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OPTIMAL STOPPING GAMES BY EQUAL~WEIGHT PLAYERS
FOR POISSON-ARRIVING OFFERS ¥

MINORU SAKAGUCHI** (TR 2 %)

Abstract. Two players observe a Poisson stream of offers. The offers are ...
r.v.s from Ugp (jdistribution. Each player wishes to accept one offer in the
interval[0,T) and each aims to select an offer as large as possible. Offers arrive
sequentially and decisions to acoepf»r reject must be made immediately after the
offers arrive. Players have equal weights, so if both players want to accept a same
r.v., alottery is used to the effect that each player can get it with probability ¥z If
one player accepts ar.v. and the other doesn’t, the game goes on as one-person game
for the latter. Player who fails to accept any r.v. before T gets a reward of zero.
Each player wants to maximize his expected reward. The normal form of the game
is formulated. By introducing a Riccati differential equation, the explicit solution is
given to this game to calculate the Nash value and the equilibrium strategies. The
bilateral-move version of the game is also analysed and the explicit solution is
derived.It is shown that the second-mover stads unfavorable, on the contrary to the
case in multi-round poker.

1. Optimal Stopping Game for Poisson-arriving Offers.

Players I and II must make a decision to accept ( A or reject( R) an offered job at each
offer presentation. The offers arrive during time interval [0, T] as a Poisson process with
rate ). The offered jobs have random sizes being i.i.d. random variables' from :1 uniférm
distributtion on [0,1]. Whenever an offer with size x arrives it is presented to bot h players
simultaneously, and players must choose cither A or R. I the players choice-pair is A-R or R-

A then the player who chooses A gets x dropping out from the game t.hereafter;and the other player
continues his (or her)) one-person game. If the choice-pair is A—A»then'a lottery is used to the
effect that A-R or R-A is enforced to the players with equal probability i‘ If the choice-pair‘ isR-R,

then the current sample X is rejected and the game passes on to the time when ————

y anew job arrives next. Player who cannot accept any offer until ime T gets a reward of zero.

Each player aims to maximize his expected reward.
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Define state (x,t) to mean that (1) both players remain in the game, and (2) an offer with
size X has just arrived at time T~ t ( i.e. the remaining time until horizon is t). Let®(xt)
(\P(:&t )), be the probability-of choosing A by play%{state (x,t) AlsoletV; (t;cp, Y be the
expected reward for player [ at time t left to 'go_,.gf 3layers employ strategies $,and f’. Then
the game is descrived by the following differntial equations ( if one considers the possible events
when the residual time decreases from t to t—gt and takes the limit as At->0 )
WD N, W)= e wen+ [ (F MG B(F ¢)ix
with the initial conditions \/ (0)=V,(0)=0and 0
(I)
i /“?—/k A\
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Here V; (‘t ¢, %), Plxt)and \fk.t ) are abreviated by V; ( t)’ @and \{/, respectively,and

t

(.3 ) =2 0L tsT

( ) Ut ) 2+At 7 - . _
is the optimal reward for the one-person game at time t left to go.  The optimal strategy for this

one-person game is to choose A( R) if x >(<) U (), Oneobtains (1.3) by solving the
. ! . 2
differential equation Y Uit)=-Ut)+ L Wutt)dx ="£(|—u(e ), Ulo)=o,

We wart £ seloe the problem t (Vi(T ¢ ¥), V(T ¥)—> Nosh o5
(P, 4c+))

The explicit solution to the simultaneous-version of the game (1.1)~/(1.3) is given in Section 2.

