<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>COMPUTATIONS OF CHOW RINGS AND THE MOD p MOTIVIC COHOMOLOGY OF CLASSIFYING SPACES (Cohomology theory of finite groups and related topics)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Yagita, Nobuaki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1251: 104-113 (2002)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41804</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
Kyoto University Research Information Repository
ABSTRACT. In this note, we explain how to compute mod p motivic cohomology over \(\mathbb{C} \), the complex number field, by only using algebraic topology. Examples of algebraic spaces \(X \) are classifying spaces \(BG \) of algebraic groups.

1. CHOW RING, MILNOR K-THEORY, ÉTALE COHOMOLOGY

We use some category \(Spc \) of (algebraic) spaces, defined by Voevodsky, where schemes \(A \), quotients \(A_1/A_2 \) and \(cotim(A_\alpha) \) are all contained ([Vo2],[Mo-Vo]). Here schemes are defined over a field \(k \) with \(ch(k) = 0 \). The motivic cohomology is the double indexed cohomology defined by Suslin and Voevodsky directly related with the Chow ring, Milnor K-theory and étale cohomology.

\[
\text{(CH)} \quad H^{2n,n}(X) = CH^n(X) : \text{the classical Chow group.}
\]

\[
\text{(MK)} \quad H^{n,n}(Spc(k)) \cong K^n_M(k), \text{the Milnor } K \text{-group for the field } k.
\]

For a smooth variety \(X \) of \(\text{dim}(X) = n \). The Chow ring is the sum \(CH^*(X) = \oplus CH^i(X) \) where

\[
CH^i(X) = \{(n-i)\text{cycles in } X\}/(\text{rational equivalence}).
\]

Here the rational equivalence \(a \equiv b \) is defined if there is a codimension \(i \) subvariety \(W \) in \(X \times \mathbb{P}^1 \) such that \(a = p_*f^*(0) \) and \(b = p_*f^*(1) \) where \(\mathbb{P}^1 \) is the projective line, \(p\text{(resp. } f) \) is the projection for the first (resp. second) factor.

The multiplications in \(CH^*(X) \) is giving by intersections of cycles. Let \(k = \mathbb{C} \). Let \(\mathbb{P}^n \) be the \(n \)-dimensional projective space. Then \(CH^i(\mathbb{P}^n) \cong \mathbb{Z}\{L_{n-i}\} \) where \(L_{n-i} \cong \mathbb{P}^{n-1} \) is an \(n-i \)-dimensional subspace of \(\mathbb{P}^n \). Hence the product is \(L_{n-i} \cdot L_{n-j} = L_{n-i-j} \). This shows that

\[
CH^*(\mathbb{P}^n) \cong \mathbb{Z}[y]/(y^{n+1}) \cong H^*(\mathbb{C P}^n)
\]

identifying \(y^i = L_{n-i} \).

1991 Mathematics Subject Classification. Primary 55P35, 57T25; Secondary 55R35, 57T05.

Key words and phrases. motivic cohomology, Chow ring.
Since Spc contains colimit, we can consider the infinite projective space $P^\infty = B\mathbb{G}_m$ and the infinite Lens space $\varprojlim n(A_n - \{0\}/\mathbb{Z}/p) = L_p^\infty = B\mathbb{G}_m$. The Chow rings of $B\mathbb{G}_m$ are given in [To 1]

\[(1.1) \quad CH^*(P^\infty) \cong H^{2*}(P^\infty) \cong \mathbb{Z}[y], \quad CH^*(B\mathbb{G}_m) \cong H^{2*}(B\mathbb{G}_m) \cong \mathbb{Z}[y]/(py)\]

with $\text{deg}(y) = (2, 1)$. For product of these spaces

\[(1.2) \quad CH^*(P^\infty \times \ldots \times P^\infty) \cong \mathbb{Z}[y_1, \ldots, y_n]\]

\[(1.3) \quad CH^*(B\mathbb{G}_m \times \ldots \times B\mathbb{G}_m) \cong \mathbb{Z}[y_1, \ldots, y_n]/(py_1, \ldots py_n)\]

Here note that $CH^*(X) \not\cong H^{even}(X(C))$ for the last case. Even if $H^*(X(C))$ is generated by even dimensional elements, there are cases that $CH^*(X) \not\cong H^*(X(C))$, e.g., the K3-surfaces have the cohomology $H^2(X(C)) \cong \mathbb{Z}^2$ but there is a K3-surface such that $CH^1(X) \cong \mathbb{Z}^4$ for each $1 \leq i \leq 20$.

