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Stochastic Unit Commitment Problem

Takayuki Shiina* and John R. Birge]L

Abstract The unit commitment problem is an important problem for electric power utilities. The unit commitment problem
is to determine the schedule of power generating units and the generating level of each unit. The decisions are which units
to commit at each time period and at what level to generate power meeting the electricity demand. In this paper we propose
a new algorithm that is based on the Dantzig-Wolfe reformulation and column generation approach to solve the stochastic
unit commitment problem. The algorithm continues adding schedules from the dual solution of the restricted linear master
program until the algorithm cannot generate new schedules. The schedule generation problem is solved by the calculation of
dynamic programming on the scenario tree.

1. Introduction

The economic operation and planning of electric power generation occupy an important position in electric
power industry. Wood and Wollenberg [17] offered brief overview and many applications of operations
research methods to real electric power problems. The electric power utilities have to maintain sufficient
capacity to meet electricity demand during the peak load periods. The unit commitment problem is to
determine the schedule of power generating units and the generating level of each unit. The decisions are
which units to commit at each time period and at what level to generate power meeting the electricity
demand. The objective function is to minimize the operational cost which is the sum of the fuel cost and
the start up cost. The problem is a typical scheduling problem of electric power system. This problem
becomes a multi stage nonlinear integer programming problem because the fuel cost function is assumed to
be a convex quadratic function.

Many types of optimization technique have been applied to the unit commitment problem. Delson and
Shahidehpour {7] illustrated how linear and integer programming had been applied to power system engi-
neering such as generation scheduling, allocation of reactive power supply or planning of capital investment
in generation equipment. Sheble and Fafd [12] is a survey in this field for the period from the late 1960’s
to the early 1990’s. They classified the techniques into exhaustive enumeration, priority list, dynamic pro-
gramming, integer and mixed-integer programming, branch-and-bound, linear programming, network flow
programming, Lagrangian relaxation, and expert systems/artificial neural networks. In these approaches,
the Lagrangian relaxation technique seems to be the most promising because it decompose the original
problem into smaller subproblems. Muckstadt and Koenig [9] used this approach by relaxing the demand
constraints. Bard [1] used the Lagrangian relaxation to disaggregate the problem by generator into separate
subproblems that were solved by a dynamic programming.

In these studies, the electricity demand at any time period is known in advance. However for many
actual problems, such assumption is often unjustified. These data contain uncertainty and are represented
as random variables since the data represent information about the future. Takriti, Birge and Long [13]
is a first paper that deals with the stochastic programming approach. Stochastic programming (Birge
(3], Birge and Louveaux [4]) is a method that deals with optimization problem under uncertainty. They
developed the technique used in the traditional deterministic unit commitment problem. The uncertainty
in demand is modeled by introducing a set of scenarios. The problem is decomposed and solved by using
a Lagrangian relaxation type method, progressive hedging algorithm [11]. For each scenario, the relaxed
deterministic problem is then decomposed into single generator subproblem by Lagrangian relaxation. It
can be solved efficiently by dynamic programming. Takriti and Birge [15] generalized this approach and
showed that the duality gap of the relaxation is bounded by a certain constant. Carpentier et al. [5] applied
the augmented Lagrangian technique to the problem. Nowak [10] used the stochastic Lagrangian relaxation
method which led to a decomposition to into stochastic single unit subproblems. Takriti and Birge [14]
developed a technique for refining the solution obtained from solving the Lagrangian relaxation problem.
Their approach is to select a schedule among the feasible solutions sought up to the latest iteration, and
to combine them so that the demand constraint can be met. The suggested model is the mixed-integer
programming problem and is solved by branch-and-bound method. Though the numerical results indicated
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improvements, the approach is no more than heuristic. The efficient method to seek the feasible schedules
and to refine them is requested. Takriti, Krasenbrink and Wu [16] presented a stochastic programming
model that incorporates power trading and uncertainty in electricity demand and spot prices.

