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Representation of Choquet Integral
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1 Introduction

Non-additive set functions on measurable space is used in economics, decision theory
and artificial intelliggnce, called by various name, such as cooperative game , capacity
or fuzzy measure. In this paper, according to Denneberg [4] we call them non-additive
measures. The Choquet integral with respect to a non-additive measure is a basic tool
for multicriteria decision making, image processing and recognition [8, 9]. We consider
the space FM™ of non-additive measures with topology introduced by Choquet integral.

The subspace F M7 of non-additive measures p satisfying u(X) = 1 where X is the
universal set is compact. The space FM™ of non-additive measures is a locally convex
space. Applying the facts mentioned above, we obtain the additive representation. of
Choquet integral, that is, the Choquet integral with respect to a non-additive measure is
represented by the classical integral with respect to the classical measure.

The similar theorems are shown in various contexts. In [11, 12], Murofushi and Sugeno
show the additive representation theorem and propose an interpretation that non-additive

measures express with their non additivity interaction among subset. Denneberg [5] shows
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the additive representation theorem, that is a generalization in various fields of papers,
such as Gilboa and Schmeidler [6, 7] and Marinacci [10].

We compare these representation theorems, and show the equivalent points and the
difference among them. We show that the domain of the representing classical measure
and the representing integrand of classical integral are equivalent, but the classical mea-

sures which represent the non-additive measures are different.

2 Non-additive measure and Choquet integral

In this subsection, we present basic definitions and theorems about non-additive measures

and the Choquet integral.

Definition 2.1. Let (X, X’) be a measurable space. A non-additive measure p is an
real valued set function, u : ¥ — R* with the following properties: (i) u(@) = 0 and
(i) u(A) < p(B) whenever A C B, A,B € X , where R* = [0,00) is the set of extended
nonnegative real numbers. We define the conjugate u¢ of u by p°(A) = pu(X) — p(A°) for

Ae .

The class of bounded measurable functions is denoted by £ and the class of bounded

non negative measurable functions by £+,

Definition 2.2. [1, 11] Let x be a non-additive measure on (X, X).
(1) The Choguet integral of f € L>% with respect to u is defined by
© [ fdu= [ uyoyar,
0

where 1/(r) = p({e|f(z) = r}).
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(2) Suppose p(X) < co. The Choquet integral of f € L with respect to p is defined

by
© [ san=© [ srau-(c) [ raw,
where ft = fVvO0and f~ = —(f AO0).

Definition 2.3. A non monotonic non-additive measure y is k-monotone (k > 2) if for
Al, A EeX

sUar+ D )" 4)2o0.

i=1 IC1,- k,I#0 i€l
We say that p is totally monotone if it is monotone and k-monotone for all k£ > 2.

If u(X) =1 and p is totally monotone, p is a belief function.

Let FM™ be the class of (Ihonotone) non-additive measures. We define FM :=
{p—v|p,v € FM*}. and FM' := {u € FM*|u(X) =1}

Let f be a nonnegative measurable function. We define the map Cy : FM — R by
Cs(p) = (O) /fdu. We define C4 = C;, for X € X. We denote the set of bounded

nonnegative measurable functions by B*. It is obvious that C; is a linear map on F M

for all f € B*.

Definition 2.4. We shall say that the coarsest topology for which every C4 is continuous
for A€ X is X - topology for F M, and that the coarsest topology for which every Cfy is

continuous for f € Bt is B* - topology for F M.

Definition 2.5. Let E be a vector space and A C E.

~ We define the convex hull c(A) by

c(A) =N{Y|A C Y,Yis a convex set}.
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We say that £ € X is an extreme point of X if £ = Az; + (1 — A)zg; 15,2, € X,0< A < 1

implies z; = z; = z. We denote the set of extreme points of A by £(A).

