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Abstract. This paper investigate a competitive facility location problem where
. there are two facilities on a linear market. Customers at a demand point utilize
the facility which seems to be the nearest one from them. We assume that they do
not distinguish the small difference between two distances, i.e., they do not always
utilize the nearest facility by strictly measuring physical distance. We formulate
this preference by introducing fuzzy difference of the actual distance between two
points.

In our model, two companies, the leader and the follower, establish their facil-
ities in this market to get as much buying power as possible. This paper considers
the problems to find the optimal location ?or the follower and for the leader. We for-
mulate these problems as a medianoid problem and a centroid problem respectively,
and show the domains which contain the solutions for these problems.
Keywords. continuous location, noncooperative games, fuzzy programming

1 Introduction

Competitive location problems were introduced by H.Hotelling [1], who studied the Nash
equilibrium problem of two sellers on a linear market. S.L.Hakimi considered the Stackelberg
equilibrium problem on a network [2], that is, two companies “leader” and “follower” establish
their facilities on nodes in order to capture as much buying power as possible. He showed
that the problem is NP-hard. Z.Drezner studied the same kind of a competitive problem on
a plane [3]. Although a large number of studies have been made on Nash equilibrium, but
there is few on Stackelberg equilibrium.

Many of these kind of models were based on a hypothesis that the customers utilize strictly
the nearest facility. But actually, customers at a demand point measure the distance to the
facilities by some mental way and choose one which is relatively near. We assume that they
do not distinguish the small difference between two distances, i.e., they do not always feel
1.01km is nearer than 1.05km. So we introduce relative distance and fuzzy set to represent
the concept of nearness, which is determined by actual distances between facilities and a
customer.

In out model, leader X and follower Y establish their facilities on the market in order
to capture as much buying power as possible. X locate his facility first, and Y locates his
facility, knowing the decision of the company X. So, the company X must determine his
optimal location by considering that the competitor locate his facility myopically afterward.
There are two types of problems, i.e., to find the optimal location for Y and to find that for
X. We formulate these problems as a medianoid problem and a centroid problem, and show
the domains which contain the solutions for these problems.
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2 Our Model and Formulation

2.1 Relative Distance

Let d(p, z) denote the distance between a demand point P and the facility X. We introduce
the following function fy which represent the relative distance between P and Y, when the
location of X is given.

2

Function fx can be defined by the same way. By introducing a coefficient a > 0 which
satisfies d(p,y) = ad(p, z), we can redefine fy as follows.

2(a - 1) a= d(p: y)
a+l ’ d(p, z)

provided that when d(p,z) = 0 and d(p,y) # O then fy(a) = 2, when d(p,z) = 0 and
d(p,y) = 0 then fy(a) =0.

fr(a) =

2.2 Evaluating the Relative Distance

We introduce the following function g which represent the degree of feeling “there is no
difference”.

0, fY(a) < —.fl

i (fr(@+h), A <fr(a)<-fo
’ 0< fY(a) < fO
g (fr(@) - fi), fo<fr(a)<fi

0, fY(a) 2 fl

fo, f1 are constants which satisfy 0 < fo < f1 < 2.
If g = 1 then customers feel X and Y are at the same distance. If g =0 then they feel X or
Y is obviously near.

[y

9(fy(a) =

2.3 Preference

Customers utilize facility Y only when they feel Y is nearer than X. We use the fuzzy set Y
for relative nearness with the following membership function.

1, 0 S o S ap
. 2(a-1
1-—710—_5-};(%-1+f1), p<a<o
uy(a) =¢ 0.5, g <a< -o}—l
0.5 (2(a-1) 1 1
70—71( atl _fl)’ a<la<a;
0, a2 Y
ap, o are constants which satisfies 2(&":{—112 = —-fi, 3(:1—1_:11)- = —foand 0 < ap < 3 <

1. Figure 1 shows the shape of the preference function py (a). Note that the curves are
hyperbolas.

We assume that one’s profit is in proportion to the amount of captured buying power,
which is shared in proportion to uy(a). The sum of all buying power is always assumed to
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Figure 1: Preference function py (a)

2.4 Medianoid Problem and Centroid Problem
Using a distribution function F(p), the profit of Y is denoted by

My (z,y) = /

o0

o0

wy(@)dF®) = [~ uy(p,2,9)dF ) .
(o o] —00
With given z, medianoid problem is the problem to find y which maximizes My (z,y). Let
y*(z) denote the solution for the problem, then centroid problem is to find z which satis-
fies max, Mx (z,y*(x)). Since this game is zero sum game, this problem is equivalent to
min; My (z, y*(z)).
3 Uniform Distribution on a Line

We investigate a linear market on the interval [0,1]. Function My becomes

My (z,9) min{l,%nof} )
Y(Z,y) = ~/m;B dF
gr=r
[T =R dF )
¥ / 9(e)aF(p) + [ sy IOIFE
1 max{0,E5AY) 1 e 1 [t
= dF(p) + ~ dF(p) + ~ / dF
M 2/0 (p) + 2 Jetes (?) 2 Jmin{1,47212) @)
ma.x{O,%%ﬂol} %lu
o MOMFG)+ [ hp)ar(p).
1_1+¢,1 14ag

Obviously, if z-> % then Y gets no advantage by locating at y > z. So, we consider the case
wherexg%andy>z.

