<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>コンパクト次数に関するde GrootとNishiuraの問題 一般・幾何学的トポロジーとその応用の研究</td>
</tr>
<tr>
<td>著者</td>
<td>Chatyrko, Vitalij A.; Hattori, Yasunao</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 第1248号 43-49</td>
</tr>
<tr>
<td>発行年月</td>
<td>2002-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41753</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>版</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学
1 Introduction

A regular space X is called rim-compact if there exists a base \(B \) for the open sets of \(X \) such that the boundary \(\text{Bd} U \) is compact for each \(U \) in \(B \).

In 1942 de Groot (cf. [1]) proved the following:

(*) A separable metrizable space \(X \) is rim-compact if and only if there is a metrizable compactification \(Y \) of \(X \) such that \(\text{ind} (Y \setminus X) \leq 0 \).

In an attempt to generalize (*), de Groot introduced two notions, the small inductive compactness degree \(\text{cmp} \) and the compactness definiency \(\text{def} \) (we will recall the definitions in Section 2 and Section 3 respectively). It is known that the inequality \(\text{cmp} X \leq \text{def} X \) holds for every separable metrizable space \(X \). The well known conjecture of de Groot (see for example [4]) was that the two invariants coincide in the class of separable metrizable spaces. As a way either to disprove or to support the conjecture de Groot and Nishiura [4] posed the following:

Question 1.1 Let \(Z_n = [0,1]^{n+1} \setminus (0,1)^n \times \{0\} \). Is it true that \(\text{cmp} Z_n \geq n \) for \(n \geq 3 \)?

In the quoted article, de Groot and Nishiura proved that \(\text{def} Z_n = n \) for every \(n \geq 1 \), and they also stated that \(\text{cmp} Z_i = i \) for \(i = 1,2 \).

In [9], R. Pol constructed a space \(P \subset R^4 \) such that \(\text{cmp} P = 1 < \text{def} P = 2 \). The space \(P \) is a modification of an example given by Luxemburg [7] of a compactum with noncoinciding transfinite inductive dimensions. After that, some other counterexamples to the de Groot’s conjecture were constructed by Hart (cf. [1]), Kimura [6], Levin and Segal [8]). However, Question 1.1 remained open (see also [10, Question 418] and [1, Problem 3, page 71]).

One of our main results is the following.

Theorem 1.1 Let \(n \leq 2^m - 1 \) for some integer \(m \). Then \(\text{cmp} Z_n \leq m + 1 \). In particular \(\text{cmp} Z_n < \text{def} Z_n \) for \(n \geq 5 \).

This is the answer to Question 1.1 for \(n \geq 5 \). Our paper is based on a construction of examples of compacta with noncoinciding transfinite inductive dimensions given in [2]. Our terminology follows [5] and [1].
2 Finite sum theorem for \mathcal{P}-ind

In this part, topological spaces are assumed to be regular T_1 and all classes of topological spaces considered are assumed to be nonempty and to contain any space homeomorphic with a closed subspace of one of their members. The letter \mathcal{P} is used to denote such classes.

Recall the definition of the small inductive dimension modulo \mathcal{P}, \mathcal{P}-ind. Let X be a space.

(i) \mathcal{P}-ind $X=-1$ iff $X \in \mathcal{P}$;

(ii) \mathcal{P}-ind $X \leq n$ (≥ 0) if each point in X has arbitrarily small neighbourhoods V with \mathcal{P}-ind $\text{Bd } V \leq n-1$.

(iii) \mathcal{P}-ind $X=n$ if \mathcal{P}-ind $X \leq n$ and \mathcal{P}-ind $X > n-1$;

(iv) \mathcal{P}-ind $X=\infty$ if \mathcal{P}-ind $X > n$ for $n = -1, 0, 1, ...$

It is clear that if $\mathcal{P} = \{\emptyset\}$ then \mathcal{P}-ind $X = \text{ind } X$. If \mathcal{P} is the class of compact spaces then \mathcal{P}-ind $X = \text{cmp } X$.

The following is a list of properties of \mathcal{P}-ind we shall use in the paper.

1. If A is closed in X then \mathcal{P}-ind $A \leq \mathcal{P}$-ind X.

2. If \mathcal{P}-ind $X \leq n \geq 0$ and U is open in X then \mathcal{P}-ind $U \leq n$.

3. If $X = O_1 \cup O_2$, where O_i is open in $X, i = 1, 2$, and $\max \{\mathcal{P}$-ind O_1, \mathcal{P}-ind $O_2\} \leq n \geq 0$. Then \mathcal{P}-ind $X \leq n$.

