}|\tilde{U}_{x}|^{2}|\phi|^{2}dxdy\leq C|u_{+}-u_{b}|^{2-\tilde{a}}\int_{R}\int_{0}^{\infty}|\phi_{x}|^{2}$ dxdy. (36)

The proof of this Lemma is given by the direct calculation. So we omit the detail.
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