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1 Introduction

Non-additive set functions on measurable space is used in economics, decision theory

and artificial intelligence, called by various name, such as cooperative game , capacity

or fuzzy measure. In this paper, according to Denneberg [4] we call them non-additive

measures. The Choquet integral with respect to anon-additive measure is abasic tool

for multicriteria decision making, image processing and recognition $[8, 9]$ . We consider

the space $\mathcal{F}\mathcal{M}^{+}$ of non-additive measures with topology introduced by Choquet integral.

The subspace $\mathcal{F}\mathcal{M}_{1}^{+}$ of non-additive measures $\mu$ satisfying $\mu(X)=1$ where $X$ is the

universal set is compact. The space $\mathcal{F}\mathcal{M}^{+}$ of non-additive measures is alocally convex

space. Applying the facts mentioned above, we obtain the additive representation of

Choquet integral, that is, the Choquet integral with respect to anon-additive measure is

represented by the classical integral with respect to the classical measure.

The similar theorems are shown in various contexts. In $[11, 12]$ , Murofushi and Sugeno

show the additive representation theorem and propose an interpretation that non-additive

measures express with their non additivity interaction among subset. Denneberg [5] show$\mathrm{s}$

数理解析研究所講究録 1253巻 2002年 73-86

73



the additive representation theorem, that is ageneralization in various fields of papers,

such as Gilboa and Schmeidler [6, 7] and Marinacci [10].

We compare these representation theorems, and show the equivalent points and the

difference among them. We show that the domain of the representing classical measure

and the representing integrand of classical integral are equivalent, but the classical mea-

sures which represent the non-additive measures are different.

2Non-additive measure and Choquet integral

In this subsection, we present basic definitions and theorems about non-additive measures

and the Choquet integral.

Definition 2.1. Let $(X, \mathcal{X})$ be ameasurable space. Anon-additive measure $\mu$ is an

real valued set function, $\mu$ : $\mathcal{X}arrow R^{+}$ with the following properties: (i) $\mu(\emptyset)=0$ and

(ii) $\mu(A)\leq\mu(B)$ whenever A $\subset B$ , A, B $\in \mathcal{X}$ , where $R^{+}=[0,\infty)$ is the set of extended

nonnegative real numbers. We define the conjugate $\mu^{c}$ of $\mu$ by $\mu^{c}(A)=\mu(X)-\mu(A^{c})$ for

A $\in \mathcal{X}$ .

The class of bounded measurable functions is denoted by $\mathcal{L}^{\infty}$ and the class of bounded

non negative measurable functions by $\mathcal{L}^{\infty+}$ .

Definition 2.2. $[1, 11]$ Let $\mu$ be anon-additive measure on $(X,\mathcal{X})$ .

(1) The Choquet integral of f $\in \mathcal{L}^{\infty+}$ with respect to $\mu$ is defined by

(C) $\int fd\mu=\int_{0}^{\infty}\mu_{f}(r)dr$,

where $\mu_{f}(r)=\mu(\{x|f(x)\geq r\})$ .
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(2) Suppose $\mu(X)<\infty$ . The Choquet integral of $f\in \mathcal{L}^{\infty}$ with respect to $\mu$ is defined

by

(C) $\int fd\mu=(C)\int f^{+}d\mu-(C)\int f^{-}d\mu^{\mathrm{c}}$ ,

where $f^{+}=f\vee 0$ and $f^{-}=-(f\Lambda 0)$ .

Definition 2.3. Anon monotonic non-additive measure $\mu$ is $k$-monotone $(k\geq 2)$ if for

$A_{1}$ , $\cdots A_{k}\in \mathcal{X}$

$\mu(\cup^{k}A_{i})+\sum_{Ii=1\mathrm{C}1,\cdots,k,I\neq\emptyset}(-1)^{|I|}\mu(\bigcap_{I}A_{i})\geq 0i\in$ .