The Milnor K-theory is the graded ring $\oplus_n K_n^M(k)$ defined by $K_n^M(k) = (k^*)^\otimes n/J$ where the ideal J is generated by elements $a \in (1 - a)$ for $a \in k^*$. Hence $K_0^M(k) = \mathbb{Z}$ and by definition $K_n^M(k)$ is just the multiplicative group k^* but written additively in the ring $K_n^M(k)$. Hilbert's theorem 90, which is essentially said that the Galois cohomology $H^1(G(k_s/k); k^*_s) = 0$, implies the isomorphism $K_n^M(k)/p \cong k^*/(k^*)^p \cong H^1(G(k_s/k); \mathbb{Z}/p)$ for $1/p \in k$. Similarly we can define a map (the norm residue map) for any extension F of k of finite type

\[(BK) \quad K_n^M(F)/p \to H^n(G(F_s/F); \mu_p^\otimes n)\]

where $\mu_p^\otimes n$ is the discrete $G(F_s/F)$-module of n-th tensor power of the group of p-roots of 1.

The Bloch-Kato conjecture is that this map is an isomorphism for all field k and the Milnor conjecture is its $p = 2$ case. This conjecture is solved when $n = 2$ by Merkurjev-Suslin[Me-Su], and for $p = 2$ by Voevodsky [Vo1] by using the motivic cohomology.

Notice that $H^n(G(k_s/k); \mu_p^\otimes n) \cong H^n_{et}(Spec(k), \mu_p^\otimes n)$ the étale cohomology of the point.

The étale cohomology $H^n_{et}(X; \mathbb{Z}/p)$ has the properties:

(E.1) If k contains a primitive p-th root of 1, then there is the additive isomorphism

$$H^m_{et}(X, \mu_p^\otimes n) \cong H^m_{et}(X; \mathbb{Z}/p).$$

(E.2) For smooth X over $k = \mathbb{C}$,

$$H^m_{et}(X; \mathbb{Z}/p^N) \cong H^m(X(C); \mathbb{Z}/p^N) \quad \text{for all} \ n \geq 1.$$
2. THE REALIZATION MAP

In this section we consider the relation to the usual ordinary cohomology. Let R be \mathbb{Z} or \mathbb{Z}/p. The motivic cohomology has the following properties [Vo2].

(C1) $H^{*,*}(X; R)$ is a bigraded ring natural in X.

(C2) There are maps (realization maps)

$$t_{\mathbb{C}}^{m,n} : H^{m,n}(X; R) \to H^{m}(X(\mathbb{C}); R)$$

which sum up $t_{\mathbb{C}}^{m,n} = \oplus_{m,n} t_{\mathbb{C}}^{m,n}$ the natural ring homomorphism.

(C3) There are (the Bockstein, the reduced powers) operations

$$\beta : H^{*,*}(X; \mathbb{Z}/p) \to H^{*,+1,*}(X; \mathbb{Z}/p)$$

$$P^i : H^{*,*}(X; \mathbb{Z}/p) \to H^{*+2i(p-1),+i+1}(X; \mathbb{Z}/p)$$

which commutes with the realization map $t_{\mathbb{C}}$.

(C4) For the projective space \mathbb{P}^n, there is an isomorphism

$$H^{*,*}(\mathbb{P}^n; \mathbb{Z}/p) \cong H^{*,*}(\mathbb{P}^{n-1}; \mathbb{Z}/p) \cong H^{*,*}(X; R)(1, y')$$

with $\deg(y') = (2n, n)$ and $t_{\mathbb{C}}(y') \neq 0$.

Here we consider some examples. Recall $H^{*}(\mathbb{P}^\infty = \mathbb{P}^\infty(\mathbb{C}); \mathbb{Z}/p) \cong \mathbb{Z}/p[y], \deg(y) = 2$ and $H^{*}(\mathbb{P}^2/\mathbb{P}(\mathbb{C}) = \mathbb{P}^2/\mathbb{P}; \mathbb{Z}/p) \cong \mathbb{Z}/p[y] \otimes \Lambda(x)$ with $\beta x = y$ (when $p = 2$, $y = x^2$). From the above properties (C1), (C2), we easily see that $t_{\mathbb{C}}$ is epic for $X = \mathbb{P}^\infty$. Moreover there is $x' \in H^{1,1}(\mathbb{P}^2/\mathbb{P}; \mathbb{Z}/p)$ such that $t_{\mathbb{C}}(x') = x$ and from (C2), we also see $t_{\mathbb{C}}$ is epic for $X = B\mathbb{Z}/p$.

To see these facts hold for other spaces, we recall the Lichtenbaum motivic cohomology [Vo2]. Lichtenbaun defined the similar cohomology $H^{*,*}_L(X; R)$ by using the étale topology, while $H^{*,*}(X; R)$ is defined by using Nisnevich topology. Since Nisnevich covers are some restricted étale covers, there is the natural map $H^{*,*}(X; R) \to H^{*,*}_L(X; R)$. We say that the condition $B(n, p)$ holds if

$$B(n, p) : H^{m,n}(X; \mathbb{Z}/(p)) \cong H^{m,n}_L(X; \mathbb{Z}/(p)) \quad for \ all \ m \leq n + 1$$

and all smooth X. The Beilinson-Lichtenbaum conjecture is that $B(n, p)$ holds for all n, p. It is proved that the $B(n, p)$ condition is equivalent the Bloch-Kato conjecture (BK) for degree n and prime p. Hence $B(n, p)$ holds for $n \leq 2$ or $p = 2$. Moreover Suslin-Voevodsky proves