In this paper we propose a new algorithm that is based on the Dantzig-Wolfe reformulation(Dantzig and
Wolfe [6]) and column generation approach(Barnhart et al. [2]) to solve the stochastic unit commitment
problem. Our method refines the approach of Takriti and Birge [14]. It can deal with the case that the
number of the units in operation at the same time is restricted. Therefore it can be applied to the general
scheduling problems that have more complicated constraints.

2. Uncertainty in Electricity Demand

We assume that the duration of the planning horizon in T time periods. Since the electric demand at any
point in time period may be uncertain, we have to model the unit commitment problem as a stochastic
programming problem.

To model uncertainty, we define the total demand for electricity during period ¢t as a random variable
di(> 0). It is assumed that d, is defined on a known probability space and has a finite discrete distribution.
Let d; be the realization of random variable d;. The sequence of the realization of electricity demand
d = (d,...,dr) is called scenario. It is assumed that we have a set of S scenarios, d*,s = 1,...,5. We
associate a probability p, with each scenario s,s =1,...,S.

Scenario

2Time Period
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e

Figure 1: Scenario tree

If two scenarios s,, 33, (81 # s2) satisfy the condition (df*,...,d;') = (df?,...,d;?), they are indistin-
guishable up to period t. The decisions made for scenario s; up to period ¢ must be the same as those
made for s, up to period t. Two scenarios s; and s, are said to be included in the same bundle at time ¢.
The scenario sets {1,...,S} at each time can be partitioned into disjoint subsets which represent scenario
bundles. We define B(s,t) to be the bundle in which scenario s is member at time period t. This type of
constraint is called a nonanticipativity constraint or a bundle constraint.

If B(s',t) = B(s,t) and B(s',t + 1) # B(s',t +1),8' < s, the time period t + 1 is a point when scenario
s splits from other scenario s’. The scenario s’ is called a predecessor of scenario s. If there are multiple
predecessors for s, we define the scenario with the lowest index as the predecessor of s. The predecessor of
scenario s is denoted by P(s). The time period 7(s) is defined to be the first period in which a scenario s
does not share a bundle with another scenario s’ < s. For scenario 1, we define 7(1) = 1.

To store df,t = 1,...,T,8 = 1,...,5, we adopt the special data structure based on the method of
Takriti, Krasenbrink and Wu [16]. The demand data are stored in a list. For each scenario s, it is sufficient
to store only d7,),...,dT to save memory space. We define B(s) be the address in which dr,) is stored
so that dy(,),...,dr are stored in the space with the address B(s),...,B(s + 1) — 1. When we take out

t,t = 1,...,T, we trace backward from B(s + 1) — 1 to B(s) to obtain d}-,...,d,'r(,). Then, we trace
backward from B(P(s) + 1) — 1 — {B(s + 1) — B(s)} to B(P(s)) to obtain A1 145 (p(sy) for the
scenario P(s).

3. Stochastic Unit Commitment Problem

We assume that there are I generating units. The status of unit i at period ¢ under scenario s is represented
by the 0-1 variable u,. Unit i is on at time period ¢ under scenario s, if u§, = 1, and off if 4%, = 0. When
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Figure 2: Data structure to store demand data

unit ¢ is switched on, it must continue to run at least for a certain periods L;. These minimum up-time
constraints are described in (3.1).
ug —uf, , < ui,7=t+1,...min{t+L;-1,T}t=2,...,T (3.1)
Similarly, when unit ¢ is switched off, it must continue to be off at least l; periods. These constraints are
called minimum down-time constraints (3.2).
uf, y—ujy < l-wui,7=t+1,...,min{t+-1,T}t=2,...,T (3.2)

The power generating level of the unit i at period ¢ under scenario s is zf, > 0. Let [g;,Q:] be an
operating range of the generating unit 7. The unit is operated within the range so that zf, has to satisfy
the following constraints (3.3).

qud <z < Qiui,i=1,...,I,t=1,...,T,s=1,...,S (3.3)

The fuel cost function f;(z2,) is a convex quadratic function of z%,. The start up cost function g; (1, uit)
satisfies the condition g;(0,1) > 0,g;(0,0) = 0,¢;(1,0) = 0,9:(1,1) = 0. The mathematical formulation of
the stochastic unit commitment problem is described as follows.