2, S[mwlfaneous-move Crame,
We prove

Theorem 1. Letm( t) be the solution of the Riccati differential equatiop
@) Naf() =qu(l+2 U-30%)~(1-U)m+k(U-m)’  with m(p)=0,

where k=2 (1 — log 2 ) =0.6137, and t of m(t) and U(t ) are omitted in the r.h.s. Thenthe
strateq y-pasr ' -

: o, . if 0Sx<mit),
2.2) )= (x t) = _;(‘);_"‘.‘)(&)7)_% ) - H miE) < UE).
is_tn equilibrium ; it U<,

¥ with a common equiibrium value m(T") ’
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To solve the Riccati differential equation (2.1) is not desparate, because we can find one
particular solution
(2.5) m, (O=(+7")HUF)—7,

where T—..—.( Gfe+ -1)/@_13{) = Vq;?f'iezba—zl) =0.31¢

Corollary 1.1
m (£)=m, )+ ()7 )
where m > tt—) is given by (2.5), or equivalentl )

(2.9) myfe)=1—(i+ 3’)(1+%>\t7-j
and p (t) is given by .
o
@9 PO= A = 1+ E-)ne

where ¥~ — . an 150 Y -
ree ¥ [T gz +1298597 gyt = 4o % ) T g,
We see that 1—m(‘r)=0((AT~)-I)) &)\T—)% 4

Conallary Lz mit)is concave amd noreasng with m{o)=0
ana ’W\[\T)-—#‘, a5 NEC 00,

CoroAUlar‘y 1.3 The'times until the game become dne-Pe rson
game has the deteifive ]’)df

(2.19) §Cr=nrpErexp [‘”J: P ],
where

! 2
$ )= - ) - — x
P )-Uzc(;(q H-E T dx.
The ’pro\w‘;'&iff of 5eﬂ'm7 2ero by both PQ"?“’ i3
\—5:- 36)dds = MP[—%ST s dels ]
3. Bilatesal-move Version

We shall also discuss about the bilateral-move version of the game as follows: In each state
(x,t) players moves are split into two steps. Player I first decides to choose either R or A, and

then player 11, after. being informed of the choice chosen by I, decides to choose either R or A.
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The rest of the game rule is the same as in the simultaneous-move version. $o, the game in state

(x.t) is described by

Players 5t step 2Zndstep  Broffe
I:Lt) { R—

A_
L_,{ R (Vitt-at) Va(t-4t))
A ( Ult-at), z )

R ( z, ULUat))
A (30cU(eat), H1UE-at))

Let ‘ﬁ(( X,t) \ ")"A(X, t )) be the probability that IT chooses A, after he is informed of

L:(yt)

-

the fact that | has chosen R (A). Alsolet @ (x, t) be the probability that one chooses A.

Denste Vi(£,, Yo, tan) and Vot 4,0 ¥AD, Vi (% ra i) Simply
by Vi), V2t ) and Vix(£), resyec'r'uel} OurProb»Qem is Now

(VT ¢t Vo T € 42\ ) — Vach
R 2 R A) (?*R‘ﬁ)

Then since player I’s behavior after being informed of I's {5 3 is evidently to choose A
(R)ifx)K) iVi*U:) e have

Utt)
19 R t)=I(x>Volt)) and Ya, (3 £)= T(2>U(D),
We obtain for the game
an R [FeT e, U)
* ?’im x+ S(4UYayJJdx
(1.8) K+ v 26)= § [‘l"..(‘l’g T+ e x)

+ 4 | U+ Har U, 3] ax,
)\4VJtl')+3T H“j [‘P ‘AN +‘f’R,\)>+?’rA»I+l{x+U)‘h*\]]dI

RO AAUE Jf@ (Felart o )+ s U 3000 § J ot

(1.9

with the initial conditions Vc'(O )= V‘.:*(O) =0 , L\=L 2. Inther.h.s.of Eq. (1.7)~ (1.i0)
simplified notat ions for (%, t) , V(t )etc. are used.
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In the bilateral-move version of the game, symmetry for the players’ role disappears. Also,
since ( X, t) is the common knowledge for both players, the disadvantage of information for the
first-mover doesdt exist, and therefore the relation Vist) = Voo (t) is not assured,

Ihgprem 2. The solution to the bilateral-move version of the game given by (1.7)~~«1.10)

is as follows s Let V,, (£),0nd Voo (t)  satisfy the simultaneous differential equation

6O ROWET = W) (1T + LU=, 3

(3.5) NV )= ot L0, +20-0™)