(L-E) If $1/p \in k$, then for all X,

$$H^{m,n}_L(X; \mathbb{Z}/(p)) \cong H^{m,n}_{et}(X; \mu_{\mathbb{Z}/(p)}^\oplus).$$

Now we compute $H^{*,*}(\mathbb{P}^2 = Spec(k); \mathbb{Z}/p)$. For a smooth X, it is known the following dimensional conditions:

(C5) For a smooth X, if $H^{m,n}(X; R) \neq 0$, then

$$m \leq n + \dim(X), \ m \leq 2n \ and \ m \geq 0.$$
Hereafter this paper, we assume that \(k \) contains a primitive \(p \)-th root of 1 and \(B(n,p) \) holds for all \(n \) but \(X = \text{Spec}(k) \). Then

\[
H^{m,n}(pt; \mathbb{Z}/p) \cong H^{m}_{\text{et}}(pt; \mu_{p}^{\otimes n}) \cong H^{m}_{\text{et}}(pt; \mathbb{Z}/p) \quad \text{if} \quad m \leq n
\]

and \(H^{m,n}(pt; \mathbb{Z}/p) \cong 0 \) otherwise. Let \(\tau \in H^{0,1}(pt; \mathbb{Z}/p) \) be the element corresponding a generator of \(H^{0}_{\text{et}}(\text{Spec}(k); \mu_{p}) \cong H^{0}_{\text{et}}(\text{Spec}(k); \mathbb{Z}/p) \). Then we get the isomorphism

\[
H^{**}(\text{Spec}(k); \mathbb{Z}/p) \cong H^{**}_{\text{et}}(\text{Spec}(k); \mathbb{Z}/p) \otimes \mathbb{Z}/p[\tau]
\]

since \(\tau : H^{0}_{\text{et}}(\text{Spec}(k); \mu_{p}) \cong H^{0}_{\text{et}}(\text{Spec}(k); \mathbb{Z}/p)^{(n+1)} \). In particular, for the real number field \(R \) and a local field \(F_{v} \) with the residue field \(k_{v} \) of \(ch(k_{v}) \neq 2 \)

\[
H^{**}(\text{Spec}(R); \mathbb{Z}/2) \cong \mathbb{Z}/2[\tau] \otimes \Lambda(x) \beta
\]

where the degree is defined by \(\deg(x) = (m, m) \) if \(x \in H^{m}(\text{Spec}(C); \mathbb{Z}/p) \).

For \(k = C \), \(B(n,p) \) condition holds for \(X = \text{Spec}(C) \), indeed \(K^M_n(C) \cong 0 \) for \(n > 0 \).

Therefore

\[
H^{**}(\text{Spec}(C); \mathbb{Z}/p) \cong \mathbb{Z}/p[\tau] \quad \text{with} \quad \deg(\tau) = (0, 1).
\]

When \(k = C \), if \(B(n,p) \) condition holds for \(X \), then it is immediate that

\[
H^{**}(\text{Spec}(C); \mathbb{Z}/p) \cong \mathbb{Z}/p[\tau] \quad \text{where} \quad \deg(\tau) = (0, 1).
\]

Next we compute cohomology of \(P^\infty \) and \(BZ/p \). For any (algebraic) map \(f : X \to Y \) in the category \(\text{Sp} \), we can construct the cofiber sequence

\[
X \to Y \to \text{cone}(f) = Y/X
\]

which induces the long exact sequence (Voevodsky [V2])

\[
H^{**}(X; R) \to H^{**}(Y; R) \to H^{**}(Y/X; R) \to H^{**-1}(X; R).
\]

In particular, we get the Mayer-Vietoris, Gysin and blow up long exact sequences.

By the cofiber sequence \(P^n \to P^n/P^{n-1} \) and (C4), we can inductively see that

\[
H^{*-1,*}(P^n; \mathbb{Z}/p) \cong H^{*(P^n; \mathbb{Z}/p)} \otimes \mathbb{Z}/p[\gamma]/(\gamma^{n+1}) \quad \text{with} \quad \deg(\gamma) = (2, 1)
\]

Since \(B(1,p) \) is always holds, \(H^{1,1}(L^n_p; \mathbb{Z}/p) \cong H^1(L^n_p; \mathbb{Z}/p) \). Hence there is the element \(x' \in H^{1,1}(L^n_p; \mathbb{Z}/p) \) with \(tc(x') = x \in H^{1}(L^n_p; \mathbb{Z}/p) \). The Lens space is identified with the sphere bundle associated with the line bundle

\[
(A^n - \{0\}) \times (A - \{0\}) \to (A^n - \{0\})/(A - \{0\}) = P^n.
\]

Where \((A^n - \{0\}) \times (A - \{0\}) \to (A^n - \{0\})/(A - \{0\}) = P^n \). Hence we get the ring isomorphism for \(\rho = k^* \)

\[
H^{**}(L^n_p; \mathbb{Z}/p) \cong Z/p[\gamma]/(\gamma^{n+1}) \otimes \text{cone}(f) \quad \text{with} \quad \deg(\gamma) = (1, 1).
\]

However note that when \(p = 2 \), we see \(x^2 = y^2 + x^2 \rho \) [Vo3] where \(\rho \in H^{1,1}(pt; \mathbb{Z}/p) \cong k^*/k^2 \) represents \(-1 \). (hence \(\rho = 0 \) when \(\sqrt{-1} \in k^* \)). This is proved by the wellknown facts \(\{a, -1\} \in k^2(k) \).
Let us say that a space X satisfies the Kunneth formula for a space Y if $H^{**}(X \times Y; \mathbb{Z}/p) \cong H^{**}(X; \mathbb{Z}/p) \otimes H^{**}(Y; \mathbb{Z}/p)$.