I T

min Epa ZZ{fi(xft)u:t + gi(u:,t—la u:,t)}

s— i=1t=1

subject to szt >di,t=1,...,T,s=1,...,8

Stochastic i=1 .
ufy—uf, ; <uf,7=t+1,...,min{t +L; - 1,T},

Unit t
Commitment i=1,...,I,t=2,...,T,s=1,...,§
Problem uf, 3 —up <1- ,,,r =t+1,...,min{t +; — 1,T},

i=1,...,I,t=2,. T,s_1,...,s

uf € {0,1},i =1,. It-l,...,T,s::l,...,S

qiuf, <z < Qu mz-l LIt=1,...,T,s=1,...,8

uil =ug,i=1,.. It_l .., T,

Vs1,82 € {la---,S},Sl # 82, B(s1,t) = B(s3,t)

The problem results in a large scale mixed integer quadratic programming problem that combines S deter-

ministic unit commitment problems. The objective function is to minimize the expected operational cost
over all possible scenarios.

4. Reformulation of Unit Commitment

The unit commitment problem is reformulated as the integer programming master problem. In this problem
demand constraints are relaxed. This reformulation is called Dantzig-Wolfe reformulation (Dantzig and
Wolfe [6]). It is assumed that for each unit a set of feasible schedule over all scenarios is already given. The
number of given feasible schedules for unit ¢ is K.

I Ki S
min Z ZZP:{Z filz¥) +91('"'zt nu :tk))}vck
Integer TR
Programming subject to Z Zx;’f’uk t=1,...,T,s=1,...,8
Master i=1 k=1
Problem
Zv =1i=1,..,1
v G{O 1L,i=1,...,Lk=1,...,K;
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In this formulation, z2F, uf,i =1,...,I,t =1,...,T,s =1,...,8,k = 1,..., K; are given parameters.
They satisfy the following minimum up-time constraints (4.1), the minimum down-time constraints (4.2),
the 0-1 constraints (4.3), the generating level constraints (4.4) and the bundle constraints (4.5).

ulf —utk_ <, r=t+1,...,min{t+L;-1,T}Lk=1,...,K, (4.1)
i=1,...,I,t=2,...,T,s=1,...,S

uk _ —uF<1-w¥, r=t+1,...min{t+L-1,T}Lk=1,...,K; (4.2)
i=1,...,I,t=2,...,T,s=1,...,8

u,t €{0,1}, k=1,...,Kyi=1,...,I,t=1,...,T,s=1,...,8 (4.3)

ulf <z <Quft, k=1,..,Kyi=1,.. It=1,...,Ts=1,..,8 (4.4)

u;?,l":u;g*, k=1,...,K;;i=1,...,I,t=1,...,T, (4.5)

Vs,,82 € {1,...,5},81 # 82,B(sl,t) = B(82,t)

We cannot enumerate a set of feasible schedules in advance. The schedules are often described implicitly.
The column generation approach is applied to generate feasible schedules. Then we solve the following
restricted linear programming master problem. We start from where only the subset of all feasible solutions
is given.

min Z E Eps{z:(ft(z +9t("at 1LY :tk))}'ulc
Restricted =1 kek; *=1
Pro;:;xax;ing subject to E szt"v" >dg,t=1,...,T,s=1,...,S
Master =1 kek;
Problem Yovk=1li=1,..,I
keK;
v¥*>0,i=1,...,,ke K,,K; C{1,...,K;}

Solving the restricted linear programming master problem gives an optimal primal solution v}*,i =
Lk € K, and an optimal dual solution #n;*,t =1,...,T,s =1,...,S, ui,i = 1,...,I. We need to
check whether (7*, u*) is dual feasible for the linear programming relaxation problem of the original integer

programming master problem. The dual problem for the linear programming master problem is described
as follows.

