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A Construction of Type III Factors from
Boundary Actions

RESRFREREZENEF ME 8 (Rui OKAYASU)
Department of Mathematics, Kyoto University.

1 Introduction

One of our purposes in this note is to determine the types of quasi-free
KMS states on Cuntz-Krieger algebras. The Cuntz-Krieger algebra O4 [CK],
associated with a 0-1 N x N-matrix A, is the universal C*-algebra generated
by the family of partial isometries {S;}, satisfying: -

N
SiSi=_ A(i,5)S;S;,
j=1

and .
N
1= 5;8;.
j=1

The universal property of O, allows us to define the gauge action o on Oy4
by
o (S;) = eV7IS;

for t € R. The KMS states for the gauge actions on the Cuntz algebra O,, and
the Cuntz-Krieger algebra O, were obtained by D. Olesen and G. K. Ped-
ersen [OP] and M. Enomoto, M. Fujii and Y. Watatani [EFW], respectively.
More generally, D. E. Evans [Eva] determined the KMS states on O, for the
quasi-free actions. In order to construct examples of subfactors, M. Izumi
[Izu] determined the types of factors obtained by the GNS-representations of
the quasi-free KMS states. We will generalize these results to Cuntz-Krieger
algebras. However the existence and the uniqueness of the quasi-free KMS
states on Cuntz-Krieger algebras were proved by R. Exel and M. Laca [EL].
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Therefore it suffices to compute the Connes spectrum of the modular auto-
morphism group. |

The other purpose is to show that there is one-to-one correspondence
between quasi-free KMS states on some Cuntz-Krieger algebras and some
class of random walks on groups. Namely, J. Spielberg [Spi] proved that some
Cuntz-Krieger algebras can be obtained by the crossed product construction
of the boundary action (2,I'), where I is the free product of cyclic groups
and Q is some compact space, on which I acts by homeomorphisms. This
construction was generalized to amalgamated free product groups in [O1].
By identifying © with the Poisson boundary, harmonic measures on € induce
quasi-free KMS states.

By combining the above two results we can construct type III factors from
boundary actions and harmonic measures on the boundary, which generalizes
J. Ramagge and G. Robertson’s result in [RR].

2 Quasi-Free KMS States on Cuntz-Krieger
Algebras

We first introduce some notations and known results. Let I = {1, ...,N }
be the index set. For i € I, we denote S;S; = P;. We put the set of all

admissible word by ; .
Wya={=(&,...,&) | neN& €I, A&, &k+1) = 1}

For £ = (&1,...,&) € Wa, we define two maps s and r'by 8(§) = & and
r(€) = &,. Let us say that & = (&,...,&) € Wa is a loop if A(&,&) = 1.
Moreover, we say that a loop £ is a circle if & # & for any 1 < k,l < n,
(k #1).

For w = (wi,...,wn) € RY, we define the action o of R on O4 by
a?(S;) = eVIuits; |

fort € R and ¢ € I. Note that if w = (1,...,1), then o is the gauge action.
We define two word-length functions. For f (&, .. ,§n) € Wy, we denote
the canonical one by || = n and the other by wg = wg ++ - twg,. N ote that
there is the faithful conditional expectation ® from (’) 4 onto span{S§S§ | € €
Wa}t ~ C(Q4), where

Q4 = {(ar)2; | Alak, ax+1) =1}
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is the set of all one-sided infinite admissible words.
We assume that there is 8 € R, and z; > 0 that satisfy:

N
zi =Y _ e PUAG, §)z;,
j=1

and :
1=$1+"'+IBN.

Then we can define a probability measure v on 24 by

V(QA(fl, R ,fn_l, gn)) — e_ﬂ“’& e e‘ﬂ“’in-l Te,

where Q4(&1,-..,&,) is the cylinder set

{(a‘k)z?’zl € Ny I a = Ela ceeyOp = gn}
This probability measure induces a S-KMS state for o on O4 by ¢“ = vo®.

Remark 2.1 If weset A, (i, j) = e P A(4, j), then the vector z = T(xy,...,zN)
is the right Perron eigenvector of the matrix A, with respect to the Perron
eigenvalue 1.

R. Exel and M. Laca [EL], in fact, showed the existence of such 8 € R,
and z; > 0.

Theorem 2.2 ([EL, Theorem 18.5]) If A is irreducible, then there exists
the unique B-KMS state ¢“ of the Cuntz-Krieger algebra O4 for the action
o and the inverse temperature B is also unique.

Throughout this note, we assume that A is irreducible and not a per-
mutation matrix. Let (wgw, Hgw,&gw) be the GNS-triple of ¢*. The above
theorem, in particular, says that the von Neumann algebra M = 74 (O4)"
is a factor. :

In order to compule the Connes spectrum of the modular automorphism
of ¢¥, we investigate the weak-closure of the fixed-point algebra O% under
o”. To do this, we need a technical lemma. Let p be the period of A, where
the period of the matrix A means that

p(t) =g.c.d.{m € N| A™(¢,1) # 0}
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for 1 € I. If A is irreducible, then this is independent on the choice of i € I,
and hence it is well-defined. For m € N, i € I, we define partial isometries
formeN, i€ I by ,
09D = Y S5:S,PSS;,
§n€Li(mp)

where L;(n) = {£ € Wy | s(€) = 4, A(r(€),1) = 1,|€] = n} is the set of all
loops of ¢ with the canonical length n. Note that 0% is self-adjoint. We
define the tracial state by 9 = ¢“|pav on OF", and use the same symbol ¢*

for its normal extension to my. (0% )" for simplicity.

