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Summary. An epidemic model with several kinds of susceptible is analysed from aBayesian perspective.
The posterior distribution of the parameters of the model is explored via Markov chain Monte Carlo
methods. The methods are illustrated using data from areal life respiratory disease epidemic, and the
results compared with those obtained using martingale estimating equations.

1 Introduction

We shall consider asimple Markov model in which susceptibles are one of $k$ different types,
corresponding to different levels of susceptibility to the disease in question. Such differences
in susceptibility typically arise due to age, although other factors can be important in specific
scenarios (e.g. the effects of vaccination). Epidemic models of this kind have been considered
by anumber of authors (e.g. Ball [1], Becker [2], Britton [4], and Yip and Chen [7]), although
it should be noted that the context of Bayesian inference has not previously been explored.

In general, epidemic outbreak data are incomplete in that the times of infections are unknown.
As aconsequence, the analysis of such data generally requires the imputation of missing in-
formation. $\mathrm{O}$ ’Neill and Roberts [6] describe aMarkov chain Monte Carlo (MCMC) method
approach for the Bayesian analysis of ahomogeneous epidemic model, and here we extend their
basic method to cater for anon-homogeneous setting. For another tyPe of extension, see O’Neill
and Becker [5].

The outline of the paper is as follows. In Section 2, the model and data are described, along
with the Bayesian framework and inferential objectives. Section 3presents the procedure used
to perform inference for the parameters, in which aGibbs sampler incorporating aMetropolis-
Hastings step is defined. Our method is used to analyse data from areal epidemic in Section 4,
and some of the results are compared with classical estimates obtained via martingale equations
in Yip and Chen [7]. Further studies are mentioned in Section 5.
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2Model, data, notation and Bayesian framework

2.1 Model

Consider apopulation consisting initially of $k$ groups of susceptible individuals, where the groups
are labelled 1, . . . ’

$k$ and group $i$ contains $N_{i}$ susceptibles, $i=1$ , $\ldots$ , $k$ . An epidemic is initiated
in the population by one of the susceptibles becoming infected, this infection being assumed to
occur via some process external to the population. As we shall see later, the identity of the
initial infective will not be included as part of the available data. For $t\geq 0$ and $i=1$ , $\ldots$ , $k$ ,
define $X_{\dot{l}}(t)$ and $\mathrm{Y}_{\dot{l}}(t)$ as the numbers of susceptible and infective individuals, respectively, in
group $i$ at time $t$ . Furthermore, let $\mathrm{Y}(t)=\sum_{=1}^{k}.\cdot \mathrm{Y}_{\dot{l}}(t)$ denote the total number of infectives in the
population at time $t\geq 0$ . The epidemic is then defined according to the following infinitesimal
transition probabilities, the transitions themselves corresponding respectively to an infection
and aremoval:

$\mathrm{P}\mathrm{r}\{(X_{i}(t+\delta t), \mathrm{Y}(t+\delta t))=(x-1, y+1)|(X_{i}(t), \mathrm{Y}(t))=(x,y)\}$ $=$ $\beta_{i}xy+o(\delta t)$ ,
$\mathrm{P}\mathrm{r}\{(X:(t+\delta t),\mathrm{Y}(t+\delta t))=(x,y-1)|(X_{\dot{l}}(t),\mathrm{Y}(t))=(x,y)\}$ $=$ $\gamma y+\mathrm{Y}(\mathrm{t})$ ,

all other transitions having probability $o(\delta t)$ .

2.2 Data and notation

It is assumed that the type and removal time of each individual is observable, but that the infec-
tion times are not. These assumptions are motivated by the fact that real-life disease outbreak
data almost never includes infection times, but may include the times at which individuals are
detected. The infection times are treated as unknown parameters as in O’Neill and Roberts [6].
For convenience, we define atime origin by setting the first observed removal at time zero; the
data then consist of the times $\tau_{\dot{\iota}j}$ , where $\tau_{\dot{|}j}$ is the time of the $j\mathrm{t}\mathrm{h}$ removal in the $i\mathrm{t}\mathrm{h}$ group. The
removal times are observed up to atime $T>0$ and thus $0\leq\tau_{\dot{|}j}\leq T$ for all $\tau_{\dot{|}j}$ . Note that if the
epidemic has not been completed by time $T$ , then the number of infections occurring up until
time $T$ is unknown and $n_{i}\leq m_{i}\leq N_{\dot{l}}$ , $i=1$ , $\ldots$ , $k$ .