Definition 2.6. We say that 4 € FM! is 0 — 1 non-additive measure if u(A) = 0 or
p(A) = 1for all A € X. We denote the set of 0 — 1 non-additive measures by F M. That

is,

FMg={plp € FM*,pu: X — {0,1}}.

3 Integral representations

In this section, we show three integral representation theorem.

3.1 Representation by Choquet theorem

In this subsection, we show the representation theorem of Choquet integral by topological
approach. The details of the proofs are in [13].

Let E be a Hausdorff locally convex space and Y C E be compact and convex. The set
of continuous convex function on Y is denoted by S(Y'). Define A(Y) := S(Y)N(-S(Y)).

Let K(E, R) be the class of continuous functions f : E — R with compact support.
On K(E,R) we put the order defined by f > 0 if and only if f(z) > 0 for all z € E.
A radon measure on E is a linear map p : K(E,R) — R such that for any Y C E
compact there exists a number My such that f € K(E,R) and supp(f) C Y implies
p(f) < Myl||fl||, where supp(f) is a support of f and the norm || - || is the sup norm.
The collection of Radon measures on E is denoted by R(E) and the set of positive Radon
measures with the order defined by u > 0 if and only if u(f) > 0forall f > 0, f € K(E, R)

by R*(E). We define the order < in R*(Y) by u < v if and only if u(f) < v(f) for
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all f € S(Y). There exists a maximal element m € R¥(Y) with respect to <. We say
that the maximal element m € R*(Y) is a maximal measure. For u € R(E), we define
|lull := sup{|u(f)IIf € K(E, R),||f|| < 1}. We define R := {u € R*(E)|||ul| = 1}. Let
f be a bounded real-valued function. Define f(Y) := inf{g(z)|g € (-=S(Y)),g > f} . We
say that Y} is the bordering set of f if Y; = {z € Y|f(z) = f(z)}

The space FM with Bt - topology is a Hausdorff locally convek space, and FM*
is compact convex. Define h; : FM' — R by hs(u) = Cy¢(u) for f € BY. Then hy; is
linear and continuous. Applying Choquet theorem [3, 2] there exists a maximal radon
measure m € R(FM?) such that by = m(h;) and m(FM' \ G4) = 0 for G4 := {u €
FM'u(A) =0or u(A) =1}, A€ X.

Applying Riesz’s Representation theorem we have the next theorem.

Theorem 3.1. For every u € FM?!, there exists a mazimal Radon measure m € R!

such that

©) [ fau= [ hsim,

for all f € Bt and m(FM*\ G4) = 0 for every A € X. Especially m(FM'\ FM{) =0
if FM?! is metrizable.

We say that (hs,m) is Choquet representation for (f, u).

As to the metrizability of FM' we have the next proposition.
Proposition 3.2. If Bt is separable, the FM' is separable and metrizable.

Next we consider the uniqueness of Choquet representation. First we define the Cho-
quet simplex. Let Y C E be convex and compact. Denote Y = {(Az,\)/z € Y, > 0}

and Y = ¥ — Y . We say that Y is Choquet simplex if there exists sup(z;,z3) for
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T,,Ty € IA/, where the order < is defined by z, < z, if and only if z, — z, € Y. It fol-
lows Choquet theorem [3] that the Choquet representation is unique if and only if F M
is Choquet simplex. But FM" is not always Choquet simplex. Therefore the Choquet

representation is not always unique.

3.2 Interpreter representation

In this subsection, according to Murofushi and Sugeno we present the interpreter repre-

sentation theorem. All proofs are shown in (11, 12].

Definition 3.3. Let (X, X) and (Y,)) be measurable spaces.

(1) A mapping H : X — ) is called an interpreter from X to Y if H satisfies (a)

H(®) =0, (b) H(A) C H(B) whenever A C B.

A triplet (Y,), H) is called a frame of (X, X) if H is an interpreter from X to .