Dual \ !
Problem max Z Zd' + Zl‘i
fOl’ 3—1 t.. =
Pro;‘:near ing subject to 'gl Z:z:,"w,‘ +pi < ZP-{E(f:(I F + g!(ui LU},
Master i=1,...,I,k=1,.
Problem ) 1r{20,t-1 Ts—l -8

s T

If sz:tkﬂ-t" + ”: S ZPJ{Z(fi(z t gi :t 1»LU tk))}’z = 17' . 7I’k = 11- “sKi? (7!",[1-‘) is dual
fea:sililza il'or the linear programmmg master problem and the optimal solution of the linear programming
master problem is obtained. Rather than examining each schedule, we can treat all schedules implicitly
by solving the following schedule generation problem. In the schedule generation problem for unit i, we
regard the parameters r2¥,u¥,t = 1,...,T,s = 1,...,S as variables and seek to minimize the objective
function. If the optimal value of the objective function (; is greater than or equal to O for i = 1,...,1, the
optimal dual variable (7*, u*) is feasible for the dual problem of the original linear programming master
problem. If the optimal objective function value is less than 0 for some i, we can adopt the optimal
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wifuift=1,...,T,s=1,...,5 as a feasible schedule and set |K;| = |K, + 1].

G = min Zps{z filzf Jui + gi(u zt »LU ))} ZZ“*S ftk-l":
s=1 t=1 :
subject to uft’“—uf’g L <ukr=t+1,.. min{t+Li—1,T},
Schedule i=1,.. Jt=2. T,s=1,...,5
Generation u;"’; L —ugk <1-—uff,7-—t+1 min{t+1; - 1,T},
Problem i=1,... It=2..Ts=1,...8
for wke{01},i=1, . Lt=1,. T,s=1,....8
Unit 4 guf <o < Quitii=1,....1,
t=1,...,T,s=1,...,8
uft"":u;’fk,i=1,...,I,t=1,...,T,
Vs1,82 € {1,...,5},81 # 82, B(s1,t) = B(s,1)

Let ¢! be the optimal objective value for the schedule generation problem for unit i, then (7*,u* +
¢*) is a feasible solution for the dual problem of the linear programming master problem since ¢} <
s T

Ep,{Z( fi@F)usf + gi(ulk_;, ulf))} - Z Zw*’ #k — u?. The lower bound for the linear program-

s=1 t= 1

ming master problem is given as z Zd‘t’ 4+ Z u; +¢;) from the duality theory of linear programming.

s=1 t=1 =1
The lower bound for the optimal value of the original stochastic unit commitment problem is calcurated as

4.6 from the Lagrange duality.

>

i=1

x

S T
> oA (et yuth + g uth_y, ugh)}or* - ZE@ (astor* — df) (46)

1s=1 t=1 i=1 k=1

x~
Il

The schedule generation problem can be solved by calculating dynamic programming on the scenario tree.
First, we solve the next generation level decision problem to seek optimal xftk,t =1,...,.T,s=1,...,S.
The problem is a convex quadratic programming problem that we can solve easily.

Generation Level
Decision Problem
for Unit ¢
at Period ¢
under Scenario s

min  fi(zg) — ok
subject to ¢; <z < Q;

Then the binary decisions uf¥,t = 1,...,T,s = 1,...,S are made. Because each scenario s does not
duplicate with other scenario for the period from 7(s) to T, the calculation of dynamic programming is
done by the following recursive equations. A unit i must be in one of L; + l; states. The first L; states
mean that the unit 4 is on, and the last /; states mean that the unit i is off. Let C;(s,t,k) is the optimal
cost of unit ¢ under the scenario s from stage ¢ to the end of the horizon, if unit i is in state k at stage t.

