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Existence and asymptotic stability of stationary solution to the full
compressible Navier—Stokes equations in the half space

PEICHENG ZHU

This talk is based on the work by Prof. Kawashima and myself. We shall
divide it into two sections which are concerned, respectively, with the existence
and asymptotic stability of the stationary solution to the full compressible Navier-
Stokes equations in the half space. We consider the general constitutive equations.
The theory on this subject is far from being complete. In fact, there is no any
result on the other nonlinear waves except the stationary solution considered in
this talk, or on the outflow problems.

1 Existence of stationary solution

1.1 Introduction

In this section, we investigate the existence of stationary solution to the full com-
pressible Navier-Stokes equations in the half space. The one—dimensional motion of
compressible viscous and heat conductive gas is described by the following system
in the Eulerian coordinate '

pt+ (pu); =0, >0, t>0, (1.1)
(pw)e+ (o +p) = (pus)sy (1.2)

(p (e + —?))t + (pu (e + %2) +pu)m — (putg)e = (K0;)s. (1.3)

We study the initial boundary value problem to the system (1.1)-(1. 3) with the
following initial data

(p,u,0)(0,z) = (po, uo, 0o)(z), for all z >0, and gg po(z),60(z) >0, (1.4)
the boundary condition at the infinity £ = oo
xlgg)(p, u,0)(t,z) = (py,uy,0y), (p+,u+; 6, : constants for all t > 0), (1.5)
and also éhe boundary conditions at z =0 |
u(t,0) =up <0, 0(t,0)=0,>0 for all t>0.  (L6)

The physical meaning of boundary conditions is that there exists constantly an
outflow through the wall and the temperature is constant on the wall.



Here, p = p(p,0), e = e(p,0), s = s(p,0). p(> 0), u, p, § and e are the density,
the velocity of gas, the pressure, the absolute temperature and the internal energy,
respectively. The coefficients p, K (> 0) are assumed to be constants, and pu, K are
the viscosity coefficient, heat conductivity respectively.

We shall make the assumptions on the thermodynamic quantities which are
enumerated (A1)-(A3) below:

(A1) p,e, s are smooth functions of (p, 0), such that p, > 0,eg > 0.
(A2) The relationship for p and e. It follows from the first thermodynamic law, i.e.

de = 6ds — pd (1/p) | (L.7)

that 2 il {p 0%%} a° . This relationship constrains possible laws for p and e.
(A3) The second law of thermodynamics admits only the function e(v, s) that is
convex in (v, ). O

Combining (1.7) with the above-mentioned three balance laws (1.1) - (1.3), we
can define, up to a constant, a function s(the so-called entropy) that satisfies

() + (us), = (50:) +7(m2+gleP) <(38)  @8)

whence the second law of thermodynamics is satisfied automatically since we as-
sume that u, K > 0.

In this section we are interested in the corresponding stationary problem which
reads

(At)z =0, = >0, (1.9)
(6% +5), = (biic)s, (1.10)
U2 ~

([nl (é + ?) +ﬁﬁ) — (pittiy) = (K6z)- (1.11)

with the boundary condition at z =0
(&,6)(0) = (us, ) (1.12)

and the boundary condition at infinity
}H{,‘o(ﬁ’ ﬁ1é)(x) = (p+7u+70+)' _ (113)

Where $ = p(5,0), é = e(5,0).

We are going to prove the existence of solution (g, i, 0)(:z) to the stationary
problem (1.9) —(1.13). To this end, we firstly try to simplify the problem. In
what follows, we still denote the functions p, i, 6, by p,u,0,--- for the sake
of simplicity. We integrate eq.s (1.9)-(1.11) with respect to x over (z,00), then
(1.9)-(1.11) become

p(z)u(z) = p(0)u(0) = pyus, (1.14)
pu’ +p(p,0) = pus + pyul +pr. (1.15)

2 . 2 .
(P (e + %) +P) u — puug = Kb + (P+ (e+ + %) +P+> Uy (1.16)
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Where we have used the notations p, = p(p4,0,), ex = e(py,0,), -

Introducing L
v=1/p, p=p(1/v,0), é=¢€(1/v,0), (1.17)
recalling (1.14), we arrive at |

u=—ty, (1.18)

From the fact that v(O) > 0 and u(O) = u < 0 and Eq. (1.18), we find that u,
must satisfy

vy \ _ :
ur = Lyt <0 (1.19)
Using (1. 18) we can rewrite (1.15) and (1.16) as follows
Vg = f(va 0) = ———(U - U+) + —-—(p(’u, 0) - ﬁ+)7 (120)
V+ Uy

Uy, . ud ‘ uy ., o
0:::‘= g('v, 0) =k "i(e(v: 0) - e+) - '—+T(U - ’U+)2 + '_ip+(v - ’U+) ’ (121)
‘ - o \vy , 2v3 vy :
where vy = ! and k= K~!. And the boundary conditions become