By the above cofiber sequences, we can easily see that P^∞ and $B\mathbb{Z}/p$ satisfy the Kunneth formula for all spaces. In particular, we have the ring isomorphisms

\begin{equation}
H^{**}(P^\infty \times \ldots \times P^\infty; \mathbb{Z}/p) \cong \mathbb{Z}[y_1, \ldots, y_n] \otimes H^{**}(pt; \mathbb{Z}/p)
\end{equation}

(2.8)

\begin{equation}
H^{**}(B\mathbb{Z}/p \times \ldots \times B\mathbb{Z}/p; \mathbb{Z}/p) \cong \mathbb{Z}[y_1, \ldots, y_n] \otimes \Lambda(x_1, \ldots, x_n) \otimes H^{**}(pt; \mathbb{Z}/p)
\end{equation}

(2.9)

(when $p = 2$, $x_i^2 = y_i + x_i$).

This fact is used to defined the reduced power operation P^i in (C3). Since the Sylow p subgroup of the symmetric group S_p of p-letters is isomorphic to \mathbb{Z}/p, we know the isomorphism

\begin{equation}
H^*(BS_i; \mathbb{Z}/p) \cong H^*(B\mathbb{Z}/p; \mathbb{Z}/p)^{F_p} \cong \mathbb{Z}[y][\Lambda(x)]
\end{equation}

with identifying $Y = y^{p-1}$ and $X = xy^{p-2}$. If X is smooth (and suppose p is odd for easy of arguments), we can define the reduced powers (of Chow rings) as follows. Consider maps

\begin{equation}
H^{2*}(X; \mathbb{Z}/p) \longrightarrow H^{2*}(X \times \mathbb{S}^p ES_p) \longrightarrow H^*(X; \mathbb{Z}/p) \otimes H^{**}(BS_p; \mathbb{Z}/p)
\end{equation}

where i is the Gysin map for p-th external power, and Δ is the diagonal map. For $deg(x) = (2i, n)$, the reduced powers are defined as

\begin{equation}
\Delta^i(x) = \sum P^i(x) \otimes Y^{n-i} + \beta P^i(x) \otimes XY^{n-i-1}.
\end{equation}

Hence note $deg(P^i) = deg(Y^i) = deg(y^{i(1-1)}) = (2i, i)$.

Voevodsky defined i for non smooth X and by using suspensions maps, he defined reduced poweres for all degree elements in $H^{**}(X; \mathbb{Z}/p)$ for all X [Vo 3].

Moreover we can see (Ho-Kriz [H-K])

\begin{equation}
H^{**}(BGL_n; \mathbb{Z}/p) \cong \mathbb{Z}[c_1, \ldots, c_n] \otimes H^{**}(pt; \mathbb{Z}/p)
\end{equation}

where the Chern class c_i with $deg(c_i) = (2i, i)$ are identified with the elementary symmetric polynomial in $H^{**}(P^\infty \times \ldots \times P^\infty; \mathbb{Z}/p)$. So we can define the Chern class $\rho^*(c_i) \in H^{2*}(BG; \mathbb{Z}/p)$ for each algebraic group G and for each representation $\rho : G \rightarrow GL_n$.

3. $H^{**}(X; \mathbb{Z}/p)/Ker(t_c)$ and operation Q_i

In this section we always assume that X is smooth and $k = \mathbb{C}$. Define a bidegree algebra by

\begin{equation}
h^{**}(X; \mathbb{Z}/p) = \oplus_{m,n} H^{m,n}(X; \mathbb{Z}/p)/Ker(t_{c}^{m,n}).
\end{equation}

Suppose that $B(n, p)$ condition holds. By isomorphisms $(B, p), (L-E), (E1)$ and (E2), we have

\begin{equation}
H^{m,n}(X; \mathbb{Z}/p) \cong H^{m,n}_L(X; \mathbb{Z}/p) \cong H^{m,n}_E(X; \mathbb{Z}/p) \cong H^{m,n}_p(X; \mathbb{Z}/p) \cong H^{n}(X(\mathbb{C}); \mathbb{Z}/p).
\end{equation}