Let $\tau_{\dot{l}}$ . $=$ $(\mathrm{i}\mathrm{i}\mathrm{i}, \tau_{\dot{l}2}, \cdots, \tau_{\dot{l}n})$:and $I_{\dot{l}}$ . $=(I_{i1}, I_{\dot{1}2}, \cdots, I_{\dot{l}m})$:represent the vector of ordered removal
times of type $i$ and of ordered infection times of tyPe $i$ , respectively. Furthermore, define
$I..=$ $(I_{1}., \cdots, I_{k}.)$ , $\tau..=(\tau_{1}., \cdots, \tau k\cdot)$ , and $\beta$. $=(\beta_{1}, \cdots, \beta_{k})$ . The following is alist of additional
notation that we shall use.

$I_{\dot{1}1}$ : the time of the first infection in the $i\mathrm{t}\mathrm{h}$ group
$I_{\min}$ : $\min\{I_{11}, /21, \cdots, I_{k1}\}\equiv \mathrm{t}\mathrm{h}\mathrm{e}$ time of the first infection in the total population
$i_{\min}$ : type $i$ for which $I_{\dot{*}1}=I \min$

$n_{i}$ : the observed total number of removals of tyPe $i$

$m_{i}$ : the unobserved total number of infections of type $i$

$N$ : $\sum_{i=1}^{k}N_{\dot{l}}\equiv \mathrm{t}\mathrm{h}\mathrm{e}$ initial number of susceptibles in the total population
I.. I. . $\backslash I_{m\dot{l}n}$
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2.3 Bayesian inference

Our objective is to explore the posterior density of the parameters given the data, i.e. $\pi(\beta., \gamma|\tau..)$ .
However, the likelihood $\pi_{L}$ $(\tau..|\beta., \gamma)$ is essentially intractable, since it involves integrating over
all possible values for the unknown infection times. Consequently we instead work with the
augmented likelihood $\pi_{L}(\tilde{I}.., \tau..|\beta., \gamma, I_{\min}, i_{\min})$, which is given below (equation (2)). Then, by
Bayes’ Theorem,

$\pi(\beta.,\gamma, I_{\min}, i_{\min}|\tilde{I}.., \tau..)\propto\pi_{L}(\tilde{I}.., \tau..|\beta.,\gamma, I_{\min}, i_{\min})\pi(\beta., \gamma, I_{\min}, i_{\min})$, (1)

where $\pi(\beta., \gamma, I_{\min}, i_{\min})$ denotes the prior density of $\beta.$ , $\gamma$ , $I \min$ and $i \min$ . The MCMC algx
rithm described below will enable us to obtain samples from $\pi(\beta., \gamma, I_{\min}, i_{\min}|\tilde{I}.., \tau..)$ , and so,
by ignoring the values of $I_{\min}$ , $i \min$ and /.. we thus obtain samples from the required posterior
density $\pi(\beta., \gamma|\tau..)$ .

The augmented likelihood that we require is given by

$\pi_{L}(\tilde{I}.., \tau..|\beta., \gamma, I_{\min}, i_{\min})=$

$\{\prod_{i=1}^{k}[\prod_{j=1}^{n}.\cdot\gamma \mathrm{Y}_{i}(\tau_{ij}^{-})][\prod_{l=2}^{m}.\beta_{i}X_{i}(I_{il}^{-})\mathrm{Y}(I_{il}^{-})]\}\cdot\{\prod_{i=1,i\neq i_{\min}}^{k}\beta_{i}X_{i}(I_{i1}^{-})\mathrm{Y}(I_{i1}^{-})\}$ .

$\exp\{-\sum_{i=1}^{k}[\int_{I_{\min}}^{T}\beta_{i}X_{i}(t)\mathrm{Y}(t)dt+\int_{I_{i1}}^{T}\gamma \mathrm{Y}_{i}(t)dt]\}$ , (2)

where $\tau_{ij}^{-}$ denotes the time just prior to the $j\mathrm{t}\mathrm{h}$ removal time of type $i$ .

We assume apriori that $\beta_{i}\sim\Gamma(\nu\beta.\cdot, \lambda\beta:)$ , $i=1$ , $\cdots$ , $k$ , i.e., $\beta_{i}$ has agamma prior with shape
parameter $\nu_{:}\beta$ and scale parameter $\lambda_{\beta}:$ . Likewise, we set aprior for $\gamma$ as $\gamma$ $\sim\Gamma(\nu_{\gamma}, \lambda_{\gamma})$ . The
prior for $I_{\min}$ is assumed to be an improper uniform on $(-\infty, 0)$ , and the prior for $i_{\min}$ uniform
on the set $\{$ 1, $\ldots$ , $k\}$ . These priors are assumed to be mutually independent.

As well as the basic model parameters $\beta$. and $\gamma$ , we shall also consider the following quantities
of interest.