We say that $\mu$ is totally monotone if it is monotone and $k$-monotone for all $k\geq 2$ .

If $\mu(X)=1$ and $\mu$ is totally monotone, $\mu$ is abelief function.

Let $\mathcal{F}\mathcal{M}^{+}$ be the class of (monotone) non-additive measures. We define $\mathcal{F}\mathcal{M}:=$

$\{\mu-\nu|\mu, \nu \in \mathcal{F}\mathcal{M}^{+}\}$ . and $\mathcal{F}\mathcal{M}^{1}:=\{\mu\in \mathcal{F}\mathcal{M}^{+}|\mu(X)=1\}$ .

Let $f$ be anonnegative measurable function. We define the map $C_{f}$ : $\mathcal{F}\mathcal{M}arrow R$ by

$C_{f}( \mu):=(C)\int fd\mu$ . We define $C_{A}=C_{1_{A}}$ for $X\in \mathcal{X}$ . We denote the set of bounded

nonnegative measurable functions by $B^{+}$ . It is obvious that $C_{f}$ is alinear map on $\mathcal{F}\mathcal{M}$

for all $f\in B^{+}$ .

Definition 2.4. We shall say that the coarsest topology for which every $C_{A}$ is continuous

for $A\in \mathcal{X}$ is $\mathcal{X}$ -topology for $\mathcal{F}\mathcal{M}$ , and that the coarsest topology for which every $C_{f}$ is

continuous for $f\in B^{+}$ is $B^{+}$ -topology for $\mathcal{F}\mathcal{M}$ .

Definition 2.5. Let $E$ be avector space and $A\subset E$ .

We define the convex hull $\mathrm{c}(\mathrm{A})$ by

$c(A)=\cap$ { $\mathrm{Y}|A\subset \mathrm{Y}$, Yis aconvex set}
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We say that x $\in X$ is an extreme point of X if x $=\lambda x_{1}+(1-\lambda)x_{2};x_{1}$ , $x_{2}\in X,0\leq\lambda$ $\leq 1$

implies $x_{1}=x_{2}=x$ . We denote the set of extreme points of A by $\mathcal{E}(A)$ .

Definition 2.6. We say that $\mu\in \mathcal{F}\mathcal{M}^{1}$ is 0–1 non-additive measure if $\mu(A)=0$ or

$\mu(A)=1$ for all $A\in \mathcal{X}$ . We denote the set of 0-1 non-additive measures by $\mathcal{F}\mathcal{M}_{0}^{1}$. That

1s,

$\mathcal{F}\mathcal{M}_{0}^{1}=\{\mu|\mu\in \mathcal{F}\mathcal{M}^{+},\mu$:$\mathcal{X}arrow\{0,1\}\}$ .

3Integral representations

In this section, we show three integral representation theorem.

3.1 Representation by Choquet theorem

In this subsection, we show the representation theorem of Choquet integral by topological

approach. The details of the proofs are in [13].

Let $E$ be aHausdorff localy convex space and $\mathrm{Y}\subset E$ be compact and convex. The set

of continuous convex function on $\mathrm{Y}$ is denoted by $S(\mathrm{Y})$ . Define $A(\mathrm{Y}):=S(\mathrm{Y})\cap(-S(\mathrm{Y}))$ .

Let $K(E, R)$ be the class of continuous functions $f$ : $Earrow R$ with compact support.

On $K(E, R)$ we put the order defined by $f\geq 0$ if and only if $f(x)\geq 0$ for all $x\in E$ .

Aradon measure on $E$ is alinear map $\mu$ : $K(E, R)arrow R$ such that for any $\mathrm{Y}\subset E$

compact there exists anumber $M_{\mathrm{Y}}$ such that $f\in K(E, R)$ and supp(f) $\subset \mathrm{Y}$ implies

$\mu(f)\leq M_{\mathrm{Y}}||f||$ , where supp(f) is asupport of $f$ and the norm $||\cdot$ $||$ is the $\sup$ norm.