The realization map $t_{c}^{m,n}$ induces this isomorphism. Let $F_i = Im(t_{c}^{m,n})$. Then $\bigcup_i F_i = H^*(X(\mathbb{C}); \mathbb{Z}/p)$ and define the graded algebra $gr H^*(X(\mathbb{C}); \mathbb{Z}/p) = \oplus F_{i+1}/F_i$. Thus we get the additive isomorphism

\begin{equation}
h^{**}(X; \mathbb{Z}/p) \cong gr H^*(X(\mathbb{C}); \mathbb{Z}/p) \otimes \mathbb{Z}/p[\tau]
\end{equation}

of bigraded rings. However the ring structures of both rings are different, in general. The cohomology $h^{**}(X; \mathbb{Z}/p)$ is isomorphic to a $\mathbb{Z} [\tau]$-subalgebra B of $H^*(X(\mathbb{C}); \mathbb{Z}/p) \otimes \mathbb{Z}/p[\tau, r^{-1}]$.
with $\deg(x) = (|x|, |x|)$ such that $B[\tau^{-1}] \cong H^*(X(C); \mathbb{Z}/p) \otimes \mathbb{Z}/p[\tau, \tau^{-1}]$. Namely there is a \mathbb{Z}/p-basis $\{a_i\}$ of $H^*(X(C); \mathbb{Z}/p)$ such that $B = \mathbb{Z}/p\{a_i\} \otimes \mathbb{Z}/p[\tau]$ for some $t_f \geq 0$.

Here we recall the Milnor primitive operation $Q_i = [Q_{i-1}, P^{p^{i-1}}]$

$$Q_i : H^{*,*}(X; \mathbb{Z}/p) \to H^{*,*+2p^{i-1}+p^{i-1}X}_p(X; \mathbb{Z}/p)$$

which is derivative, $Q_i(xy) = Q_i(x)y + xQ_i(y)$. Note also $Q_i(\tau) = 0$ by dimensional reason of $H^*(pt; \mathbb{Z}/p) \cong \mathbb{Z}/p[\tau]$.

Lemma 3.1. If $0 \neq Q_i_1 ... Q_i_n x \in H^2^{*,*}(X; \mathbb{Z}/p)$, then x is a $\mathbb{Z}/p[\tau]$-module generator.

Proof. If $x = x' \tau$ then $\tau Q_i_1 ... Q_i_n (x') \neq 0$. But $Q_i_1 ... Q_i_n (x') = 0 \in H^{2*,*}(X; \mathbb{Z}/p)$ since $H^{m,n}(X; \mathbb{Z}/p) = 0$ for $m > 2n$.

Define the weight by $w(x) = 2n - m$ for an element $x \in H^{m,n}(X; \mathbb{Z}/p)$ so that $w(x') = 0$ for $x' \in CH^*(X)$. Of course we get $w(xy) = w(x) + w(y)$, $w(P^s x) = w(x)$ and $w(Q_i(x)) = w(x) - 1$.

Corollary 3.2. Suppose that $B(n, p)$ holds. If $x \in H^n(X(C); \mathbb{Z}/p)$ and $Q_{i_1} ... Q_{i_n}(x) \neq 0$, then there is a $\mathbb{Z}/p[\tau]$-module generator $x' \in H^{n,n}(X; \mathbb{Z}/p)$ so that $Q_i(x') = x$ and for each $0 \leq k \leq n$, $Q_{i_1} ... Q_{i_k}(x')$ is also a $\mathbb{Z}/p[\tau]$-module generator of $H^{*,*}(X; \mathbb{Z}/p)$.

Proof. By $B(n, p)$ condition, $H^{n,n}(X; \mathbb{Z}/p) \cong H^n(X(C); \mathbb{Z}/p)$. Hence there is an element $x' \in H^{n,n}(X; \mathbb{Z}/p)$ with $Q_i(x') = x$. This means $w(x') = n$ and $w(Q_i(x)) = w(x) - 1$.

From the above lemma, we get the corollary.

Now we consider the examples. The mod 2 cohomology of $BO(n)$ is $H^*(BO(n); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_1, ..., w_n]$ where the Stiefel-Whitney class w_i restricts the elementary symmetric polynomial in $H^*(BZ/(2^n); \mathbb{Z}/2) \cong \mathbb{Z}/2[z_1, ..., z_n]$. Each element w_t^2 is represented by Chern class c_t of the induced representation $O(n) \subset U(n)$. Hence $c_t \in CH^*(BS(n); \mathbb{Z}/2) = H^{2*,*}(BO(n); \mathbb{Z}/2)$.

Proposition 3.3. $h^{*,*}(BO(n); \mathbb{Z}/p) \supset \mathbb{Z}/2[c_1, ..., c_n] \otimes \Delta(w_1, ..., w_n) \otimes \mathbb{Z}/2[\tau]$ where $\deg(c_t) = (2i, i)$, $\deg(w_i) = (i, i)$ and $w_t^2 = \tau^t c_t$.