(O) ——-—ub, 6(0) = 6, lim v(z) = vy, Jim 6(z) = 0,. (1.22)
If we denote : F(0.6)
v v, .
U= ( p ) ‘ F(U)‘= ( 9(0.6) ) (1.23)
Then (1.20) and (1.21) can be rewritten as '

U,=F{U), FU,)=0. (1.24)
Next we try to calculate the Jacobian of (1.24) at z = oo: ' |

v (B2 +5F) . vZpp

Jy = | . (1.25)
kie(65+p)  kitey ) |

Here, pf = py(v4,04), €F =é,(v4,04), ---. Assume that J, admits two distinct

eigenvalues A\; > ), then there exists a matrix P such that
P, P = diag{A\;, Ao} = A. . - (1.26)

Let , :
| Y:=PYU-U,), Y= (Z‘) (1.27)
2

Therefore, Eq. (1.24) can be tranformed to the following |
Y, = AY + P YF(U) - J,U) =: AY + H(Y),

Y(0)=Ys, limY(z)=0. | (1.28)

Here, H(Y) = (:‘82)

We now can state the following lemma
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Lemma 1.1 Assume that A\, > 0 > ). Then there erists a unique solution
(y1(x), y2(z)) to the following problem

nl(z) =— /z e’\‘(’”")hl(Y(s))ds, ya(z) = e % yo0 + /o e’\’.(“")hg(Y(s))d.s(l.29)
a

We shall use this lemma when we deal with subsonic and transonic cases. Re-
calling the definition of sound speed,

C = C(p, s) := \/3p(p, 5)/0p = \/—v?Bp(v, 5) /v, (1.30)

we then state our main result as following theorem

Theorem 1.1 Suppose that u, < 0, 6,0,,v, > 0.
Ifuy > 0, then there exists no stationary solution (p, i, 0) to the stationary problem.
If uy < 0, then there ezists a stationary solution and we can divide it into three
cases:

(i) Supersonic case: C? < u%, i.e. the Mach number at infinity M, > 1.
Assume that for some small number 8, such that

|up — uy| + 106 — 04| < 6. (1:31)
Then' there exists a solution (p, i, é) to the stationary problem, such that

p=1/, &=— 3, (1.32)

and the estimates hold for some positive constant ¢
|i(z) — uy| = 60(e™), 16(z) — 04| = 6O(e™). (1.33)

(i) Subsonic case: C2 > ul. Let

},0 — (le) — P—l ( %(ub - u‘l‘) ) .
Y20 0, — 0,

Assume that (uy, 0,) is chosen so that Yy satisfying
0 _
Y10 = —/ e %h, (Y (s))ds, Y =Y (z;y2)- (1.34)

Here Y is the solution to the problem (1.29). Then there erists a solution (p, i, 0)
to the stationary problem, such that |a(z) —uy|, |0(z) — 0| = 60(e~*), provided
that |up — uy| + 10 — 04| < 6 for some small constant 4.

(#i) Transonic case: C2 = u%. We can obtain similar conclusion as Case (i),
only the decay estimates are modified to |@(zx) — uy|, |0(z) — 0] = 60(z™).

We have used C,. = C(p4,0,) to denote the sound speed at infinity. -0
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Remark: On the curve (1.34), we only know that it can be written as y,p =
Cry3y + Caydy + O(ys,)- However, we do not know the signs of Cy, Cs. a

We now recall the references related to our subject. Concerening the one-
dimensional case, we refer to Liu[13], Kawashima and Zhu[l1, 12], Nishibata,
Kawashima and Zhu[24], Matsumura and Nishihara[22], Huang, Matsumura and
Shi[3], and so on.

The main difficulty of the proof of the existence of Theorem 1.1 is that the
stationary problem is not a scalar equation, in fact it consists of three equations,
and can be reduced to two independent equations. To prove the existence, we
shall investiagte carefully the signs of the eigenvalues of the Jacobian matrix at the
infinity state.

The remaining part of this section is as follows: in Subsection 1.2, we introduce
some preliminaries which will be used frequently in our proof of the main theorem.
Then making use of these lemmas we are able to prove in Subsection 1.3 our main
results in this section.

1.2 Some preliminaries

To prove the existence of solution to (1.24), we shall investigate the signs of eigen-
values of J,. We prepare the following simple lemmas.

Lemma 1.2 Assume that a, b, c,d are real numbers. Then the matriz

a b
A= 1 - i (1.35)
c d ’ ‘
i) has two negative eigenvalues if a +d < 0 and detA.> 0;

#) two positive eigenvalues if a+d > 0 and detA > 0;
i) at least one zero ezgenvalue if detA = 0

Next we shall use frequently the following thermodynamic relations to simplify
the expressions later on. Throughout this section, we choose v, # as the independent
thermodynamic variables.