The collection of Radon measures on $E$ is denoted by $\mathcal{R}(E)$ and the set of positive Radon

measures with the order defined by $\mu\geq 0$ if and only if $\mu(f)\geq 0$ for all $f\geq 0$ , $f\in K(E, R)$

by $\mathcal{R}^{+}(E)$ . We define the order $\prec \mathrm{i}\mathrm{n}$ $\mathcal{R}^{+}(\mathrm{Y})$ by $\mu\prec\nu$ if and only if $\mu(f)\leq\nu(f)$ for
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all $f\in S(\mathrm{Y})$ . There exists amaximal element $m\in \mathcal{R}^{+}(\mathrm{Y})$ with respect $\mathrm{t}\mathrm{o}\prec$ . We say

that the maximal element $m\in \mathcal{R}^{+}(\mathrm{Y})$ is amaximal measure. For $\mu\in \mathcal{R}(E)$ , we define

$||\mu||$ $:= \sup\{|\mu(f)||f\in K(E, R), ||f||\leq 1\}$ . We define $\mathcal{R}^{1}$ $:=\{\mu\in \mathcal{R}^{+}(E)|||\mu||=1\}$ . Let

$f$ be abounded real-valued function. Define $\hat{f}(\mathrm{Y}):=\inf\{g(x)|g\in(-S(\mathrm{Y})),g\geq f\}$ . We

say that $\mathrm{Y}_{f}$ is the bordering set of $f$ if $\mathrm{Y}_{f}=\{x\in \mathrm{Y}|f(x)=\hat{f}(x)\}$

The space $\mathcal{F}\mathcal{M}$ with $B^{+}$ -topology is aHausdorff locally convex space, and $\mathcal{F}\mathcal{M}^{1}$

is compact convex. Define $h_{f}$ : $\mathcal{F}\mathcal{M}^{1}arrow R$ by $h_{f}(\mu)=C_{f}(\mu)$ for $f\in B^{+}$ . Then $h_{f}$ is

linear and continuous. Applying Choquet theorem $[3, 2]$ there exists amaximal radon

measure $m\in \mathcal{R}(\mathcal{F}\mathcal{M}^{1})$ such that $h_{f}=m(hf)$ and $m(\mathcal{F}\mathcal{M}^{1}\backslash G_{A})=0$ for $G_{A}:=\{\mu\in$

$\mathcal{F}\mathcal{M}^{1}|\mu(A)=0$ or $\mu(A)=1\}$ , $A\in \mathcal{X}$ .

Applying Riesz’s Representation theorem we have the next theorem.

Theorem 3.1. For every $\mu\in \mathcal{F}\mathcal{M}^{1}$ , there exists a maximal Radon measure $m\in \mathcal{R}^{1}$

such that

(C) $\int fd\mu=\int h_{f}dm$ ,

for all $f\in B^{+}$ and $m(\mathcal{F}\mathcal{M}^{1}\backslash G_{A})=0$ for every $A\in \mathcal{X}$ . Especially $m(\mathcal{F}\mathcal{M}^{1}\backslash \mathcal{F}\mathcal{M}_{0}^{1})=0$

if $\mathcal{F}\mathcal{M}^{1}$ is metrizable.

We say that $(hf, m)$ is Choquet representation for $(f, \mu)$ .

As to the metrizability of $\mathcal{F}\mathcal{M}^{1}$ we have the next proposition.

Proposition 3.2. If $B^{+}$ is separable, the $\mathcal{F}\mathcal{M}^{1}$ is separable and metrizable.

