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Geometrically finite groups acting on Busemann spaces

AN N TN o 6 L= RS
IR T (Tetsuya Hosaka)

T T, hyperbolic space IZ{EA ¥ BFHICXTL TEBIN B “geometrically
finite” O#Z%, Busemann space (CAT(0) space) IZ{EF T B BHIZHRL, T D
HEEFEARBZLEHNEL TS,

AR TR 5 28I 3 X T proper geodesic space TH 5. TDEEIILAT Dl
VTH5.

Definition 1. We say that a metric space (X,d) is a geodesic space if for each
7,y € X, there exists an isometry ¢ : [0,d(z,y)] — X such that £(0) = = and
£(d(z,y)) = y (such £ is called a geodesic). Also a metric space (X,d) is said to

be proper if every closed metric ball is compact.

3, 3B DZM “hyperbolic space”, “CAT(0) space”, “Busemann space”
DEBEENTE.

Definition 2. A proper geodesic space (X, d) is called a hyperbolic space, if there
exists a number § > 0 such that every geodesic triangle in X is “-thin”. -
Here “5-thin” is defined as follows: Let z,y,2 € X and A := Azyz a geodesic

triangle in X. There exist unique non-negative numbers a, b, ¢ such that
d(z,y) =a+b, d(y,z) =b+c, d(z,z) =c+a.

Then we can consider the metric tree T that has three vertexes of valence one,
one vertex of valence three, and edges of length a, b and c. Let o be the vertex of

valence three in Ta and let vy, vy, v, be the vertexes of Ta such that d(o,vz) = a,
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d(o,vy) = b and d(0,v;) = c. Then the map {z,y,2} — {v,,v,,v,} extends
uniquely to amap f: A — T'a whose restriction to each side of A is an isometry.
For some § > 0, the geodesic triangle A is said to be §-thin, if d(p,q) < 6 for
each points p,q € A with f(p) = f(q).

Definition 3. A proper geodesic space (X,d) is called a CAT(0) space, if the
“CAT(0)-inequality” holds for all geodesic triangles A and for all choices of two
points z and y in A. :

Here the “CAT(0)-inequality” is defined as follows: Let A be a geodesic triangle
in X. A comparison triangle for A is a geodesic triangle A’ in the Euclidean plain
R? with same edge lengths as A. Choose two points = and y in A. Let 2’ and
denote the correSponding points in A’. Then the inequality

d(z,y) < dra(z’,y)
is called the CAT(0)-inequality, where dg2 is the natural metric on R2.

Definition 4. A proper geodesic space (X, d) is called a Busemann space, if for
each three points z¢,z;,z2 of X and each t € [0, 1],

d(&1(tdy), &2(tds)) < td(z1, z2),

where d; = d(zo,z;) and § : [0,d;] — X is a geodesic segment from z to z; for
eachi=1,2.

SEEH S5EBIZ CAT(0) space i Busemann space TH 2D Z & H 3.

CN 5D hyperbolic space & Busemann space (%L T CAT(0) space) {1,
boundary LI 3 BMEMIIMAZ I &iIzXVar Ny MeTEs., 27
X Z D boundary DEEGELL TOEREER .

Definition 5. Let (X, d) be a hyperbolic space or Busemann space, and let R
be the set of all geodesic rays in X. We define an equivalent relation ~ in R as
follows: For geodesic rays &,( : [0,00) — X,

§~( <= Im¢{ C B(Im¢, N) for some N > 0,
where B(A, N) := {z € X |d(z, A) < N}. Then the boundary 8X of X is defined
as

X =R/ ~.

For each geodesic ray £ € R, the equivalence class of ¢ is denoted by £(0o).
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X 122 ® boundary 0X ZAHIFMA 72280 X uoX LOMUHEERT BRI,
hyperbolic space & Busemann space DEEZENTT 5.

Proposition 6 ([3], [4], [5]). Let (X,d) be a hyperbolic space.

(1) For each e € 8X and each zo € X, there egists a geodesic ray§ : [0, 00) — X

such that £(0) = zo and €(c0) = a.

(2) For each a,o/ € 80X such that a # o, there ezists a geodesic line o :

(—00,00) = X such that o(c0) = a and g(—00) = o

Proposition 7 ([9]). Let (X,d) be a Busemann space.
(1) For each o € 8X and each xo € X, there exists a unique geodesic Tay
€ :[0,00) = X such that £(0) = zo and £(o0) = c. ' '
(2) X is contractible.

ER®D Proposition 6 (2) & —MIZ Busemann space TRV LT, &,
Proposition 7 (2) i&—#IZ hyperbolic space TIXR Y ILT2780 .

Proposition 6 (1) & Proposition 7 (1) OHEER VT X UOX EofrsEE LA
FOEIIEBT B ENTES. -

Definition 8 ([3], [4], [9]). Let (X, d) be a hyperbolic space or Busemann space,
and let 7o € X. We define a topology on X UX by the following conditions:
(1) X is an open subspace of X UdX.
(2) Let o€ 80X, r > 0 and € > 0. Then there exists a geodesic ray £ such that
£(0) = zo and £(c0) = a by Proposition 6 (1) or Proposition 7 (1). Let

Usy(@;7,€) = {z € X UBX |z & B(zo,7), d(£(r),&(r)) <},

where &, : [0, d(xo, )] — X is a geodesic (segment or ray) from zo to z. Let
o > 0 be a constant such that if X is hyperbolic then ep > 26 (where d is
the number in Definition 2). Then the set

{Uzo(e;r,€0) | 7 € N}

is a neighborhood basis for o in X U 0X.