Lemma 1.3 For the following thermodynamic quatities: s = §(v, ),

p="0(p,s) = p(v,0), e = e(v, 3(v,)) = &(v,6),
there hold

év =-p+ 0139’ éo =0'§9$ gv : ﬁﬂ- ) (136)

Proof. From thermodynamics, one has de = 6ds — pdv Moverover, it is -easy to
see that de = e,,dv + ead0 ds = s,,dv + $4d6. Then we have

=-p+ 03,,

€9 = 03¢.

: (1.37)
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On the other hand, it holds

0=d?=—dpAdv+dOAnds=(—ps+3,)d0Adv,  (1.38)

thus we have | | .
Po = 3o (1.39)
Combination (1.39) with (1.37) yields é, = —p + 0pe. Q.E.D. m]

Finally, we give the expression of the sound speed in the following lemma:
Lemma 1.4 Let p = p(p,s) = ﬁ(v,é), s= .§(v,0). Then we have
#(v,5) = B(v, 5(v,0)) = H(v,0)
and the sound speed function C = C(v,0) can be written as
C = \/—v2(d, — 053/%5). C (140)
Proof. For p = p(p, s), by the definition of sound speed we have

C = /0p(p, 5)/9p = | —v*3p(v, 5)/Bv.

Calculation yields p, = P, + P53y = Py + PsPo and Pg = P,8¢9 = 1/60p,€. Thus

Dy = DPv — DsPe = ﬁv - 0ﬁ3/é0

Thus the proof of this lemma is complete. (]

1.3 Proof of Theorem 1.1

After the preparation in the above subsection, we are now in a position to prove our
main theorem. When we simplify the problem in Subsection 1.1, we have obtained
that (1.19) should hold. That is u; < 0. We shall assume th1s condition is met.
Otherwise, there exists no any stationary solution. .

According to the Mach number, we divide the proof into several steps To make
use of Lemma 1.2 to the matrix J,, we first calculate the values a +d and ad — bc.
Recalling Lemmas 1.4 and 1.3, we then have

2
u+C

C2 A+ 2
a+d= 7”*( = ++0+p" +ku—+é;,*, ad — bc = éf +. (1.41)
+

& Uy vi

Therefore, we can investigate the following cases:

Case i) Supersonic case, i.e. u2 > C3%: then combmmg it with the fact that
uy < 0,v4 > 0, one hasa+d < 0, ad bc > 0. Thus J, admits two negative
eigenvalues A\;, A < 0. ( Consequently the case that A;,A; > 0 is impossible since
a+d < 0). Therefore we can conclude that there exists a unique solution to (1.24)
provided that us, uy < 0,0s,04,v; > 0 and |uy — uy|+ (0, — 64| < 6 for some small
constant 8. The space-decay estimates are easy to get.
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Case ii) Subsonic case, ie. u? < C?2: For this case, we have ad — bc < 0. Thus Jy
has two eigenvalues such that Ay < 0 < ;.
The matrix P in (1.26) can be chosen as

2yv4 Py 2yv4 55
B—A+VA B-A-VA
p= (B-A+vVA)uy  ( Jug , (1.42)
1 1

with

2.
A (Pi . ,3;) , B="%at A= (A- B) + 4yk0, 552

up \v2 vy

Then we can rewrite (1.24) as follows

Y. = AY+H(®Y), (1.43)
Y(0) = Yo, zli_)rg)Y(x):O.

Where Y is defined in Subsection 1.1, and H(Y') satisfies

TP, 0) — 5% — Bf (v — vy) — pF (6 — 6,)]

PH(Y) = 2 ,
e [ew0) ~ e e -v) =66 - 6 - - v,)]
(1.44)
and \
[HY) < C(nl* + |ual’), provided |-—e|,--<C. (1.45)

From (1.43), we have
Y1(x) = eM7yo; + [ M@ (Y (s))ds = etr® (ym + /5 e"‘I’hI(Y(s))ds) :
Yo(z) = e%ygy + [ e hy (Y (s))ds
(1.46)

Here, lim, o, Y(s) = 0. We now consider the first equation in (1.46). Letting
Z — 00, recalling the fact that A\; > 0, we have

Yor = — / e MRy (Y (5))ds. (1.47)
0
Thus (1.46) is equivalent to
{ vi(2) = — [ M=k, (¥ (s))ds,

Ya(z) = €M ygy + Iy e""(”")hg(Y(s))ds

(1.48)

To solve the equation (1.48), we define the function space

X = {Y € B([0,0); Y (z)| < Be™**, B = 2|ypa|, @ > 0,z > 0}

193



with a := min{);,|)2|} and suitably small data yo;. Then we can employ the
contraction mapping theorem to prove the global existence of solution to (1.48).