4. \mathcal{P}-ind $X \leq n \geq 0$ iff for each point p and for each closed set G of X with $p \notin G$ there is a partition S between p and G such that \mathcal{P}-ind $S \leq n-1$.

The following statement is contained implicitly in the proofs of [2, Theorem 3.9] and [3, Theorem 2].

Lemma 2.1. Let X be a normal space such that $X = X_1 \cup X_2$, where X_i is closed in X, and A, B be two closed disjoint subsets of X such that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset, i = 1, 2$. Choose a partition C_1 in X_1 between the sets $A \cap X_1$ and $B \cap X_1$ such that $X_1 \setminus C_1 = U_1 \cup V_1$, where U_1, V_1 are open in X_1 and disjoint, and $A \cap X_1 \subset U_1, B \cap X_1 \subset V_1$. Choose also a partition C_2 in X_2 between the the sets $A \cap X_2$ and $((C_1 \cup V_1) \cup B) \cap X_2$ such that $X_2 \setminus C_2 = U_2 \cup V_2$, where U_2, V_2 are open in X_2 and disjoint, and $A \cap X_2 \subset U_2, (C_1 \cup V_1) \cup B) \cap X_2 \subset V_2$. Then the set $C = X \setminus (((U_1 \setminus X_2) \cup U_2) \cup (V_1 \cup (V_2 \setminus X_1)))$ is a partition in X between the sets A and B such that $C \subset C_1 \cup C_2 \cup (X_1 \cap X_2)$.

Moreover, if X is a regular T_1-space then the same statement is valid for a pair of closed subsets of X, where one of the sets is a point.
The following theorem and corollary are generalizations of [3, Theorem 2] and [2, Corollary 3.10 (a)] respectively.

Theorem 2.1 Let \(X \) be a space such that \(X = X_1 \cup X_2 \), where \(X_i \) is closed in \(X \) and \(\mathcal{P}\text{-}\text{ind}\ X_i \leq n \geq 0 \) for every \(i = 1,2 \). Then \(\mathcal{P}\text{-}\text{ind}\ X \leq n + 1 \).

Moreover, if the space \(X \) is normal then for any closed subsets \(A \) and \(B \) of \(X \) there exists a partition \(C \) between \(A \) and \(B \) such that \(\mathcal{P}\text{-}\text{ind}\ C \leq n \).

Corollary 2.1 Let \(X \) be a space and \(q \) be an integer. If \(X = \bigcup_{k=1}^{n+1} X_k \), where each \(X_k \) is closed in \(X \), \(0 \leq n \leq 2^m - 1 \) for some integer \(m \) and \(\max\{\mathcal{P}\text{-}\text{ind}\ X_k\} \leq q \geq 0 \) then \(\mathcal{P}\text{-}\text{ind}\ X \leq q + m \).

For every normal space \(X \) one assigns the large inductive compactness degree \(\text{Cmp} \) as follows (cf. [1]).

(i) For \(n = -1 \) or 0, \(\text{Cmp} \ X = n \) iff \(\text{cmp} \ X = n \).

(ii) \(\text{Cmp} \ X \leq n \geq 1 \) if each pair of disjoint closed subsets \(A \) and \(B \) of \(X \) there exists a partition \(C \) such that \(\text{Cmp} \ C \leq n - 1 \).

(iii) \(\text{Cmp} \ X = n \) if \(\text{Cmp} \ X \leq n \) and \(\text{Cmp} \ X > n - 1 \).

(iv) \(\text{Cmp} \ X = \infty \) if \(\text{Cmp} \ X > n \) for every natural number \(n \).

It is clear that the following properties of \(\text{Cmp} \) are valid.

1. If \(A \) is closed in \(X \) then \(\text{Cmp} \ A \leq \text{Cmp} \ X \).

2. If \(X \) is a sum of closed subsets \(X_i, i = 1,2 \), then \(\text{Cmp} \ X = \max\{\text{Cmp} \ X_1, \text{Cmp} \ X_2\} \).

Corollary 2.2 Let \(X \) be a normal space such that \(X = X_1 \cup X_2 \), where \(X_i \) is closed in \(X \) and \(\text{Cmp} \ X_i \leq 0 \) for every \(i \). Then \(\text{Cmp} \ X \leq 1 \). Moreover, if \(\text{Cmp} \ (X_1 \cap X_2) = -1 \) then \(\text{Cmp} \ X = 0 \); if \(\text{Cmp} \ X_1 = -1 \) then \(\text{Cmp} \ X = \text{Cmp} \ X_2 \).