Let (X, &, u) be a non-additive measure space. A quadruplet (Y,Y, m, H) is called an
interpreter representation of x if H is an interpreter from X to ), m is a classical measure
on (Y,Y)and p=moH.
A semifilter § in a measurable space (X,X’) is a non empty subclass of X with the
properties ; (1) @ ¢ 6, (2) if A€ 6 and AC B € X then B € 4.

Denote the set of all semifilters in (X, X') by Sx, and define a mapping Hy : X — 25
by Hx(A) := {0 € Sx|A € 6}.

Sx denotes the o-algebra generated by {Hx(A)|A € X}.

The triplet (Sx,Sx, Hx) is called the universal frame of (X, X) for representation.
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Theorem 3.4. For every non-additive measure p on (X, X) there exists a classical mea-

sure m on Sx such that (Sx,Sx, m, Hx) is a representation of p.

Definition 3.5. Let (Y,), m, H) be an interpreter representation of a non-additive mea-
sure space (X, X, p).

For a non negative measurable function f on X we define a function iy on Y by
if(y) := sup{rly € H({f > r})}. We call ¢y an interpreter for a measurable function f

induced by H.

Theorem 3.6. Let (Y,Y, m,H) be an interpreter representation of a non-additive mea-

sure space (X, X,pu) and i be an interpreter induced by H. We have
(C) /fdu = /ifdm.
for f € L>F.
We have the next theorem from Theorem 3.4 and Theorem 3.6 .

Theorem 3.7. (Interpreter representation theorem) Let (X, X, 1) be a non-additive mea-

sure space. There exists a classical measure m on Sx such that

(C’)/fd,u:/ifdm

for f € L%,

3.3 Representation with Mobius transform |

In this subsection, we present the representation with Mobius transform by Denneberg.
The essence of the proofs are shown in [5].
FM; denotes the set of 0 — 1 non-additive measures. We define the tilde operator

which assigns to a measurable function f: X — [0, 00] the function

Fn) := () [ fan,n € Fats
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If Ac X, Ais defined by A := {n € FMg|n(A) = 1}. We use the notation

T :={A]A € T}, for a class T C 2%.
Definition 3.8. A non-additive measure u, € FM} defined by

1 ACB
uA(B)——-

0 ow.

is called a unanimity game for coalition A.
In some literature, it is called a 0 — 1 necessity measure.
We write the set of all unanimity games on X by FM¢,. FM,, denotes the set of

all supermodular 0 — 1 non-additive measures, that is,
n € FMp,&n(AU B) +9(AN B) > n(A) + n(B)
for AABe X

It is obvious that FMy, C FM{ C FM,.

Let f :— R be a measurable function. We denote by M; the class of upper level sets
{z € X|f(z) > a}.

We denote by D C 27Mo, D, C 2FMbu and D, C 27 Mé. the algebra generated by X
in 25Mo 27 Moy and 27Mb. respectively.

We use F M, as a variable for one of the sets FMy, FM, or FM},, and D, as
D, D, or D,.

Definition 3.9. A kerne} function & for X is a function k : FM{, x X = [0,8] ; (n, A) —

kn(A) such that
(1) &y is a non-additive measure on X, n € FM,,.

(2) For fixed A € X, the real function x,(A) on FM}, is D,-measurable.
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* Next we define k-extension.

Definition 3.10. Let f € £L*® and « be a kernel function. k-extension f* of f defined by

f+(1) = (C) ] f(@)drn(2).

Let v be a non-additive measure on D,. We define the x-transform p on X of v by

u(4) = [ m(A)dvim, A € x.

If k,(A) = n(A) for (n, A) € FMg, x D, then « is a kernel function for X'. The kernel
function k, = n on FMg_ is called the zeta function for X. The corresponding transform
of v is called the zeta transform of v.

_The next proposition is Example 4.1 in Denneberg [5].
Proposition 3.11. Let k be a zeta function. Then we have f* = ffor fecL=e. .
- The next theorems are the main theorems in this subsection.