Now we investigate the change of My with given z. Let My denote the first term of
My. It becomes

min{1, =20 2ap (z—y) Y—aoT
My (z,y) = W)y p={ il  Ta =!
’ ytage 1— 2024 ,therwise
14ag 1+ap
Calculating oMy (z, , M1y is linear on each domain.
The second term becomes
¥=P_,
2(1-ao) , 2(2-1)
ytagz Ttao T 1241

_ 1+ag _ p—z
My (z,y) = ytays 5 (2(1—ao) _ 2(1—a1)) dp
1¥a; 1+ao I+
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3 (a1 — o)
4 (14 ag) (1+a1)

Since the coefficient of y is positive, May is linear and increasing on the interval (z, 1].

(y—2z) .

2(1—ap) , 2(%2-1)

May (z,5) min{1, 5=} ) T+ao =P P
y\&,Y) = / . —apz - - - P -
meo iy | 2 (M - M)

When 2% < 1, A2 < 1,ie,z<y < 1—a;(1—z) then the coefficient of y is positive,
so Msy is linear and increasing function on this interval.

When =22 < 1,1 < L je, 1— ag(l —z) < y < 1 — a1(l — ) then the third
term becomes more complicated and the second partial derivative of M3y with respect to y
becomes

PMay(z,y) _ _—(1+oo) Q+a) (-1 z)”
dy? 2 (a0 — o) (z-y) (-2+z+)’

So My is concave downward on this interval.
When 1 < Y202 1 < L2 je. y > 1 — ap(l — z) then the third term becomes

<0 .

1-ap’ 1-a ?
My (z,y) =0.
The fourth term becomes
1 pmax{0, =4} 0 A=z <
_ 2 - ’ 1—1 —
May (z,y) = 2 ./o 1dp —(11—5;“1:;’ , otherwise

So M,y is linear and strictly decreasing function where y < Z.
The fifth term becomes

1 e 1-a)
Msy (z,y) = 5 o =30+ a) (y—2) .

Since the coefficient of y is positive, Msyis linear and increasing on the interval (z,1).

The sixth term becomes
1 —lay—ay z+ y—oz
Mgy = _1./ ldp = 22«:1—15 L Sy 1 < 1
2 min{ 4222} 0, otherwise
So Mgy is linear and increasing function where y < 1 — o1(1 — z).
. When "gf’_’f >0, ":’g’_—f >0, ie, T <y < Z then the seventh term is linear and strictly
increasing.
When "23’_'1’ <0, ‘:‘;’::f >0, ie, & <y< Z then the seventh term is not linear and
the second derivative of M7y with respect to y becomes

My (z,y) _ (1+a) (1+a)2?
oy? 2 (a0 — o) (z— ) (z+)°

Therefore Myy is concave upward on the interval (&, =)-

When S1=2 < 0, %0=E < 0, ie., y > & then Mry(z,y) =0.

1 ' ap—1

The eighth term Mgy becomes

2(a0-1) 2 :2_1)

e oo + 142 (o1 — ao)
My (z,y) = [0 ==y | 9P = L
8 ) z+agy 2 (2(00—]:) - 2(n-1 4 (1 + ao) (1 + al)

14ag 14+ao 14+

(y—=z) -




215

Since the coefficient of y is positive, Mgy is linear and increasing function on the interval
(z,1].

Comparing the slopes of My --- Mgy on each interval, the maximal value of My exists
on the interval [1 —a;(1—-1z),1 - ag(1 - z)]. In this interval, M1y, May, Msy, Mgy are linear
functions, Myy = 0, Mgy = 0. So we check M3y + Mypy as follows.

*(Msy + Mry)  —(1+ ap) (1+a1) (z (2z+2y-3) —y)

<0
oy? 2(0—a1) (z+y— 2)2 (_:I:+y)2

Therefore M3y + M7y is concave downward.
Considering Myy = 0 and Mgy = 0, My becomes

(I+ag) 1-a1) 1-z-y) (1+00) (1+a)(z-y)log(L)
4 (ap — 1) 8 (a0 — 1) .

1
My (z,y) = 5t

So, the location of y which maximizes My, i.e., the solution for the medianoid problem exists
on the extreme points of the interval [1 — a;(1 — z),1 — ag(1 — z)] or on the point which
makes the derivative zero as follows.

oMy _ (L +oo) (2 (a1 —1) + EE2EH + (1 + o) los(r2287))
o 8 (00 — a1)

This equation cannot be solved by algebraic way, but we can solve actual concrete problems
by some numerical methods. Let § denote the solution, then the solution for the medianoid
problem with given z is

y*(z) = méi,XMY((E,y) » Y= {1 - al(l - IE), g,1- a0(1 - x)} .