1. $\triangle_{ij}=\beta_{i}-\beta j$ , $i$ , $j=1$ , $\ldots$ , $k$ and $i\neq j$ ;

2. $\phi_{ij}=\beta_{i}/\beta_{j}$ , $i$ , $j=1$ , $\ldots$ , $k$ ;

3. $\theta_{i}=N\beta_{i}/\gamma$, $i=1$ , $\ldots$ , $k$ ;

4. $R_{0}= \sum_{i=1}^{k}\theta_{i}N_{i}$ .

The parameter Ro, as described in Yip and Chen [7], is athreshold parameter for the epidemic.
Essentially, in alarge population then epidemics die out quickly with probability 1if $R_{0}\leq 1$ ,
while if $R_{0}>1$ then there is some probability of amajor epidemic (see Ball [1]). Finally, we
note that $\theta_{i}$ , and thus $\phi_{ij}$ and $R_{0}$ , are estimable from final size data alone (i.e. the final numbers
infected), see for example Britton [4]
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3Inference procedures

The MCMC algorithm described below is an extension of one suggested by O’Neill and Roberts
[6] for ahomogeneous population epidemic model.

First note that, ffom (1) and (2),

$\pi$ ( $\beta_{\dot{l}}|\beta_{-:},\gamma$ , $\tau..$ , I..) $\{\Gamma\Gamma\{$

$\nu\beta.\cdot+m:-1$ , $\lambda\rho_{:}+\int_{I_{\min}}^{T}X:(t)\mathrm{Y}(t)dt)$ , if $i=i \min$ ,

$\nu\beta.\cdot+m:$ , $\lambda\rho_{:}+\int_{I_{\min}}^{T}X_{\dot{l}}(t)\mathrm{Y}(t)dt)$ , otherwise,

$\pi$ ($\gamma|\beta.$ , $\tau..$ , I..) $\Gamma(\nu_{\gamma}+\sum_{i=1}^{k}n:,$ $\lambda_{\gamma}+\dot{.}\sum_{=1}^{k}\int_{I_{1}}^{T}.\cdot \mathrm{Y}_{\dot{1}}(t)dt)$ ,

where $\beta_{-:}=$ $(\beta_{1}, \cdots,\beta_{\dot{l}-1},\beta_{\dot{l}+1}, \cdots,\beta_{k})$ .

Generating samples from the full conditional distribution of /.. is achieved using aMetropolis-
Hastings algorithm, along the lines suggested in O’Neill and Roberts [6]. Note that this proce-
dure also updates $I_{\min}$ and $i_{m\dot{\iota}n}$ . Specifically, there are three possible moves for /..: 1) moving
an infection time of type $i;2$) removing an infection time of type $i;3$) adding anew infection
time of type $i$ , and one of these is chosen uniformly at each iteration. Then atype $i$ is selected
according to some probability mass function. Where necessary, acandidate infection time, $y$ , is
generated according to the density function

$g(y)=\{$ $c\theta e^{\theta(y-l)}c\theta,$

,
$y\in y\in(-\infty, l](l,T],$

,

where $\theta>0$ and $l<0$ have prespecified values, and where $c=[\theta(T-l)+1]^{-1}$ .

The density $g$ is such that new infection times are proposed uniformly on $(l,T]$ and according
to an exponential distribution on $(-\infty, l]$ . In particular, if $|l|$ is chosen to be something like
atypical infectious period length, then new infection times will be approximately uniformly
proposed on an interval where they might plausibly be found.

4An epidemic of respiratory disease

In this section the methods described above are applied to aparticular dataset.

4.1 Data

The dataset given in Table 1corresponds to diagnosis times of individuals with arespiratory
disease which occurred between October and November of 1967 on the island of Tristan da
Cunha in the South Atlantic (Becker and Hopper [3]). We assume that the time of diagnosis is
the same as that of removal. The total population of the island of 255 was partitioned into 3
groups: (1) Infants [age 0-4], (2) Children [age 5-14], (3) Adults [age 15 or above]. There was
one unidentified case, hence $N=254$. The groups’ initial population sizes were 25, 36 and 193,
respectively. The time is discretised and the number in each column of the table is the number
of infective individuals of each age group removed at the beginning of the day
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Table 1: 1967 epidemic of respiratory disease on Tristan da Cunha
(taken from Becker and Hopper [3])

$\frac{\mathrm{D}\mathrm{a}\mathrm{y}}{\mathrm{I}\mathrm{n}\mathrm{f}\mathrm{a}\mathrm{n}\mathrm{t}\mathrm{s}00031310010000009}$
1810 11 12 13 16 17 19 20 21 22 29 30 Total

Children 00111011010000006
Adults 11102314132121125

4.2 MCMC implementation and priors

We assume that the data describe the entire outbreak, so that the epidemic was contained after
the infective adult on Day 30 was removed. Thus the Metropolis-Hastings step used to update
infection times in the MCMC algorithm will only have one possible move, namely that of moving
infection times. The probability mass function for selecting agroup for this move was set by
equating $p_{i}$ with the ratio of the number of removals of type $i$ to the total number of removals
of all the groups, e.g., $p_{1}=9/40$ . Hence the infection times, regardless of the type of group,
are equally likely to be selected. For the candidate generating density function $g(y)$ for the
Metropolis-Hastings step we set $\theta=1$ , $l=-10$ .