In what follows, we want to obtain more information of the curve (1.47). We
write

Yo = % (0) = — /o e *hy (Y (5;y02))ds = Crygy + Coyy + -+ - (1.49)
We try to justify the signs of Cy, Ca, the coefficients of the terms Y2y, Yoo It is easy

to show that . s
{ y(r) = ar1yg, + O(¥p2)

Y2(7) = €27yo2 + 0208, + O(¥3)
Here a,, a; are functions in z. We write h1(Y") and hy(Y') in the following form

(1.50)

hi(Y) = hi'y? + R gy, + hPys + hPPys + - - -. (1.51)
Here ¢ = 1,2. Making use of (1.48) we then have
a; = h%262A2z/(2/\2 - /\1), az = h§2 (62A21 - e'\”) /)\2

Therefore, C;,C; can be expressed as

h2 _ hi2hE® — 2hThZ + hP(2)a — M)

Ci=—21— GCp=
T exn-xn) (3Az — M) (222 — A1)

(1.52)

It remains to compute hfj (They are so complicated that we can not justify the
signs of Cy, C, till now!).
Case iii) Transonic case, i.e. C2 = u%. It is easy to deduce from (1.41) and
u; <0, eg > 0 that for this case there hold a + d < 0 and ad — bc = 0, thus J,
has one zero and one negative eigenvalues i.e. there holds A < 0 = A;.

Similar to the argument of Case ii), we can obtain the result with different
space-decay estimates. We omit the details here. Q.E.D. 0

2 Stability of stationary solution

2.1 Introduction

This section is devoted to asymptotic stability of stationary solution whose exis-
tence has been proved in Section 1. We simplify firstly the equations (1.1) —(1.3)
and (1.8) to

pe+ (pu); =0, >0, .t1>0, (2.1)
p(us + UUz) + Pz = (ptz)z, (2.2)
p (e + ues) + puz = (K6z); + pul. (2.3)

and the entropy equation

p(se+ us;) =071 ((K 6;): + ;mﬁ) : (2.4)
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The boundary and initial conditions are
Ulg=0 = Up, O|z=0 = b, (2.5)

(pyu, 0)|e=0 = (po, uo, Bo)(x) (2. 6)

And the corresponding stationary problem of (2.1)-(2.3), (2. 5) and (2.6) are
written as

(pi)s =0, >0, (2.7)
ity + Py = (Uis)s- (2.8)
piiéy + Pily = (K0z) + piia. (2.9)
and we need the following equation
piisy =07 ((Kb,)o + pii2) | (2.10)

Where we have used § = p(5,0), &é = e(5,0) and 5 = s([),.é).
Our main results in this section are

Theorem 2.1 (The case uy < 0) Suppose that u;. < 0. Moreover, Case i) Assume

that the infinity state is in Supersonic region, i.e. : |uy| > |Cy|, or Case i)
Assume that the infinity state is in Subsonic region, i.e. : |uy| < |Cy|. And we
choose (up,0,) such that Yy satisfying
Yo = — / “Msp (Y (s))ds, Y =Y (;ya0). (2.11)
ver .
With Yo = (y“‘) =: P71 u+ (s — uy) ) Then asymptotic state is stationary
Y20 gb g+

solution denoted by (p, i, 0)(z).

Suppose furthermore that py € B1*?, wug, 6y € B2 for some o € (0,1),
po(z),80(x) > 0 for all x € [0,1] and (po — p+,u0 — u4,00 — 04) € H', and that
§:=|up — uy|+ |0 — 04|, ||(Po — P+, uo — uy, 00 — 04)|| g2 are suitably small. And
the compatibility condition uo(0) = uyp, 05(0) = 6, are satisfied.

Then there exists a unique solution (p,u,0) to (2.1)- (2.6) such that for any
fized T >0

p € B, u,0€CH;

p—py,u—uy,0—0, € C(RY; HY);

(p = D)= € LA(RF; L?), p — p € L*(RY; L), (p — $)a(t,0) € L*(RY);

- (u—1)g, (0 — 0), € L2(RT; HY).

And the a priori estimates hold
t -
I(p = piru — uy, 8 — 04) I3 + /0 (I(o = Aol + II(u — &, — 6)sl[3n )dr +

t
[l = 3l + 10 = P)a(r, )% + [(p = )(r, 0) P)ar
< Cll(po = p+>uo — uy4, 00 — 0.+) 13 + cs. (2.12)

Moreover, we have
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Jim sup [(p,,0)(t,2) = (5,5, 0)@)| =0

Here, C; := C(p4,0,), (p,4, 6) is the solution to the corresponding stationary
problem of (2.1)-(2.6). O

As being pointed out at beginning, the theory of nonlinear waves for the initial
boundary value problem of full compressible Navier-Stokes equations is far from
being developed. There are only a few results. By far only the stationary solution is
investigated. As for rarefaction waves, viscous shock waves etc., there is no result.
Even the classification of asymptotic states remains open! There is no any result
on the inflow problem of full compressible Navier—Stokes equations.

The main difficulties and our main ingredients in the proof of Theorem 2.1 are
as follows: Since we consider the full compressible Navier-Stokes equations, the
energy function becomes much more complicated than that of isentropic case. To
derive the equation that the energy function satisfies, we shall frequently make
use of the thermodynamic relations. Another one is the presence of boundary
conditions and that we investigate the system in the eulerian coordinate, this will
make it difficult when we try to justify the formal calculations for establishing the
estimates for the derivatives of the unknown functions. Employing the technique
in Kawashima and Nishida[10], we can overcome that difficulty.