The recursive equations are defined as follows.

Ci(s,t +1, k+1)+p,{f,(x F) + g:(0,1)} — mroxtk ifk=1

Ci(s,t + 1,k + 1) + p, fi(z2F) — npexF ifl<k<L;
’ _ min{C;(s,t + 1,k) + ps fi(z2f) — ny°z2k,
Cils,t, k) = Ci(s,t+1,k+1)} if k=1L,
C,-(s,t+1,k+1) ifL;<k<L;+1;
min{C;(s,t + 1,k),Ci(s,t + 1,1)} ifk=Li+1;

But in the period before t = 7(s) — 1, the decisions made for the scenario that belongs to the same
scenario bundle must be same to satisfy the nonanticipativity constraints. If a bundle B(s,t) is composed
of a set {s¢,,..., s¢, }, we define s,,in to be the scenario with the lowest index in the same bundle such that
Smin = min{s,, : s;, € B(s,t),j = 1,...,n}. We let the scenario s,,i, represent the bundle B(smmin,t) in
which sy, is a member. The scenario set {s;,,...,3s:, } is unified into the representative scenario smin and
it is redefined that p, ., = 29:, €B(sminyt) Po, - The dynamic programming calculation is done by taking
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Ci(s,t,Li + ;) Ci(s,t+1,L; + 1)
Ci(s,t,Li + 1) Ci(s,t +1,L; +1)
ci(sita Lt) A o Ci(81t+ 11 Ll)

Pofi(xff) — mi*zi

Ci(s,t,1) Do fi(22F) + 9:(0,1)} — np°z2F “o  Ci(s,t+1,1)

Figure 3: Recursive equation of dynamic programming(L; = [; = 2)

the mathematical expectation as (4.7).

Ci(Smin, T(S) k) = Z Ds,; C; (stj ,T(s),k) (47)

lgj GB('min :T(’)_l)

The Unified Scenario smin Scenario s,
with Probability p,_ .. with Probability p,,

O—Smae © ~O :
B(8ymin, T(s) = 1) Scenario s;,
with Probability p,,

Figure 4: Unification of scenario

The algorithm of dynamic programming on the scenario tree is shown as Figure 5.

e Step 0. Set time pointer for each scenario £, = T + 1. Set Scenarioset = {1,...,S}. Set
Ci(8,&s,k) = 0 for each scenario s € Scenarioset, k=1,...,L; + ;.

e Step 1. If Scenarioset = ¢, stop. Otherwise select a scenario s = argmin{77(s) : s € Scenarioset}.

o Step 2. Given C;(s,&,, k), calculate C;(s, T(s), k) using backward recursion for k = 1,...,L; + I;.
Given C;(P(s), s, k), calculate C;(P(s), T(s), k) using backward recursion for k = 1,...,L; +1;. Set
time pointer £p(,) = T(s).

o Step 3. Set Ci(P(s),&, k) = Ci(P(s),&4,k) + Ci(3,€,,k), Pp(s) = Pp(s) + Ps- Scenarioset =
Scenarioset \ {s}. Go to Step 1.

Figure 5: Calculaton of Dynamic Programming on Scenario Tree

The algorithm we developed continues adding schedules from the dual solution of the restricted linear
program until the algorithm cannot generate new schedules.

5. Concluding Remarks

In this paper we proposed a new algorithm that is based on the Dantzig-Wolfe reformulation and column
generation approach to solve the stochastic unit commitment problem. That is an algorithm to continue
adding schedules from the dual solution of the restricted linear program until the algorithm cannot generate
new schedules. The schedule generation problem is solved by the calculation of dynamic programming
on the scenario tree. More research is necessary to make scenario set that reflects real demand. As for
application to real power system, the coordination of the operation of hydroelectric generation plants is left
as future problem.
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