Theorem 3.12. Let «; be kernel functions for X and v; monotone and additive set func-
tions on D,,i = 1,2 respectively . Let p;; the k; transform of v; fori,7 = 1,2. Define
K:i=Ky—Kg, V:i=v) — vy and p := (11 — p12) — (Ho1 — pa2). If f € L=, then

L fr= i fra g L
and

© [ rdu= [ fra |
v,p and K, are non monotoﬁic noh-additive measures of bounded variation for X.
Corbliary 3.13. Let k be a zeta fu.nction for X and v an additive set function’ on D,.

Let p be the zeta transform of v. If f € L'°°, then

© [ fan= [ Fav
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Theorem 3.14. For any non-additive measure p on X there exists a unique additive set
function v on D, (or D,) so that u(A) = V(;{) for every A € X. Furthermore, u is the

(signed) zeta transform of v.

Corollary 3.15. For any non-additive measure u on X there exists a unique additive set

function v on D, (or D,) so that

© [ fau = [ Fav

for every measurable function f.

We shall call v the Mébius transform of 4 on D, (or D,) and denote it v*.
The Mobius transform is not always monotone. The next proposition shows the nec-

essary and sufficient condition for the Mobius transform to be monotone.

Proposition 3.16. A non-additive measure u on X is totally monotone if and only if its

Mobius transformation v* is monotone.

Since Mobius transformation is additive, the monotonicity is equivalent to the posi-
tiveness of it.
The next two theorems show that the Mobius transform can be extended to a o-

additive (signed) measure.

Theorem 3.17. Any additive set function v on D, is o— additive. If v € FM , then it

has a unique o-additive extension to the o- algebra a'(.if'v) generated by X in 2FM,

Theorem 3.18. Let (X, X, ) be a non-additive measure space. There ezists an additive

set function v* on a(f) generated by X in 27Mb.
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4 Comparison

In this section we show that there exists a bijection from the class of 0 — 1 non-additive

measures to the class of semifilters of X.

Theorem 4.1. Let FM} be the class of 0 — 1 non-additive measures, Sx be the class of

semifilters of X. There ezists a bijection ¢ : FMg — Sx.

We call the bijection ¢ in previous theorem a mediator for representation.

The next theorem follows from the definition of hy.

Theorem 4.2. Let (X, X, ) be a non-additive measure space, (Sx,Sx,m, Hx) is an in-
terpreter representation, and (hy,m) be the Choguet integral representation for (f,u), f €

Bt. Then we have

hy(v) = sup{rlv € Hx({z|f(z) 2 r})},
that is, hf = ‘if.

As to the interpreter représentation and representation with the Mobius transform,

we have the next theorem.

Theorem 4.3. Let ¢ be a interpreter from X to Sx, T be a tilde operator from X to .if:,
@ be the mediator for representation. Define a mapping Hx : X —» 25% by Hx(A) :=

{6 € Sx|A € 6}.
(1) Hx(A) = ¢(A) for Ae X.
(2) ig0p =1(f) for f € L.

As we show above, the representing integrand are equivalent. On the other hand

concerning the representing measure, in the interpreter representation the measure is
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monotone and the uniqueness is not always true. In the representation with M&bius
transform, the measure is not always monotone and the existence is unique.

It is not proved in [5] that there exists an additive set function on D so that it represents
a non-additive measure and the Choquet integral. Using the interpreter representation

theorem, we can show the existence.

Theorem 4.4. For any non-additive measure u on X there exists a measure on D so

that

© [ sau= [ Fav

for every f € L7,

Concerning belief function on the finite X, the two theorems are perfectly the same.
We conclude this paper by showing the next table about the properties of three rep-

resentation theorems.

Table 1: Three representation theorem

Topology | Int. Mobius

Space | FM' | FMg, | Sx | FM)y | FML,
Monotone | O O O X X

Unique X X X X O
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