The remains of this chapter is organized as follows: In Subsection 2.2, we
reformulate the problem and restate our main theorem. We then introduce the
energy function £ in Subsection 2.3, and prove some properties of this function.
The equation that £ satisfies is also derived. After these preparations, we can
obtain the Sobolev estimates in Subsection 2.4. Finally the large-time behavior is
considered in Subsection 2.5.

2.2 Reformulation of the problem
We reformulate the problem and make it easy to be handled. Defining

¢ =¢(t,x) = (p—p)(t,z), Y(t,x):=(u—1d)tz), x( z):=(0—0)(tx)2.13)
Then we find that (¢, ) satisfy

¢+ (Y +@)pz + (¢ + p)s = f, (2.14)
~ 2-’5 _ E — l"pa:z
1/J¢+(¢+u)¢z+(p ﬁ) ——¢+ﬁ+g, (2.15)

here, f, g are defined by

f:= _(ﬁz"/’ + ﬂz‘b)a g := Pz (l/p - l/ﬁ) — Y, (2'16)
and the estimates hold

If1 < C(1p=%] + lizd]), 19| < Cltized| + lz9]) (2.17)
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for suitably small 4, ¢, 9, x.

The derivation of the equation of x is somewhat complicated. We now choose
p,0 as the two independent thermodynamic variables and write e as e = e(p, 6).
Applying (2.1) and Lemma 1.3, then (2.3) is changed to the following

peo(0; + uby) + Opguy = Kb,y + pul. (2.18)
In a similar way, we can obtain the corresponding stationary energy equation
el + 0pyiiy = KO,y + piil. (2.19)
Whence combining (2.18) with (2.19) yields
pes(xt + (Y + @)xz) = KXaz + b (2.20)

With A SatiSfying h = l“/)g + 2/“/}1:'&1: + (ﬁﬂé0 - Puee)ém + (éﬁﬂ - 0p0)ﬂx - apﬂ'd’z,
and the following estimate holds for suitably small 4, ¢, 1, x

[l < C (92 + el + (8, 9,00 + 180l + al) . (2.21)
Finally the boundary and initial conditions become
¢Ix=0 =0, XI::::O =0, :}H{}o(fﬁ,l/%x)(x) =0. (2°22)
and | _
(4,9, x)(0, ) = (po, uo, bo)(2) — (B, G, 0)(x). (2.23)

Therefore, we can now restate our main results as follows

Theorem 2.2 Assume that all the conditions in Theorem 2.1 are met. Then there
ezists a unique solution (@, 1, x) to the problem (2.14), (2.15), (2.20)-(2.23) such
that for any fized T > 0
¢ € BE?, ¢, x €C,
¢, %, x € C(R*; H'), ¢, € L*(R*; L?), %, X € L2 (R*; HY).

And the a priori estimates hold

16,20l + [ (16r)IP +1(6, 82)(5, 0 + 16, el ) ds
< C“(¢07 1/)09 XO)I|12‘I1 : (224)

Moreover, we have
tl}-lpoo zse‘lll%)‘*' |(¢’ Y, X) (t, x)l =0.
a

Remark: Clearly Theorem 2.2 is equivalent to Theorem 2.1. So we prove only
Theorem 2.2, and we use the standard continuation argument based on a local
existence result and a priori estimates(i.e. Proposition 2.3) to prove Theorem 2.2.
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2.3 Energy form

To establish the energy estimates, we introduce the energy form £ =& (v,u, s):
=ple+——-€+p|——= —0(s—5 2.25
imp(et Lo 1) -6-9). (2.25)

Here, é = e(%, 3), p = p(9,3), 6 = 0(9,5). Throughout this subsection we choose
p, s as the two independent thermodynamic variables.

Lemma 2.1 Assume that e, p are smooth functions of (p,s). Then there exist two
positive constants ky, k2 such that

W22+ ki(lp— PP+ s —3°) <E<VP/2+ka(lp— B +1s—3°).  (2.26)

And & satisfies

)+ () 4 w2+ KO% & (7 0= 5= 3ol = )~ Bulo = 9) s

KOM - ~
S o KO bz 5 G G5 —5)— (0 - P)
+R. (2.27)
With
o b+ i+ ) B+ B - 9) + D
: 21 X N _ p —p
- {Kozm: + lmi} 0—5 + “5 (1/)3 + 2"/)1'“::) + l"uzsz- (228)

It can be estimated, provided that 6, ||(¢,%, x)||m are suitably small, as
Rl < C((18] + D15l + I5eDls — 81 + boxebal + (16zel + 32) x°) +
+C (Ixl (%2 + laiia) + lialldwl) (2.29)
Here, we denote 6(p,3), p(p,3), -+ by 6,p,- - - respectively.