Next we consider the uniqueness of Choquet representation. First we define the ChO-

quet simplex. Let $\mathrm{Y}\subset E$ be convex and compact. Denote $\tilde{\mathrm{Y}}=\{(\lambda x, \lambda)/x\in \mathrm{Y}, \lambda>0\}$

and $\hat{\mathrm{Y}}=\tilde{\mathrm{Y}}-\tilde{\mathrm{Y}}$ We say that $\mathrm{Y}$ is Choquet simplex if there exists $\sup(x_{1}, x_{2})$ for
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$x_{1}$ , $x_{2}\in\hat{\mathrm{Y}}$ , where the order $\prec \mathrm{i}\mathrm{s}$ defined by $x_{1}\prec x_{2}$ if and only if $x_{2}-x_{1}\in \mathrm{Y}$ . It fol-

lows Choquet theorem [3] that the Choquet representation is unique if and only if $\mathcal{F}\mathcal{M}^{1}$

is Choquet simplex. But $\mathcal{F}\mathcal{M}^{1}$ is not always Choquet simplex. Therefore the Choquet

representation is not always unique.

3.2 Interpreter representation

In this subsection, according to Murofushi and Sugeno we present the interpreter repre

sentation theorem. All proofs are shown in [11, 12].

Definition 3.3. Let $(X, \mathcal{X})$ and $(\mathrm{Y}, \mathcal{Y})$ be measurable spaces.

(1) Amapping $H$ : $\mathcal{X}arrow \mathcal{Y}$ is called an interpreter from $\mathcal{X}$ to $\mathcal{Y}$ if $H$ satisfies (a)

$H(\emptyset)=\emptyset$ , (b) $H(A)\subset H(B)$ whenever $A\subset B$ .

Atriplet $(\mathrm{Y},\mathcal{Y}, H)$ is called aframe of $(X,\mathcal{X})$ if $H$ is an interpreter from $\mathcal{X}$ to $\mathcal{Y}$ .

Let $(X, \mathcal{X},\mu)$ be anon-additive measure space. Aquadruplet $(\mathrm{Y}, \mathcal{Y}, m, H)$ is called an

interpreter representation of $\mu$ if $H$ is an interpreter from $\mathcal{X}$ to)), $m$ is aclassical measure

on $(\mathrm{Y},\mathcal{Y})$ and $\mu=m\mathrm{o}H$ .

Asemifilter 0in ameasurable space $(X, \mathcal{X})$ is anon empty subclass of $\mathcal{X}$ with the

properties ;(1) $\emptyset\not\in\theta$ , (2) if $A\in\theta$ and $A\subset B\in \mathcal{X}$ then $B\in\theta$ .

Denote the set of all semifilters in $(X, \mathcal{X})$ by $S_{X}$ , and define amapping $H_{X}$ : $\mathcal{X}arrow 2^{S_{X}}$

by $H_{X}(A):=\{\theta\in S_{X}|A\in\theta\}$ .

$Sx$ denotes the a-algebra generated by $\{H\chi(A)|A\in \mathcal{X}\}$ .

The triplet $(Sx,Sx, H_{X})$ is called the universal frame of $(X, \mathcal{X})$ for representation
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Theorem 3.4. For every non-additive measure $\mu$ on (X,$\mathcal{X})$ there exists a classical mea-

sure $m$ on $Sx$ such that $(S_{X}, S_{X}, m, H_{X})$ is a representation of $\mu$ .

Definition 3.5. Let $(\mathrm{Y}, \mathcal{Y}, m, H)$ be an interpreter representation of anon-additive mea-

sure space $(X, \mathcal{X},\mu)$ .

For anon negative measurable function $f$ on $X$ we define afunction $i_{f}$ on $\mathrm{Y}$ by

$i_{f}(y):= \sup\{r|y\in H(\{f\geq r\})\}$ . We call $i_{f}$ an interpreter for ameasurable function $f$

induced by $H$ .

Theorem 3.6. Let $(\mathrm{Y}, \mathcal{Y}, m, H)$ be an interpreter representation of a non-additive mea-

sure space $(X, \mathcal{X},\mu)$ and $i$ be an interpreter induced by H. We have

(C) $\int fd\mu=\int i_{f}dm$ .

for $f\in \mathcal{L}^{\infty+}$ .