Two sets of priors are chosen for the $\beta_{i}’ \mathrm{s}$ and $\gamma$ , namely non-informative and informative.
Note that we consider informative priors mainly for the purpose of illustrating the MCMC
algorithm, although it is also ameans of investigating the robustness of the posterior estimates.
The hyperparameter values used for the informative case are listed in Table 2. In the non-
informative case, we assume that the $\beta_{i}’ \mathrm{s}$ and $\gamma$ are distributed uniformly over the positive real
line (improper priors).

Table 2: Informative priors: hyperparameters

4.3 Results

Table 3contains the posterior mean and standard deviation of each parameter of interest under
two prior selections of hyperparameter values. Figures 1-2 contain scatterplots of $\beta_{1}$ against $\gamma$

for both non-informative and informative priors. Pairs of those of $\beta_{i}$ against $\gamma$ , $i=2,3$, are
similar to Figures 1-2, hence are omitted.

Regarding the marginal posterior density estimates of $\beta_{1}$ , $\beta_{2}$ , $\beta_{3}$ , $\gamma$ and $R_{0}$ , they are more sharply
peaked for the informative than the non-informative cases. For both non-informative and infor-
mative prior cases, the posterior mean of $\beta_{1}$ is the largest and that of $\beta_{3}$ is the smallest. The
posterior estimate of the excess susceptibility rates between the infants and the adults is 0.003206
for the non-informative prior case and 0.002093 for the informative. Hence, the infants are most
prone to the disease but the adults are least likely to contract the disease. This implies that
the estimate of the susceptibility rate of the infants relative to that of the adults is the largest.
This relative rate has mean 3.637 with standard deviation of 1.487 in the non-informative case
and mean 2.553 with standard deviation of 0.8689 in the informative prior case. Both cases of
prior parameters produced similar posterior mean values of the removal rate
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Table 3: Output ffom MCMC algorithm

Figure 1: $\beta_{1}$ vs $\gamma$ (non-informative) Figure 2: $\beta_{1}$ vs $\gamma$ (informative)

Yip and Chen [7] used amartingale approach to derive maximum lkelihood estimates for the
Oij’s, $\theta_{\dot{l}}$ ’s and $R_{0}$ . We now briefly compare their results to ours, although adirect comparison
requires caution due to the effects of priors, particularly in the informative case. First, the
ranking of the posterior means of the faj’s agrees with Yip and Chen’s corresponding ranking.
Second, the posterior means of the $\theta_{i}’ \mathrm{s}$ are larger than the corresponding maximum likelihood
estimates obtained by Yip and Chen for both non-informative and informative prior cases,
apart from the estimate of $\theta_{1}$ for the informative prior case. However, since the marginal
posterior density for each $\theta_{i}$ is right-skewed, the posterior mean is likely to be greater than the
modal value. Thirdly, both posterior means for $R\circ$ are about 1.2, which is comparable to the
maximum likelihood estimate of 1.1 obtained by Yip and Chen. Regarding the scatterplots,
those for informative priors are, as would be expected, more tightly clustered than those for
uninformative priors. Finally, the plots reveal slight positive correlation between each $\beta_{\dot{l}}$ and
$\gamma$ . This is to be expected, essentialy because data consisting only of removals make it hard to
distinguish between short infectious periods with high susceptibility ( $i.e.$ , large $\gamma$ , large $\beta_{i}$ ) and
the converse situation (small $\gamma$ , small $\beta_{\dot{1}}$ ). Thus estimation of $\theta_{i}=\beta_{i}/\gamma$ is likely to be more
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precise than individual estimation of $\beta_{i}$ and $\gamma$ , as is reflected in Table 3, and $\beta_{i}$ and $\gamma$ are likely
to exhibit positive correlation.

5Further studies

The methodology that we have considered here can, in principle, be adapted for variants of
the basic model. These include models with non-exponential infectious periods, or with latent
periods. Another possibility is the situation where the actual numbers of initially susceptible
individuals are unknown; in our notation, $N_{i}$ would then become another model parameter.
These and other topics are the subject of current research.
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