Proof. Let v = 1/p. For the proof of (2.26), we refer to Okada and Kawashima[25).
In what follows, we trun to verify (2.27). Making use of equations (2.2)- (2.4),
we have

(PE): + (pu€)s = (e + (pu)z)€ + p(E: + ué’z)

]
= (1 - 5) (Kozz + pu ) + Yuthe. + I‘uzz "/) /7‘/)2'“':: (P - ﬁ)uz

—p (% — 1;’) pu {61 Pz(v — B) + Py + 0,(s — 3) — 03,} (2.30)
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Now we try to deal with right—hand side terms in (2.30) term by term. Firstly, we
have

(1) (0t i) = (i 09 (20

K2 . KXXz0:

— (K8y0 + pi) ;‘—; + 0% (V24 200),  (231)

0 6 02
and pyz, = (ﬂ¢¢m)x - /'“paz: -
Secondly, invoking the relations e, = —p, e; = 6, we have é, = —pi, + 65;.

Thus
pu{&z — Po(v — 0) + Pz + Bz(s — 5) — 05, } = pu {pu¥ + 0:(s — 3)} — Pou,(2.32)
Therefore, the following expression can be simplified.

_(p“ﬁ)um pY <—£—%> —pu{ ﬁz(v—ﬁ)+ﬁﬁx+éz(3_§) —ég:c}

= _((p_ﬁ)1/})z+¢ (E_ 1) Dz — (p_ﬁ)ﬂm + Pz U — %uﬁx -

—pu (p;px +6 sm) (s—3). ' (2.33)
Where we have made use of the expression 8, = —p,. Next the terms except the

first one in (2.33) are rewritten as following

p A Py~ e e PP ‘

w(:—l)px+pmu—:ux= 1 — 2)ip, = po(p— Py — O,uS,—— 2.34

: but = (1 - 2)ip. = Folo~ 7 =2 (234
and

"'puﬁs[)_2ﬁz(3 - §) = _(¢¢ + ¢u + W)ﬁaﬁ_2ﬁm(3 - §) + ﬁs(s - 5)'&_,,: (235)

Finally we use 6, = —p%6, to handle the following éxpresSion which is the sum of
the final terms in (2.33) and (2.34)

—P_ pub, 5, (s — 5)

K 5m + pit?
]
Here, equation (2.10) has been used. The final term in the above equation is not

good. However, combining it with the first term in (2.31), we have

= —($+ i+ W)iesas — 5) - (6.(s = 5) +G,(p — P))2.36)

é_l (Kéza: + Mﬁi) (é - 0) é (Ké ez + [J/&i) (és(s - 5) + ép(p - ﬁ))

= 07 (K + pii2) (00— 0,(s — 3) — 6,0 — p)) - (2.37)

Therefore, combination of (2.30)—(2.37) yields (2.27). O
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2.4 The energy estimates

In this subsection we use the energy function defined in the previous subsection to
derive the energy estimates. We define

M@ = [ (Ie(r)I? + W x) (Dl + 197,00 + I6(r, OF) dr,  (2.38)

and
N(t) = Sup. (8 %, X) (D)l a2 (m+y < Eo. (2.39)

and Ej is suitably small so that p > 1p_ and 6 > 30,.
This subsection is devoted to prove the following proposition

Proposition 2.3 (A priori estimates) Let (¢,%,x) be a solution to the problem
(2.14), (2.15), (2.20)-(2.23) which satisfies

¢ € C([O, T], Hl) N B%j-d’ ,.p’x € C([O, T], Hl) nc%._*.a;
ianp(t’ IE), 0(t, 1') > 0. (240)
T

for any fized T > 0. Then there ezists a suitably small constant ¢y > 0, such that
if N(t) + 6 < €q, then the following estimates hold

t
1, %, )1l + /(Il¢zll2 + 16, (7, 0) + (%, Xzl )dr < Cll(do, %o, x0)II32-41)
0

for allt > 0. Here €y, C are independent of t, 4. m]

To obtain the a priori estimates, we assume that (¢, ), x) be a solution to the
problem (2.14), (2.15), (2.20)—(2.23) which satisfies

¢ € C([0, T); HY) N B, 4, x € C([0, T); H') N C2+;
iélf p(t,z), 0(t,z) > 0. (2.42)
T

for any fixed T > 0.
Step 1. As a first step we state the first energy estimate

Lemma 2.2 There ezists a positive constant €, such that if N(t) + 6 < €;, then
the following estimate holds for any t > 0

07 + [ {1, 0l + 16(7,0)2} |
< C(ll(¢o, %o, x0)II* + (6 + N()) M(2)?). (2.43)