We have the next theorem from Theorem 3.4 and Theorem 3.6.

Theorem 3.7. (Interpreter representation theorem) Let (X,$\mathcal{X}, \mu)$ be a non-additive mea-

sure space. There exists a classical measure $m$ on $Sx$ such that

(C) $\int fd\mu=\int i_{f}dm$

for $f\in \mathcal{L}^{\infty+}$ .

3.3 Representation with M\"obius transform

In this subsection, we present the representation with Mobius transform by Denneberg.

The essence of the proofs are shown in [5].

$\mathcal{F}\mathcal{M}_{0}^{1}$ denotes the set of 0–1 non-additive measures. We define the tilde operator

which assigns to ameasurable function $f$ : $Xarrow[0, \infty]$ the function

$\tilde{f}(\eta):=(C)[$ $fd\eta$ , $\eta\in \mathcal{F}\mathcal{M}_{0}^{1}$ .
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If $A\in \mathcal{X},\tilde{A}$ is defined by $\tilde{A}:=\{\eta\in \mathcal{F}\mathcal{M}_{0}^{1}|\eta(A)=1\}$ . We use the notation
$\overline{\mathcal{T}}:=\{\tilde{A}|A\in \mathcal{T}\}$ , for aclass $\mathcal{T}\subset 2^{X}$ .

Definition 3.8. Anon-additive measure $u_{A}\in \mathcal{F}\mathcal{M}_{0}^{1}$ defined by

$u_{A}(B)=\{$
1 $A\subset B$

0 $0.\mathrm{w}$ .

is called aunanimity game for coalition A.

In some literature, it is called a0-1 necessity measure.

We write the set of all unanimity games on $\mathcal{X}$ by $\mathcal{F}\mathcal{M}_{0u}^{1}$ . $\mathcal{F}\mathcal{M}_{0s}^{1}$ denotes the set of

all supermodular 0-1 non-additive measures, that is,

$\eta\in \mathcal{F}\mathcal{M}_{0s}^{1}\Leftrightarrow\eta(A\cup B)+\eta(A\cap B)\geq\eta(A)+\eta(B)$

for $A$ , $B\in \mathcal{X}$

It is obvious that $\mathcal{F}\mathcal{M}_{0u}^{1}\subset \mathcal{F}\mathcal{M}_{0s}^{1}\subset \mathcal{F}\mathcal{M}_{0}^{1}$ .

Let $f:arrow R$ be ameasurable function. We denote by $\mathcal{M}_{f}$ the class of upper level sets

$\{x\in X|f(x)\geq\alpha\}$ .

We denote by $D$ $\subset 2^{F\mathcal{M}_{0}^{1}}$ , $D_{u}\subset 2^{\mathcal{F}F\mathrm{I}_{0u}^{1}}$ and $D_{s}\subset 2^{F\mathcal{M}_{0\epsilon}^{1}}$ the algebra generated by $\tilde{X}$

in $2^{\mathcal{F}\lambda 4_{0}^{1}},2^{\mathcal{F}\mathcal{M}_{0u}^{1}}$ and $2^{\mathcal{F}\mathcal{M}_{0s}^{1}}$ respectively.

We use $\mathcal{F}\mathcal{M}_{0}^{1}$ . as avariable for one of the sets $\mathcal{F}\mathcal{M}_{0}^{1},\mathcal{F}\mathcal{M}_{0u}^{1}$ or $\mathcal{F}\mathcal{M}_{0s}^{1}$ , and D. as

$D$, $D_{u}$ or $D_{s}$ .