With Vi (0) = 0, c=| 2 (Inthe r.h.s. of (3.4)-(3.5) the argument t is omitted ).
We have

(3.6) V2. )< Vi (), ( 0st <7 ) ,

and_

(3.7) ?*(‘,*)=4'A*(f,+)=I(U(t)<x§;‘) ’

o () = I( Vit Yex <
is in equilibrium with the payoffs (Vias(Ti* q;_zkn’f):_j '1 )

Lorollary 2.1  The solution to (3.4)-(3 S)iss Let q =g§- Déegé {03 Then

(3.8) Vau () = (1)U )—a + (a(t)+ 4" )™
69 T + . -

, % -'q,\*)'—‘JoJf(U@)-E,(?))@P{—-S IU—VZ!(S' ) ”U} dr,
(3.10) q)=(1+ %5){@ Lty J+Z e

Wesee that  [— T, h‘): O(()\T)-‘) as \ T,

\_Cq_roll_ggggagé Vo (t) is concave and increasing with V24(0)=0 and
Vax(t)— |, as Nt—soo,

Xt Den Trgns

hggggllat‘y 23 Vpx(t) isincreasing with Vi(0)=0 and V/'*(t)-_ﬂ as Ntrs<o
and , 4s 2

CQ.EQLL@_I.X 2.4. The time s until the game becomes one-person game has the defective p.d.f.

38); 2 = Nq(s)exp [->\jzw>dw] ,

where  q(s) = I—V,_*(T—-s), - T
The probability of getting zero by both playersis - S ﬁ(S)dS :QXF %RS j_[S)ds)
v b '

Theorem 2 shows that the first-mover behaves just as if he plays his one-person game without

val, but, in reality, he gets less (l.e. Vi, (t)< U(+ )) because of the fact that the second-

over prevents him from getting U (t).
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4. Remarks.

19 Table 1 gives values of U(T), m(T), and V,, (T), computed from the eqdations in

Corollaries 1.1 and 2.1 for some values of AT. ‘Values of \/ ,‘_(T) in Theorem 2 are not given

for its troublesome computations.

Table 1. Values of U(T), m(T) and V (T).

AT [ I A SR (- 16 22
um | - % Va 3 Sk 09897 09/b7
m(T) | 02252 03830 o871 09797 08509 0.8879
Vol T) | 2.2i70 o304y 06607 09754 03492 c.9%EL

2% A remarkable feature contained in this work is that in the simultaneous-move version of th

game, the equilibrium strategy uses some randomization between R and A, whereas , in the

bilateral-move version of the game, they employ non-randomized strategies only. §.¢e Figuf—cl,

Figure 1. Sampie paths of equilibrium plays when both players

it

Remain in the game

(a)

In Theorem 1, Mix means a

random choice ( R, A5 %, ?3‘.)

In Theorem 2,R—>A,for example
means choice-pair of R by T
first, and A followed by II,

3%  In the bilateral-move game, the first-mover stahds at advantage than the second-mover, * See
(3.6) in Theorem 2. This is different from earlier works on single and multi-round poKker,
where the first mover stands at disadvantage, because players’hands xforlandy
for II are private informations, and I leaks some information to his rival about his x by-moving

first. ( See Gamaev [ 3 J and Sakaguchi [ 7])
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4° ) Itis interesting to investigate some open problems as follows .
(a) Solve the version where the game is played under winning probability ( WP ) maximization.
Player wins if he gets the offer larger than that his rival gets. Each player aims to maximize his
probability of winning. For the case where the offers arrive with the unit pace é&———>
deterministically, see Sakaguchi [ 97,

(b) In(a), player wins if he gets the largest offer among those arrived and will arrive before
time T. Each player aims to maximize his probability of winning.

(c¢) Solve no-information version of the game. Players do not know the size-distribution
of Poisson arriving offers, but can only observe the relative rank among those arrived so far of the
offer. Each player wants to minimize the expected absolute rank of the offer he gets. The best

( worst ) has the absolute rank 1 ( n, if the n-th is the last offer arrived before time T ),
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