Then the solution for the centroid problem is
z* ='mzinMy(a:, yv*(z)) .

On the above part, we treated z as a given number, since X locate his facility first. Let
Ry = {(z,y)} denote the set of Y’s optimal reaction strategy against X, then Mp(r) =
My (z,y), (z,y) € Ry is the set of peak points of the functions My which shapes are fixed
by the location of z.

Then the solution for the centroid problem is rewrote as follows.

Tt = mzin Mg(z)

We can examine the concavity of the function Mg (z) by using the symmetricity between
z and y.

4 Separated Market on a Line

In this section, we investigate a liner market with a gap where no customer exis.ts. We assume
the width of gap is denoted by S and the market is symmetrical about the middle point. In
this case, following properties hold.

Property 1 The solution for the medianoid problem and the centroid problem are on the
interval [0,1]. More generally, they are in the convez hull of demand points.

Brief Proof Ifz <0 thenY can get 1 (=all buying power) locating at y = 0. Similar logic
holds in other cases.
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Figure 2 shows the numerical ex-
ample of uniform distribution with
ap = 0.45,a; = 0.8. The horizontal
axis expresses the location of X and
depth expresses the location of Y on
the same line. If X locate at z = £,
then My does not exceed % wherever . AL IFY
Y may locate. So, in this case, the
solut}on for the centroid problem is
= 3.

Figure 2: Uniform Distribution

Property 2 The solution for the centroid problem does not ezist on the gap. This property
holds even if there are more than one gap.

Brief Proof If z > 1 is on the gap, then there exist some points on the interval 152, 7]
where Y can get more than } by making ¥~ greater than S

At first, we investigate the case where X is on the extreme point, ie., z = 1—;'5 In this
case, if the gap is narrow then Y can get more than % by moving y from 52;§ to 1, making

yi%"f greater than %’-‘5- However, if the gap is wide, Y cannot increase his profit by moving

from L‘Z‘;ﬁ to any direction. So we check the condition that Y cannot get more than % The

critical point is where %‘f’_:f- becomes less than 0, so the condition is S > }—_T_:;-g

Therefore if the gap is wider than or equal to 1-a0 the solutions for the centroid problem

14ao?
and the medianoid problem become
y# —1 2S yt = L:zﬁ

In this case, X,Y share the buying power half and half.
When S < =20 if z y are on the extreme points, ie., z = l—gi,y = I—‘Z‘ﬁ then Y can

1+a0?
get more buying power by moving to the right while the inequality % < ”1—"_',_%05“5 holds. Y
begin to lose some buying power when the inequality ”I{%}f < 1—"2;—3 or ¥=22% < 1 holds. So,

if X locate at x = —1—3—5 then the solution y* for the medianoid problem satisfies the following
inequality.

(1+S)(1+a)
2

Q1+a)(1+ S) _

3 oz}

ooz < y* < min{apz +1 — o,

So, when S < ﬁg and z = %, Y can get more than -;— by locating at y*. Conversely
thinking, X may have better solution in this case, i.e., at the beginning X locate at the point
symmetrical with y*, not l’é—s But in this case Y can get more buying power by moving
from y* to 1, since M1y ++May + My + Mzy + Mgy is concave downward (same as uniform
distribution).

Figure 3 and 4 shows the results of numerical experiment with ap = 0.45, an = 0.8. Figure
3 shows a market with wide gap (S = 1) and Figure 4 shows the case of narrow gap (S=3)-
On each figure, the seven curves show the value of My in z = 0.2,0.25,0.3,0.35,0.4,0.45,0.5
from the left to the right, respectively. The graphs are drawn for y on [z,0.9].
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My MY
0.55 \ 0.55
o_s 0.5
0.45 0.45
0.4 0.4
0.35 Y 0.35 Y

0.2 0.4 0.8 0.8 1 0.2 0.4 0.5 0.8 1
Figure 3: S =1 Figure 4: S =

When S = 2, the solution for centroid problem is z = 0.25 which makes My less than or

equal to 1 5. When § = 8, it can read that £ = 0.3 is a good approximation solution for
centroid problem.

5 Conclusion

e We use the preference based on fuzzy relative difference of distance.
e Competitive facility location problems with “leader” and “follower” are formulated as
the centroid problem and the medianoid medianoid problem.

The interval is shown which contains the solution for the medianoid problem on a linear
market with uniform distribution.

In the divided market, the conditions are shown for which the solution for the centr01d
problem does not come to the extreme points of a market.

e In the divided market, the domam is shown in which the solution for the medianoid
problem exists.

Our further research is finding a solution with other distributions, and extending the market
on a plane.
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