Now we are ready to prove the following theorem.

Theorem 2.2 Let \(X \) be a normal space such that \(X = X_1 \cup X_2 \), where \(X_i \) is closed for \(i = 1,2 \). Then \(\text{Cmp} \ X \leq \max\{\text{Cmp} \ X_1, \text{Cmp} \ X_2\} + \text{Cmp} \ (X_1 \cap X_2) + 1 \leq \text{Cmp} \ X_1 + \text{Cmp} \ X_2 + 1 \).

Proof. Put \(\text{Cmp} \ (X_1 \cap X_2) = k \) and \(\max\{\text{Cmp} \ X_1, \text{Cmp} \ X_2\} = m \). Observe that \(k \leq m \). Let \(k = -1 \). First we will prove the theorem for any \(m \geq -1 \) (\(k = -1 \)). By Corollary 2.2 the statement is valid for \(m = -1 \) and \(m = 0 \). Assume that our theorem is valid for \(m < p \geq 1 \). Put \(m = p \). Consider two disjoint closed subsets \(A \) and \(B \) of \(X \). We can suppose that \(A \cap X_i \neq \emptyset \) and \(B \cap X_i \neq \emptyset, i = 1,2 \). Choose partitions \(C_i, i = 1,2 \), as we
did in Lemma 2.1 such that $\max\{\text{Cmp } C_1, \text{Cmp } C_2\} \leq p - 1$. Denote $Y_1 = C_1 \cup C_2$ (recall that C_1 and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that $\text{Cmp } (Y_1 \cap Y_2) = -1$, $\text{Cmp } Y_1 = \max\{\text{Cmp } C_1, \text{Cmp } C_2\} \leq p - 1$ and $\max\{\text{Cmp } Y_1, \text{Cmp } Y_2\} \leq p - 1$. By inductive assumption, $\text{Cmp } Y \leq \max\{\text{Cmp } Y_1, \text{Cmp } Y_2\} + \text{Cmp } (Y_1 \cap Y_2) + 1 \leq -1 + (p - 1) + 1 = p - 1$. By Lemma 2.1 there is a partition C between A and B in X such that $C \subset Y$. Hence, $\text{Cmp } X \leq p = k + m + 1$.

Assume that our theorem is valid for any pair $(k,m): k < q \geq 0$ and $k \leq m$.

Put $k = q$. Consider the case $m = k = 0$. Then $\text{Cmp } X_i \leq 0$ for every $i = 1,2$, and by Corollary 2.2, $\text{Cmp } X \leq 1 = k + m + 1$. Let $k = m = q \geq 1$.

Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset, i = 1,2$. Choose partitions $C_i, i = 1,2$, as we did in Lemma 2.1 such that $\max\{\text{Cmp } C_1, \text{Cmp } C_2\} \leq q - 1$. Denote $Y_1 = C_1 \cup C_2$ (and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that $\text{Cmp } Y_1 = \max\{\text{Cmp } C_1, \text{Cmp } C_2\} \leq q - 1$, $\text{Cmp } (Y_1 \cap Y_2) \leq \min\{q, q - 1\} = q - 1 < q$ and $\max\{\text{Cmp } Y_1, \text{Cmp } Y_2\} \leq q$. By inductive assumption, $\text{Cmp } Y \leq \max\{\text{Cmp } Y_1, \text{Cmp } Y_2\} + \text{Cmp } (Y_1 \cap Y_2) + 1 \leq q + (q - 1) + 1 = 2q$.

By Lemma 2.1 there is a partition C between A and B in X such that $C \subset Y$. Hence, $\text{Cmp } X \leq 2q + 1 = k + m + 1$.

Assume that our theorem is valid for any $m: k \leq m < p \geq 1$ (k=q). Put $m = p$. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset, i = 1,2$. Choose partitions $C_i, i = 1,2$, as we did in Lemma 2.1 such that $\max\{\text{Cmp } C_1, \text{Cmp } C_2\} \leq p - 1$. Denote $Y_1 = C_1 \cup C_2$ (and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that $\text{Cmp } Y_1 = \max\{\text{Cmp } C_1, \text{Cmp } C_2\} \leq p - 1$, $\text{Cmp } (Y_1 \cap Y_2) \leq \min\{q, p - 1\} = q$ and $\max\{\text{Cmp } Y_1, \text{Cmp } Y_2\} \leq p - 1$. By inductive assumption, $\text{Cmp } Y \leq \max\{\text{Cmp } Y_1, \text{Cmp } Y_2\} + \text{Cmp } (Y_1 \cap Y_2) + 1 \leq q + (p - 1) + 1 = q + p$.