Since $Q_{i-1} ... Q_0(w_i) \neq 0$, each w_i is a $\mathbb{Z}/2[\tau]$-module generator. However even $h^{*,*}(BO(n); \mathbb{Z}/2)$ seems very complicated. Consider the case $X = BO(3)$. The cohomology operations act by

$$
\begin{align*}
& w_2 \xrightarrow{S^1} w_1w_2 + w_3 \quad w_2 \xrightarrow{S^2} w_2w_3 + w_1w_2 + w_2w_3 \xrightarrow{S^1} w_1w_2 + w_3
\end{align*}
$$

Theorem 3.4. There is the isomorphism

$$h^{*,*}(BO(3); \mathbb{Z}/2) \cong \mathbb{Z}/2[c_1, c_2, c_3][1, w_1, w_2, Q_0w_2, Q_1w_2, w_3, Q_0w_3, Q_1w_3] \otimes \mathbb{Z}/2[\tau].$$

where $Q_0w_2 = \tau^{-1}(w_1w_2 + w_3), ...$
Computations of Chow rings and the Mod p motivic cohomology of classifying SR.

W.S. Wilson ([W], [K-Y]) found a good $Q(i) = \Lambda(Q_0, \ldots, Q_i)$-module decomposition for $X = BO(n)$, namely,

$$H^*(X; \mathbb{Z}/2) = \oplus_{-1} Q^i G$$

with $Q_0 \cdots Q_i G_i \in \mathcal{C}(CH^*(X))$. Here G_{k-1} is quite complicated, namely, it is generated by symmetric functions

$$\sum x^2_{k+1} \cdots x_{k+j} \cdots x_{k+q}, \quad k + q \leq n,$$

with $0 \leq i_1 \leq \ldots \leq i_k$ and $0 \leq j_1 \leq \ldots \leq j_q$; and if the number of j equal to j_u is odd, then there is some $s \leq k$ such that $2i_s + 2^s < 2j_u < 2i_s + 2^{s+1}$.

Then $w(G_i) \geq i$ in $h^{**}(X; \mathbb{Z}/p)$, that means

Proposition 3.5. Given the weight by $w(G_i) = i+1$, we have the inclusion for $X = BO(n)$

$$h^{**}(X; \mathbb{Z}/2) \subset (\oplus_{i} Q(i)G_i) \otimes \mathbb{Z}/2[\tau].$$

One problem is that the above inclusion is really isomorphism or not. The similar decomposition holds for $X = (B\mathbb{Z}/p)^n$ and the above inclusion is an isomorphism. The case $X = BO(3)$ is also isomorphism. Since the direct decomposition of $BO(3)$ is complicated to write, we only write here that of $SO(3)$ since $O(3) \cong SO(3) \times \mathbb{Z}/2$.

$$H^*(BSO(3); \mathbb{Z}/2) \cong \mathbb{Z}/2[w_2, w_3] \cong \mathbb{Z}/2[c_2, c_3] \{w_2, Q_0w_2, Q_1w_2, c_3 = Q_0Q_1w_2\} \oplus \mathbb{Z}/2[c_2].$$

Since there is the isomorphism $O(2n+1) \cong SO(2n+1) \times \mathbb{Z}/2$, the cohomology of $BSO(2n+1)$ is reduced from that of $BO(2n+1)$. However note that the situation for $BO(2n)$ is different.

The extraspecial 2-group $2^{1+2n}_+ \cong \mathbb{Z}/2 \times \mathbb{Z}/2$ is the n-th central product of the dihedral group D_8 of order 8. It has a central extension

$$(3.4) \quad 0 \twoheadrightarrow \mathbb{Z}/2 \twoheadrightarrow G \twoheadrightarrow V = \mathbb{Z}/2 \twoheadrightarrow 0$$

Let $H^*(BV; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, \ldots, x_{2n}]$. Then Quillen proved [Q2]

$$(3.5) \quad H^*(BG; \mathbb{Z}/2) \cong \mathbb{Z}/2[x_1, \ldots, x_{2n}]/(f, Q_0f, \ldots, Q_{n-2}f) \otimes \mathbb{Z}/2[w_{2n}].$$

Here w_{2n} is the Stiefel-Whitney class of the real 2^n dimensional irreducible representation restricting non zero on the center and $f = \sum x_{2i-1}x_{2i} \in H^2(BV; \mathbb{Z}/2)$ represents the central extension (3.4).

Letting $y_i = x_i^2$ in $H^*(BG; \mathbb{Z}/2)$, we can write

$$f^2 = \sum y_{2i-1}y_{2i}, \quad (Q_k f)^2 = Q_0Q_k f = \sum y_{2i-1}^{Q_k}y_{2i} - y_{2i-1}y_{2i}^{Q_k}.$$
Now we consider in the motivic cohomology $H^{**}(BG; \mathbb{Z}/2)$ and change $y_i = -1$. Since $f = 0 \in H^{2,2}(BG; \mathbb{Z}/2)$, we can see that $Q_{k-1}f = 0$ and $Q_k Q_0(f) = 0$ also in $H^{**}(BG; \mathbb{Z}/2)$. However for general n, $\sum y_i \neq 0$ in $H^{**}(BG; \mathbb{Z}/2)$. Let

\[(3.6) \quad A = (Z/2[y_1, \ldots, y_{2n}, c_{2n}]/(Q_0 Q_k f, \ldots, Q_0 Q_n f)) \otimes Z/2[r]. \]

Lemma 3.6. For $G = \mathbb{Z}/2^{a+2n}$, there is a map $A \rightarrow H^{**}(BG; \mathbb{Z}/2)$ which induces the injection $A/(f^2) \subset h^{**}(BG; \mathbb{Z}/2)$.