Here €,,C are independent of t,4. a
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Proof. Integrating Eq. (2.27) with respect to z over (0, 00), using the boundary
conditions ¥ = 0, x = 0, we arrive at

dt/ pEdx — pu5|z~o +/ (uwz —i—KeH2 )dw
< C/O {@?+¢? + (s = 8)")iic| + (18] + [¥1) (13| + |5a)]s — 3] + [XXaz|+
(82 + X% + (5= 5)2) ([feal +2) + x| (V2 + i) + liallf]} do. (2.44)
We first consider the boundary term. It follows from Lemma 2.1, the equality
s —35=15,(p,0)(p— p) + 55(p,0)(6 — ) (2.45)

and the fact up < 0,%|z=0 = 0, X|s=0 = 0, that —pu&|,—o > C(t,0)>.
Next, we deduce easily from 0<C! < 0,0 < C that

/0 (2 + Kﬂxzw?) dz > C(||¢al® + lIxzII?)-

To handle the RHS term in (2.44), we apply the basic technique (see [9]), i.e.,
for any smooth real function f it holds f(¢,z) = f(t,0) + [ f(t,y)dy. Thus

£ (&, 2)| < [f(,0)] + vzl fol- ~ (2.46)

Therefore, making use of (2.45) and the decay estimates on the statlonary
solution p, i, 0 we estimate the RHS term in (2.44) as

R 46 (5= 9l < 0 [ (sll(6, s el + 8(1,0)7) e
< ellall® + llxal® + (s ll? + $(2,0)2). (2.47)
Using (2.45) and the Young inequality, one has

)+ 1) (5l + 17l |5 = 8 + el )
< O [T (108 + W+ Is = 5P) (I5e] + |6l + i) o (2.48)

And for the term, [5° (¢ + x* + (s — 5)?) (|9sz + u2) dz, invoking that the decay
rate for ., is better than that of %,, we conclude that the above terms can be
treated as in (2.47). Next, we have

o0

[ (1 (82 + atal) + hobial) < e, X)elP) + [ IxP(8P + af?). - (2.49)

0

So, this term can be also handled as in (2.47).

Combination of the above inequalities yields the RHS terms in (2.44) can be
bounded by 4(||éz|> + |¢(¢,0)[2) + €l|(, X)<||>. Thus taking &, ¢ suitably small,
applying Lemma 2.1 we prove this lemma. Q.E.D. 0O
Step 2. We now proceed to establish the second energy estimate i.e. to estimate
the function ¢, in terms of N(t) and M(%).
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Lemma 2.3 There exists a suitably small positive constant €5 < €1, such that if
N(t) + 6 < €2, then the following estimate holds for any t € [0, o)

6212 + [/ (6l + loulr, OP)ar < C (I8 Yo, x0) s + (N (e) + M E)’)(2:50)

Here €5, C are independent of t,4. O

Proof. We divide the proof of this lemma into two steps. Firstly, differentiating
formally Eq. (2.14) with respect to z , we arrive at

Gzt + ("/) + ﬁ)¢xz + (¢ + ﬁ)"/)zz = fla (2'51)

fl = _2(¢x¢z + ¢y + wzijx) — VPPzz — diiyy. (2.52)

We shall transform the above equation of ¢, into that of ¢,/(¢ + p). This will
make the caculation simpler in the second step below. We have

P< Y _

$+5
In what follows we denote ¢ + p by p and ¥ + @ by u in some places for
simpilicity. Multiplying (2.53) by and integrating it with respect to z over R™,

one has
oou:c [ 2 up [ Pz 2 w¢mz¢z _ °°f2¢x

Secondly, to remove gz Pz in (2.54), we use (2.15), and multiply it by ¢, to get

¢ 2

2dt

& (3,62 + (0 + s 62) + / bt (2= %) 9= | [+ g)6..255)
We now proceed to treat the terms of (2.55). Firstly, it is easy to show that

[ bada| < cligal + ClIP, (2:56)

and

t 2 t 2
<& [(galidr +C [ lgeldr (257)

|+ e, g2)ar

Recalling the equation of ¢, we obtain easily that |¢;| < C(|(¢z, ¥z)|+|5:%|+ |z ])-
Hence,

[ veta] < [ (1607 +16:rOF) dr +.C [ Iwallar. (259
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For the term of p, if we write p = p(p, #), by the mean value theorem one has

Pz pTz _ DpPx + Pl _ PpPs ‘i‘paez _ ?_g¢z + O(¢, X)(ﬁz:éz) + O(Xx) (2.59)
p P p p P

Combination of (2.54), (2.59) and (2.55), integrating it with respect to ¢ yields
t roo '
I6e/pl* = eligall+ [ [ (Il + ¢u(r, 0)%) dr
00 t
2 2 2
< Cllgual +C [ podoadz +¢ [ (I6s® + 9(r,0)?) dr +

+6 [ 16, 0:IPdr + Clll? +C [ gelPdr (260)
0 b T 0 T . .