By Lemma 2.1 there is a partition C between A and B in X such that $C \subset Y$. Hence, $\text{Cmp } X \leq q + p + 1 = k + m + 1$.

Corollary 2.3 Let X be a normal space with $\text{Cmp } X = n \geq 1$. Then

(a) X cannot be represented as a union of n many closed subsets R_1, R_2, \ldots, R_n with $\text{Cmp } R_i \leq 0$ for each i.

Furthermore, we suppose now that $X = \cup_{i=1}^{n+1} Z_i$, where each Z_i is closed and $\text{Cmp } Z_i \leq 0$ for every $i = 1, \ldots, n + 1$, then we have

(b) $\text{Cmp } (Z_1 \cup \ldots \cup Z_{k+1}) = k$ for any k with $0 \leq k \leq n$;

(c) $\text{Cmp } ((Z_1 \cup \ldots \cup Z_{k+1}) \cap (Z_{i+2} \cup \ldots \cup Z_{i+j+2})) = \min \{i,j\}$ for any nonnegative integers i,j such that $i + j + 1 \leq n$.

Remark. The estimations from Corollary 2.2 and Theorem 2.2 can not be improved (see Corollary 3.3).
3 Spaces with cmp $\neq \text{def}$ (cmp $\neq \text{Cmp}$).

The deficiency def is defined in the following way: For a separable metrizable space X,

$$\text{def } X = \min \{\text{ind } (Y \setminus X) : Y \text{ is a metrizable compactification of } X\}.$$

In this section, the concept of B-special decomposition introduced in [2] essentially works. A decomposition $X = F \cup \bigcup_{i=1}^{\infty} E_i$ of a metric space X into disjoint sets is called B-special if E_i is clopen in X and $\lim_{i \to \infty} \delta(E_i) = 0$, where $\delta(A)$ is the diameter of A.

The following proposition is easily obtained by use of [2, Lemma 2.3].

Proposition 3.1 Let $X = F \cup \bigcup_{i=1}^{\infty} E_i$ be a B-special decomposition of a metric space X and $n \geq 0$ be an integer. If $\max\{\text{P-ind } F, \text{P-ind } E_i\} \leq n$ then $\text{P-ind } X \leq n$.

Let $\{x_i\}_{i=1}^{\infty}$ be a sequence of real numbers such that $0 < x_{i+1} < x_i \leq 1$ for all i and $\lim_{i \to \infty} x_i = 0$. Put $C^n = (\text{Bd } I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [x_{2i}, x_{2i-1}]) \subset I^{n+1}$.

Theorem 3.1 (a) There are closed subsets $X_1, X_2, \ldots, X_{n+1}$ of C^n such that $C^n = \bigcup_{k=1}^{n+1} X_k$ and $\text{cmp } X_k = 0$ for each $k = 1, 2, \ldots, n+1$.

(b) The equalities $\text{def } C^n = \text{Cmp } C^n = n (= \text{Comp } C^n)$ hold (see [1] for the definition of Comp).

(c) Let m be an integer such that $0 \leq n \leq 2^m - 1$. Then we have $\text{cmp } C^n \leq m$. In particular $\text{cmp } C^n < \text{Cmp } C^n = \text{def } C^n$ for $n \geq 3$.

Proof. (a) For every i choose finite systems $B^i_k, k = 1, \ldots, n+1$, consisting of disjoint compact subsets of I^n with diameter $< \frac{1}{i}$ such that $I^n = \bigcup_{k=1}^{n+1} (\text{Bd } B^i_k)$. We put $X_k = (\text{Bd } I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (B^i_k \times [x_{2i}, x_{2i-1}])$ for every $k = 1, \ldots, n+1$. Observe that the space X_k admits a B-special decomposition into compact subsets and, by Proposition 3.1, $\text{cmp } X_k = 0$ for $k = 1, \ldots, n+1$.