When $m = 0, 1, -1 \mod 8$ and $m > 0$, we say that Spin(m) is real type $[Q2]$. When Spin(m) is real type, from Quillen, we know that $H^*(BSpin(m); \mathbb{Z}/2) \subset H^*(BG; \mathbb{Z}/2)$ where $G = \mathbb{Z}/2^{a+1}$. Let x be the Hurwitz number (for details see $[Q2]$).

Corollary 3.7. Let $G = Spin(m)$ be real type and the Hurwitz number h, and let

\[A = (Z/2[c_2, c_3, \ldots, c_m, c_{2h}]/(Q_1 Q_0 w_2, \ldots, Q_h Q_0 w_2)) \otimes \Delta(w_2, \ldots, w_{2n})/(c_2, Q_0 c_7) \otimes Z/2[r]. \]

where $w_i, i \leq m$ (resp. w_{2h}) is the Stiefel-Whitney class of the usual SO(m) representation (resp. of the irreducible 2^h-dimensional spin representation). Then we have a map $A \rightarrow H^{**}(BG; \mathbb{Z}/2)$ which induces the injection $A/(c_2) \subset h^{**}(BG; \mathbb{Z}/2)$.

We study Spin(7) and the exceptional Lie group G_2. The cohomology of G_2 is given by $H^*(BG_2; \mathbb{Z}/2) \cong Z/2[w_4, w_6, w_7]$, and w_i is the Stiefel-Whitney class of the inclusion $G_2 \subset SO(7)$. The cohomology $H^*(BSpin(7); \mathbb{Z}/2) \cong H^*(BG_2; \mathbb{Z}/2) \otimes Z/2[w_6]$.

Corollary 3.8. Let $A = Z/2[c_2, c_4, c_6, c_7] \otimes \Delta(w_4, w_6, w_7) \otimes Z/2[r]$. Then there is the map $A \rightarrow H^{**}(BG_2; \mathbb{Z}/2)$ which induces the injection $A/(c_2) \subset h^{**}(BG_2; \mathbb{Z}/2)$. Similar facts hold for BSpin(7) tensoring $Z/2[c_8]$.

The cohomology operations are given

\[
\begin{align*}
Q_1 Q_0 (w_4 w_6) &= w_8^2, \\
Q_2 Q_1 Q_0 (w_4 w_6 w_7) &= w_6^4.
\end{align*}
\]

Proposition 3.9. Let $w(w_4) = 2, w(w_{(4,6)}) = 2$ and $w(w_{(4,6,7)}) = 3$ with $tc(w_{i_1 \ldots i_n}) = w_{i_1 \ldots i_n}$. Then we have the injection

\[h^{**}(BG_2; \mathbb{Z}/2) \subset Z/2[c_4, c_6, c_7] \]

\[\otimes Z/2[1, w_4, S_2 w_4, Q_1 w_4, Q_2 w_4, S_2 Q_2 w_4, w_{(4,6)}, w_6, w_{(4,6,7)}] \otimes Z/p[r]. \]

Remark. If $tc^{3,4} \otimes Q$ is epic, then we can take $w_4 \in h^{4,3}(BG_2; \mathbb{Z}/2)$, i.e., $w(w_4) = 2$. The kernel $Ker(tc^{3,4})$ is not so big for $X = BG_2$. Indeed, it is known that

\[CH^*(BG_2) \cong Z_2[c_2, c_4, c_6, c_7]/(2^*(c_2^2 - 4c_4), 2c_7, c_2 c_7), \quad \text{for some } r \geq 0. \]

The cohomology operations are given in $H^*(BSO(7); \mathbb{Z}/2)$

\[Q_1 Q_0 w_2 = w_4^2, \quad Q_2 Q_0 w_2 = w_6^2, \quad Q_3 Q_0 w_2 = w_6^2 w_6^2 + w_6^2 w_6^2 + w_6 w_6^2. \]

Hence we have $c_3 = 0, c_5 = 0, c_2 c_7 = 0$ in $CH^*(BG_2)$ but $c_2 \neq 0$.

\[\text{\textcopyright NOBUAKI YAGITA} \]

\[\text{\textcopyright 111} \]
From here we consider the case $p = \text{odd}$. One of the easiest examples is the case $G = \text{PGL}_3$ and $p = 3$. The mod 3 cohomology is given by $([\text{K-Y}],[\text{Ve}])$

$$
\left(\mathbb{Z}/3[y_2]\right) \oplus \mathbb{Z}/3(1) \oplus \mathbb{Z}/3[y_8] \oplus \mathbb{Z}/3[y_{12}]
$$

It is known that y_2, y_3, y_8 and y_{12} are represented by Chern classes. Moreover $Q_1 Q_0 (y_2) = y_8$. Hence these elements are in the Chow ring, namely,

$$
h^{2n,2n}(\text{BPGL}_3; \mathbb{Z}/3) \cong \left(\mathbb{Z}/3[y_2]\right) \oplus \mathbb{Z}/3[y_8] \oplus \mathbb{Z}/3[y_{12}].
$$

The cohomology operations are given

$$
y_2 \xrightarrow{\beta} y_3 \xrightarrow{p^1} y_7 \xrightarrow{\beta} y_8
$$

Thus we get $h^{*,*}(\text{PGL}_3; \mathbb{Z}/3)$ completely.