D XUSX EOMMHDEREIX X DR zo EHOVTEAGNTVSA, EBRIZ
12 DAY 2o DELD IS T, %72, X UOX H compact metrizable space
ERBZENASENTWS ([3], [4], [5], 9])-
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WX, hyperbolic space %7z(% Busemann space Eiz, properly discontinuous
\ isometry & U TYERT 2882 %# X 5. T properly discontinuous @ &3
BIROEYTH 5.

Definition 9. An action of a group I' on a metric space (X,d) is said to be
properly discontinuous, if the set {y € T'| YK N K # 0} is finite for every compact
subset K of X.

Hyperbolic space & 7z& Busemann space Eiz properly discontinuous IZ isom-
etry CUTHERT2BICHL T, “BED limit set” HUAT CEBSh 3.

Definition 10. Let (X,d) be a hyperbolic or Busemann space, and let I" be a
group which acts properly discontinuously by isometries on X. The limit set of
' (with respect to X) is defined as

L(F) = 0X Neclxuax I'zy,

where clxugx means the closure in X U8X, and Zo is a point in X. We note that

the limit set L(T') is independent of a point zo € X.

C C T, hyperbolic space _LIZ properly discontinuous 2 isometry & U THER
T AHHIINL T, “geometrically finite” MR TERIN 3.

Definition 11 ([10]). Let (X, d) be a hyperbolic space and T a group which acts
properly discontinuously by isometries on X. We say that (the action of) I is
geometrically finite (with respect to X), if there exists a compact subset K of X
such that £(L(I")) C 'K, where L£(L(T)) is the union of the images of all geodesic
lines o : (—00,00) — X such that o(—00),0(00) € L(T').

C @ geometrically finite group IZB§L T, ROEEIH SN TV S,

Theorem 12 (Ranjbar-Motlagh [10]). Let X be a hyperbolic space andT a group
which acts properly discontinuously by isometries on X.
- (i) Suppose that H C G are two subgroups of ' and H is geometncally finite.
Then, L(G) = L(H) if and only if [G : H] < oo. »
(ii) Let G be a subgroup of finite index in T. Then T is geometrically finite if
and only if G is geometrically finite.
(iii) If G1 and G; are two geometrically finite subgroups of T', then G1 NGy is
also geometrically finite and L(G, N Gz) = L(G1) N L(G,).
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- ZCTHEMIE, 0 geometrically finite DBEE% Busemann space WHVERT
LBICHEET A 2 & THhD. Hyperbolic space IZfEFT AHIZKTL T Definition 11
WA TH 5 DIE, geodesic line 12 B3 % Proposition 6 (2) DHEE AT hyperbolic
space TRV ILDDTHBH. D geodesic line DB —MIZ X Y ILT:
724" Busemann space C “geometrically finite” % E& T $7c®IZ, Definition 11
DHD “geodesic line” & “geodesic ray” TEEMA B LERABL. TU TE
B ROGEEB/DIENTER.

Proposition 13. Let (X, d) be a hyperbolic space and T a group which acts prop-
erly discontinuously by isometries on X. Then the following statements are equiv-

alent:

(1) The action of T is geometrically finite.

(2) There exists a compact subset K of X such that Reo(L(T)) C TK for some
2o € X, where Rqy(L(T)) is the union of the images of all geodesic rays &
issuing from xo with £(00) € L(T). |

FROKER% b & 17, Busemann space EIZERAT BBICXU T “geometrically
finite” X TERT 5.

Definition 14. Let (X, d) be a Busemann space and I" a group which acts prop-
erly discontinuously by isometries on X. We say that (the action of) I is geomet-
rically finite (with respect to X), if there exists a compact subset K of X such
that ’Rzo (L(I‘)) cIlK for some zp € X. ’

Hyperbolic T3 9 D Busemann T % ”Fﬁl‘.kﬂzfﬁ LTWBEIZEL T,
Definition 11 & Definition 14 D =D ® “geometrically finite” DEEZFA—BL T
W3 Z & % Proposition 13 IXfREEL T 5.

ZOEHEDD &, Theorem 12 ¥ Busemann space TV ILDZ & ZEEHAL 7.

Theorem 15. Let X be a Busemann space and ' a group which acts properly

discontinuously by isometries on X.

(i) Suppose that H C G are two subgroups of T' and H is geometrically finite.
Then, L(G) = L(H) if and only if [G : H] < co.

(ii) Let G be a subgroup of finite index in I'. Then ' is geometrically finite if
and only if G is geometrically finite.
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(iii) If G1 and G2 are two geometrically finite subgroups of T', then G, N G, is

also geometrically finite and L(Gy N Ga) = L(G;) N L(Gy).

Hyperbolic space (ZfEfi 3% geometrically finite group 2 B3 3 Bk DEEE &
U T, E. L. Swenson {Z & 2T “geometrically finite group” & “quasi-convex
group” H—HT BMETH BT LA [12) OHTHEREFHSN T3, Busemann
space ILBVTHIDIENRVUDONE I DIz DD TESEHERE T,
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