Definition 3.9. Akernel function $\kappa$ for $\mathcal{X}$ is afunction $\kappa$ : $\mathcal{F}\mathcal{M}_{0}^{1}$. $\cross \mathcal{X}arrow[0, b]$ ; $(\eta, A)\mapsto*$

$\kappa_{\eta}(A)$ such that

(1) $\kappa_{\eta}$ is anon-additive measure on $\mathcal{X}$ , $\eta\in \mathcal{F}\mathcal{M}_{0}^{1}.$ .

(2) For fixed A $\in \mathcal{X}$ , the real function $\kappa.(A)$ on $\mathcal{F}\mathcal{M}_{0}^{1}$. is Immeasurable

80



Next we define x-extension.

Definition 3.10. Let $f\in \mathcal{L}^{\infty}$ and $\kappa$ be akernel function. $\kappa$-extension $f^{\kappa}$ of $f$ defined by

$f^{\kappa}( \eta):=(C)\int f(x)d\kappa_{\eta}(x)$ .

Let $\nu$ be anon-additive measure on D%. We define the $\kappa$ transform $\mu$ on $\mathcal{X}$ of $\nu$ by

$\mu(A):=\int\kappa_{\eta}(A)d\nu(\eta)$ , $A\in \mathcal{X}$ .

If $\kappa_{\eta}(A)=\eta(A)$ for $(\eta, A)\in \mathcal{F}\mathcal{M}_{0}^{1}$. $\cross D$ , then $\kappa$ is akernel function for $\mathcal{X}$ . The kernel

function $\kappa_{\eta}=\eta$ on $\mathcal{F}\mathcal{M}_{0u}^{1}$ is called the zeta function for $\mathcal{X}$ . The corresponding transform

of $\nu$ is called the zeta transform of $\nu$ .

The next proposition is Example 4.1 in Denneberg [5].

Proposition 3.11. Let $\kappa$ be a zeta function. Then we have $f^{\kappa}=\tilde{f}$ for $f\in \mathcal{L}^{\infty}$ .

The next theorems are the main theorems in this subsection.

Theorem 3.12. Let $\kappa_{i}$ be kemel functions for [and $\nu_{i}$ monotone and additive set func-

tions on D., $i=1,2$ respectively . Let jiij the $k_{i}$ transform of $\nu j$ for $i,j=1,2$ . Define
$\kappa:=\kappa_{1}-\kappa_{2},$ $\nu:=\nu_{1}-\nu_{2}$ and $\mu:=(\mu_{11}-\mu_{12})-(\mu_{21}-\mu_{22})$ . If $f\in \mathcal{L}^{\infty}$ , then

$f^{\kappa}--f^{\kappa_{1}}-f^{\kappa_{2}}\in \mathcal{L}^{\infty}$

and

(C) $\int fd\mu=\int f^{\kappa}d\nu$ .

$\nu$, $\mu$ and $\kappa_{\eta}$ are non monotonic non-additive measures of bounded variation for $\mathcal{X}$ .

Corollary 3.13. Let $k$ be a zeta function for $\mathcal{X}$ and $\nu$ an additive set function on D..

Let $\mu$ be the zeta transform of $\nu$ . If f $\in \mathcal{L}^{\infty}$ , then

(C) $\int fd\mu=\int\overline{f}d\nu$ .
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Theorem 3.14. For any non-additive measure $\mu$ on $\mathcal{X}$ there exists a unique additive set

function $\nu$ on $D_{u}$ (or $D_{s}$) so that $\mu(A)=\nu(\tilde{A})$ for every $A\in \mathcal{X}$ . Furthermore, $\mu$ is the

(signed) zeta transform of $\nu$ .

Corollary 3.15. For any non-additive measure $\mu$ on $\mathcal{X}$ there exists a unique additive set

function $\nu$ on $D_{u}$ (or $D_{s}$) so that

(C) $\int fd\mu=\int\tilde{f}d\nu$

for every measurable function f.

We shall call $\nu$ the Mobius transform of $\mu$ on $D_{p}$ (or $D_{u}$ ) and denote it $\nu^{\mu}$ .