Theorem 3.10.

$h^{*,*}(\text{BPGL}_3; \mathbb{Z}/3) \cong \left(\mathbb{Z}/3[y_2]\right) \oplus \mathbb{Z}/3(1) \oplus \mathbb{Z}/3[y_8] \oplus \mathbb{Z}/3[y_{12}]$

Next consider the extraspecial p-group $G = p^{1+2n}$. When $n > 2$, even the cohomology ring $H^\ast (G(C); \mathbb{Z}/p)$ are unknown, while it contains the subring

$$
B = \mathbb{Z}/p[y_1, \ldots, y_{2n}, c_p]/(Q_1 Q_0 f, \ldots Q_n Q_0 f).
$$

where $f = \sum x_{2i-1} x_{2i}$ for $\beta x_i = y_i$ and $Q_k Q_0 f = \sum y_{2i-1} y_{2i}^p - y_{2i-1} y_{2i}$. Since $f = 0 \in H^{2,2}(BG; \mathbb{Z}/p)$, we have

Proposition 3.11. Let $G = p^{1+2n}$ and $A = B \otimes \mathbb{Z}/p [\tau]$. Then there is an injection $A \subset H^\ast (BG; \mathbb{Z}/p)$

We consider the case $n = 1$ here. Let us write $E = p^{1+2}$. The ordinary cohomology is known by Lewis [Lj], [Te-Y3], namely,

$$
H^{\text{even}}(BE)/p \cong (\mathbb{Z}/p[y_1, y_2]/(y_1^2 y_2 - y_1 y_2^p)) \oplus \mathbb{Z}/p\{c_2, \ldots, c_{p-1}\} \otimes \mathbb{Z}/p[\mathbb{C}]$

$$
H^{\text{odd}}(BE) \cong \mathbb{Z}/p[y_1, y_2, c_p]\{a_1, a_2\}/(y_1 a_2 - y_2 a_1, y_1 a_2 - y_2 a_1) \mid |a_i| = 3.
$$

Theorem 3.12.

$h^{*,*}(BE; \mathbb{Z}/p) \cong (\{1, \beta^{-1}\})(H^{\text{even}}(BE)/p - \{\beta^{-1}\}) \otimes \mathbb{Z}/p[\tau]$

where $w(H^{\text{even}}(BE)/p) = 0, w(H^{\text{odd}}(BE)) = 1$ and β^{-1} ascends the weight one.

Proof. Since all elements in $H^{\text{even}}(BE)$ are generated by Chern classes, we have the isomorphism $h^{2n,2n}(BG; \mathbb{Z}/3) \cong H^{2,2}(BE)/p$. We know $H^{\text{odd}}(BE; \mathbb{Z}/p)$ is generated as a $H^{\text{even}}(BE)$-p-module by two elements a_1, a_2 such that $Q_1 a_1 = y_1 c_p$ [Te-Y3].

The mod p-cohomology is written additively $H^{*}(BE; \mathbb{Z}/p) \cong \{1, \beta_p\} H^*(BE)/p$. Here β_p is the (higher) Bockstein. All elements in $H^{\text{odd}}(BE)$ are just p-torsion and we can take $a'_1 \in H^2(BE; \mathbb{Z}/p)$ such that $\beta(a'_1) = a_1$. Thus we take $a'_1 \in H^2(BE; \mathbb{Z}/p)$ so that $a_1 = H^2(BE; \mathbb{Z}/p)$.

Next consider elements $x = \partial_p^{-1}(y), y \in H^{\text{even}}(BE)/p$. If $y \in (\text{Ideal}(y_1, y_2))$, then $\partial_p^{-1}(y) = \sum x_i b_i$ for $b_i \in H^{\text{even}}(BE)/p$, and hence we can take $w(\partial_p^{-1}(y)) = 1$. For other elements $y = c y_c$ with $c \in \mathbb{Z}/p[c_p]$, we can prove ([Lj]) that the elements are represented by transfer from a subgroup isomorphic to $\mathbb{Z}/p \times \mathbb{Z}/p$. Therefore we can also prove that $w(\partial_p^{-1}(y)) = 1$. Thus we complete the proof.

References

[Sc-Y] B. Schuster and N. Yagita. Transfer of chern classes in BP-cohomology and Cow rings. To appear in *Trans. AMS.*

Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
E-mail address: yagita@mito.iipc.ibaraki.ac.jp