(b) It is enough to prove that $\text{Comp } C^n \geq n$ i.e. there exist n pairs $(F_1, G_1), \ldots, (F_n, G_n)$ of disjoint compact subsets of C^n such that for any partitions S_i between F_i and G_i in $X, i = 1, \ldots, n$, the intersection $S_1 \cap \ldots \cap S_n$ is not compact. (Recall that for every separable metrizable space W we have $\text{Comp } W \leq \text{Cmp } W \leq \text{def } W$ (cf. [1]) and evidently $\text{def } C^n \leq n$.) For example such pairs are $((\{0\} \times I^n) \cap C^n, ((\{1\} \times I^n) \cap C^n), \ldots, ((I^{n-1} \times \{0\}) \times [0, 1]) \cap C^n, (I^{n-1} \times \{1\} \times [0, 1]) \cap C^n)$. Moreover, for any partition C between $((\{0\} \times I^n) \cap C^n$ and $(\{1\} \times I^n) \cap C^n$ in C^n, $\text{Comp } C \geq n-1$.

(c) One can show (c) by applying Corollary 2.1 for cmp and the statement (a).

Now we are ready to show Theorem 1.1.

Proof of Theorem 1.1. Decompose the space $Z_n, n \geq 3$, into the union of two closed subsets Z^1_n and Z^2_n (each of them is homeomorphic to C^n), where $Z^1_n = (\text{Bd } I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [1/(2i+1), 1/(2i)])$, $Z^2_n = (\text{Bd } I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [1/(2i), 1/(2i-1)])$.
Let m be the integer such that $0 \leq n \leq 2^m - 1$. It follows from Theorem 3.1 (c) that $\text{cmp} Z^i_n \leq m$ for $i = 1, 2$. Thus, by Corollary 2.1, we have $\text{cmp} Z_n \leq m + 1$.

Corollary 3.1 (a) For the space C^2 we have $\text{cmp} C^2 = \text{cmp} (C^2 \times [0, 1]) = 2$.

(b) $\text{cmp} C^3 = 2$.

The following question is discussed in [1, Problem 6, page 71].

Question 3.1 For any k and m with $0 < k < m$, does there exist a separable metrizable space X such that $\text{cmp} X = k$ and $\text{def} X = m$?

We shall partially answer the question as follows.

Corollary 3.2 Let m be an integer and $l(m) = \lfloor \log_2(m) \rfloor + 1$. Then for every k with $m \geq k \geq l(m)$ there exists a separable metrizable space X such that $\text{cmp} X = k$ and $\text{def} X = m$.

Let C^n be the space defined above and $X_1, X_2, \ldots, X_{n+1}$ be closed subsets of C^n described in Theorem 3.1. It follows from Theorem 3.1 (a) and Corollary 2.3 that $\text{Cmp} (X_1 \cup \ldots \cup X_{k+1}) = k$ for each k with $0 \leq k \leq n$. However, we do not know the value of the deficiency of $X_1 \cup \ldots \cup X_{k+1}$. So we can ask the following.

Question 3.2 Is it true that $\text{def} (X_1 \cup \ldots \cup X_{k+1}) = k$ for $1 \leq k < n$?

The question might be interesting when we consider a problem posed by Aarts and Nishiura [1, Problem 6, page 71]: Exhibit a separable metrizable space X such that $\text{cmp} X < \text{Cmp} X < \text{def} X$. If the Question 3.1 would be answered negatively for example for the case of $n = 4$ and $k = 3$, then we have $\text{def} (X_1 \cup X_2 \cup X_3 \cup X_4) = 4$. We put $Y = X_1 \cup X_2 \cup X_3 \cup X_4$. Then, by the argument above, we have $\text{Cmp} Y = 3$. On the other hand, by Theorem 3.1 (a) and Corollary 2.1, it follows that $\text{cmp} Y \leq 2$. Hence $\text{cmp} Y < \text{Cmp} Y < \text{def} Y$. Even if the Question 3.1 would be answered positively, then one gets an interesting counterpart of Corollary 3.3 (see below) for def.

Now we will obtain a complement to Theorem 2.2 showing the exactness of the theorem's estimations.

Corollary 3.3 For any integer $n \geq 1$ there exists a compact space $X_n (= C^n)$ with $\text{Cmp} X_n = n$ such that for any nonnegative integers p, q with $p + q = n - 1$ there exist its closed subsets $X_n^{(p)}$ and $X_n^{(q)}$ such that $X_n = X_n^{(p)} \cup X_n^{(q)}$, $\text{Cmp} X_n^{(p)} = p$, $\text{Cmp} X_n^{(q)} = q$ and $\text{Cmp} (X_n^{(p)} \cap X_n^{(q)}) = \min \{p, q\}$.
参考文献