The M\"obius transform is not always monotone. The next proposition shows the nec-

essary and sufficient condition for the Mobius transform to be monotone.

Proposition 3.16. A non-additive measure $\mu$ on $\mathcal{X}$ is totally monotone if and only if its

M\"obius transformation $\nu^{\mu}$ is monotone.

Since M\"obius transformation is additive, the monotonicity is equivalent to the posi-

tiveness of it.

The next two theorems show that the M\"obius transform can be extended to a $\sigma-$

additive (signed) measure.

Theorem 3.17. Any additive set function $\nu$ on $D_{s}$ is $\sigma-$ additive. If $\nu\in \mathcal{F}\mathcal{M}$ , then it

has a unique $\sigma$ -additive extension to the $\sigma$ -algebra $\sigma(\tilde{\mathcal{X}})$ generated by $\mathcal{X}\sim$

$in$ $2^{F\mathcal{M}_{0}^{1}}$.
Theorem 3.18. Let $(X, \mathcal{X}, \mu)$ be a non-additive measure space. There exists an additive

set function $\nu^{\mu}$ on $\sigma(\tilde{\mathcal{X}})$ generated by $\tilde{\mathcal{X}}$ in $2^{F\mathcal{M}_{0s}^{1}}$ .
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4Comparison

In this section we show that there exists abijection from the class of 0–1 non-additive

measures to the class of semifilters of $X$ .

Theorem 4.1. Let $\mathcal{F}\mathcal{M}_{0}^{1}$ be the class of 0-1 non-additive measures, $Sx$ be the class of

semifilters of X. There exists a bijection $\varphi$ : $\mathcal{F}\mathcal{M}_{0}^{1}arrow Sx$ .

We call the bijection $\varphi$ in previous theorem amediator for representation.

The next theorem follows from the definition of $h_{f}$ .

Theorem 4.2. Let $(X, \mathcal{X}, \mu)$ be a non-additive measure space, $(S_{X},S_{X}, m, H_{X})$ is an in-

terpreter representation, and $(hf, m)$ be the Choquet integral representation for $(f, \mu)$ , $f\in$

$B^{+}$ . Then we have

$h_{f}( \nu):=\sup\{r|\nu\in H_{X}(\{x|f(x)\geq r\})\}$ ,

that is, $h_{f}=if$ .

As to the interpreter representation and representation with the M\"obius transform,

we have the next theorem.

Theorem 4.3. Let $i$ be $a$ interpreter from Ato $Sx$ , $\tau$ be a tilde operator from $\mathcal{X}$ to $\tilde{\mathcal{X}}$ ,

$\varphi$ be the mediator for representation. Define a mapping $H_{X}$ : $\mathcal{X}arrow 2^{S\chi}$ by $H_{X}(A):=$

$\{\theta\in S_{X}|A\in\theta\}$ .

(1) $Hx(A)=\varphi(\overline{A})$ for $A\in \mathcal{X}$ .

(2) $i_{f}\mathrm{o}\varphi=\tau(f)$ for $f\in \mathcal{L}^{\infty+}$ .

As we show above, the representing integrand are equivalent. On the other hand

concerning the representing measure, in the interpreter representation the measure is
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monotone and the uniqueness is not always true. In the representation with M\"obius

transform, the measure is not always monotone and the existence is unique.

It is not proved in [5] that there exists an additive set function on $D$ so that it represents

anon-additive measure and the Choquet integral. Using the interpreter representation

theorem, we can show the existence.

Theorem 4.4. For any non-additive measure $\mu$ on $\mathcal{X}$ there exists a measure on $D$ so

that

(C) $\int fd\mu=\int\tilde{f}d\nu$

for every $f\in \mathcal{L}^{\infty+}$ .

Concerning belief function on the finite $X$ , the two theorems are perfectly the same.

We conclude this paper by showing the next table about the properties of three rep-

resentation theorems.
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