Using the first energy estimate, taking € suitably small we prove Lemma 2.3. 0O
Step 3. For the term [|1;||?, we have

Lemma 2.4 There ezists a suitably small positive constant €3 < €2 such that if
N(t) + 6 < g3, then the following estimate holds for any t > 0

9P + [ [ne(r)ldr < Cl(Bo, 0, x0)l3 + CG+ NE)MBP. (261

Here €3,C are independent of t,6. o

Proof. To prove this lemma, we multiply eq. (2.15) by —,,, then integrating it
with respect to ¢,z over (0,t) x (0, 00), making use of (2.59), we have

t oo t
1 2 . I“/)gz 1 2 9 . 9
gtel® + [ [ 555 < Glvud + | (cbcal? + €16 v0IF) -+
+C / / (62(a2, + 02) + (P2 + @2) + X*(P% + 62)) dadr. (2.62)
00 , _ |

Applying again the technique (2.46), we estimate the RHS terms of (2.62) as

‘ t
RHS < bl +e [ el +C [ (18,504l + 8(7,0?) dr. (2:63)

Recalling Lemmas 2.3, 2.2, taking ¢ suitably small, we have (2.61). Q.E.D. O
Step 4. Therefore, to complete the proof of Proposition 2.3, we need to prove
following lemma on x.

Lemma 2.5 There ezists a suitably small positive constant ¢4 < €3 such that if
N(t) + 6 < g4, then the following estimate holds for anyt > 0 '

eI + [ xea(r)IPdr < Cl(n, v, o)l + 6 + NEHM(EP. (260

Here €4, C are independent of t, . ' m|
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Proof. Multiplying (2.20) by 2’;% and integrating it with respect to z yields

w _h
IXJ=”2 + ((¢+U)Xz, Xzz +K/ Xzzd —/0 szd!l?. (2.65)

2dtI peo

We now turn to handle terms in the above equation. Firstly, it follows from
eg > 0 and the fact 0 < C~! < p,0 < C, that 0 < C < peyg < C' < 0co. Whence

00 2
Xzz 2
K 222 dz > Cllxzz|l*- 2.66
/(; L= ”X:c " ( )

Similar to Step 3, we estiamte easily the second term as

(% + B)Xz), —Xaz)| < EllXzzl® + ClixzlI* (2.67)

Using the estimate (2.21), for the right-hand side term in (2.65), one has

IEAE
o Pee

< elxeall® + Cligall® + (6 + N)l(6, %, X)<II* + 812, 0)* + C/!/Jﬁlxml-(?-%)
0

(o 0]

C [ (42 + Wutial + 16 sl + [l + (6,1, X)8]) xzldo

0

It remains to handle the following term by using the Holder inequality

t roo t t
[ [ #2ixealde < © [ Isllealbliixeslide < C [l el xezllde
t i/t 3
O ([ Walltvalindr)” ([ Iwlxeelar)” < ON@MEP. (269

Thus, using Lemmas 2.4, 2.2, 2.3, taking € suitably small, we get (2.64). Q.E.D. O

Completion of the proof of Proposition 2.3: Combination of Lemmas 2.2-2.5, taking
N(t)+46 < €¢ := min{e;, €2, €3, 4 } (= €4, since we choose them such that £, < g5 <
€3 < &4). Therefore, if N(t) + § < €9, then the following estimate holds

N2(t) + M*(t) < C||(¢o, %0, X0)llF + C* + C(N(t) +6)M(2)*.  (2.70)
If we take €9 < 1, using the Young inequality one has
N2(8) + M*(2) < C (1| (b0, %0, x0) [} +6%) -
Which implies the results of Proposition 2.3 by the definition of N, M.Q.E.D. O

2.5 Large time behavior

In this subsection, we shall consider large time behavior of the solution to the full
compressible Navier-Stokes equations. To this end, we first show that

ll8=(®)I, =], lIx=(2)I] - O (2.71)

204



205

In fact, if this holds, recalling that ||(#, %, x)||az» < C, by interpolation we have

16(®)lle < CllOO) I : (DI = 0, as t — oo (272)

Similarly, we have [|%(t)lloo, X (t)lloc — 0 as ¢ — oco.
So, it remains to show (2.71). We define

PO = [ @), U0 = [ i arin, X0 = [ il

It follows from the first energy ‘estimates that fo (P(s)+U (s) + X(s))ds < C.
Step 1. We try to prove further that [§° |4 P(s)|ds < C. Recalling Eq.s (2.54)
and (2.55), we have . . ,

¢.1: oou:z' ¢:1: 2 Up ¢m 2 | oo¢za:¢z_ °°f2¢a:’ |
T30 e 3 o [ 5

Whlch combined with the estimates in Proposition 2.3, we can obtam
2112=(8)]|2|dt < C. That is

2dt

© d
— < (C.
| IZP@s < C

Recalling the fact [7° P(s)ds < C, one has P(t) — 0, thus ||¢.(t)|| = 0 as t — 00.
- Step 2. In a similar way, we can show that

/(P—@Nﬂ—xgm@<c

Thus ||(¢,x) (t)]] = 0 as t — oo, and (2.71) is proved. Q.E.D. - O
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