Lemma 2.3 ([02, Lemma 3. 3]) Let f € myw(C(Q4))" anda € mye (0%)".
Then for any i € 1,

lim 9 (6% f6$)a) = ¢* (P f)y* (Pia)z:y,

m—ro0
where y = (y1,..-,YN) is the left Perron eigenvector of A, with Y, ; ziy; =
D. | '
Proof. 1t follows from the so-called Perron-Frobenius theorem below. O

Theorem 2.4 ([Kit, Theorem 1.3.8]) Let A be an irreducible matriz with
non-negative entries and p the period of A. If x = T(zy,...,2zn5) and y =
(y1,--.,yn) are the right and left Perron eigenvectors of the Perron eigen-
value o such that Zfil x;Y; = p, then

Lim AP"(i, j)/ o™ = zy;,
foranyi,j=1,...,N.
Using the above lemma, we can completely determine the center of w4 (O )"

Definition 2.5 We say that ¢ is equivalent to j if there are &,m € Wy such
that s(¢) = i,s(n) = j,r(§) = r(n) and wg = w,. Then we obtain the
corresponding disjoint union I = I U---UIY . Set Pro =), 1o Fi

Proposition 2.6 ([O2, Lemma 3.1))

Z(n14(05)") = 14 (0F)" N 74 (OF) @caw.
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Proof. It is easy to show that Py € Z(mgu (0% )") for k =1,...,n,. Note
that mg (O )" is isomorphic to 7y« (O )". It therefore suffices to show that
Z(mye (05)") = Py, CPe and use Lemma 2.3. o

Now we have the necessary ingredient for the proof of the main theorem.

Theorem 2.7 ([O2, Theorem 4.2]) (1) If we/w, € Q for any circles
&,n, then M = myw(04)" is the AFD type Il factor for some 0 <
A< 1.

(2) If we/wy & Q for some circles €,m, then M = myw(O4)" is the AFD
type 111, factor.

Proof. Since ¢“ is a“-invariant, a“ can be extended to an action on M. We
use the same symbol ¢“ for its normal extension. Let 0% be the modular
automorphism group for ¢“ , which satisfies afw = a¥g for t € R We
remark that M? = 74 (09%)". Therefore it follows from Proposition 2.6 that
I'(¢%”) is the additive subgroup of R generated by Sw; for all circles £&. O

3 Quasi-Free KMS States and Random Walks

In this section, we introduce some results in [O1] by using the following
simple example.

Example 3.1 ([Spi]) Let F, = Z % Z be the free group with generators a
and b, and S = {a,b,a!,b7'} a generating set. We define the compact space

Q={w= ()2 | 2 € S, 2 # 2e11} € [ S
. k=1

Left multiplications of F, on 2 induce an action of F, on C(2):

(t)w) = ftw),

for f € C(2),t € T and w € . Let Q(z) be the set of infinite words with
beginning z € S. Consider the crossed product

C(Q) xF, =C*(f,uz | f € C(R),z €9),
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where u, is the inplementing unitary of x € S. Let

1 011
0111
A= 1110
1101

S x S-matrix and O4 = C*(S; | = = S) be the Cuntz-Krieger algebra
associated to A. We denote by Xq(s), the characteristic function on Q(z).
Then we have the following identification:

C(Q) A ]FQ ~ OA
‘ Uy <~ S;,; + S;_.l
uxXQ\Q(J;"l) — Sz

We use the symbol Op, instead of Q4.
For w = (wz)zes € RE, we consider the action o of R on O,, given by
o (S,) = eV~lwsts,

By Theorem 2.1, we have the unique B-KMS state ¢ for o, which has
the form v o ®, where v is a probability measure 2 and ® is the canonical
conditional expectation from O, onto C(€2). Our purpose is to construct
the above probability measure v from a random walk on F,. The reader is
referred to [W2] for a good book of random walks. We use the following
result (e.g. see [W1]). | | R

Proposition 3.2 Let u be a probability measure on Fs such that supp(u) is
finite and ‘ |

U supp(u)* =F,.

n>1
Then there exists the unique probability measure v on ) such that
(1) (R, v) is the Poisson boundary,
@) v=p*v,
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where p * v is defined by

[r@durvw)= [ [ fto)dutavw)
0 Q Jsuppp

for f € C(Q).
Using the above, we can prove the following.

Theorem 3.3 ([O1, Theorem 8.1]) For any w = (w;) € R4, there ezists
the unique probability measure p on Fy such that

(1) supp(p) =S,
(2) ¢ =vo® is the KMS state for o~,

where v is the corresponding probability measure on Q in Proposition 3.2.

We next discuss the converse. Let y be a probability measure on F, with
supp(u) = S. By Proposition 3.2, there is the unique probability measure v
on 2 such that p*v = v. Let ¢ = vo® be a state on Of,. Let (14, Hy, &;) be
the GNS-triple of ¢. We also denote by ¢ its normal extension on 74(Op,)".
Let 0 be the modular automorphism group of ¢. Then we have the following.

Theorem 3.4 ([O1, Theorem 8.4]) There is some w = (wz)zes € RE
such that
0 (m4(Sz)) = €714y ()

forz € S andt eR.
Now we can apply Theorem 2.6 to Of,.

Corollary 3.5 Let v be the probability measure on ) that gives the quasi-free
KMS state vo ®. Then

(1) If wy/wy € Q for any z,y € S, then L®(Q,v) x F, is the AFD type
III, factor for some 0 < A < 1.

(2) If wg/wy & Q for some z,y € S, then L*(Q,v) x F, is the AFD type
IT1; factor.

Remark 3.6 It was shown in [O2] that we can apply Theorem 2.7 to the
boundary actions arising from some amalgamated free product group I if T’
satisfies some conditions. These generalize results of [RR].
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