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Abstract

We considered a generalization of the Pythagorean theorem with geomet-
ric meanings and from the generalization it seems that we were able to
obtain a general and fundamental concept for the inversion of a family of
bounded linear operators on a Hilbert space into various Hilbert spaces.
After reviewing the applications to linear transforms in the famework
of Hilbert spaces of the general theory of reproducing kernels, we shall
state the results for the case of operator versions. In the last, we shall add
the prototype example and meaning of the operator versions by figures,
which show clearly a generalization of the Pythagorean theorem.

1. REPRODUCING KERNELS

We consider any positive matrix K(p,q) on E; that is, for an abstract set E
and for a complex-valued function K(p,q) on E x E, it satisfies that for any
finite points {p;} of E and for any complex numbers {C;},

> Z C;Cy K(pj,p;) 2 0.

i g

Then, by the fundamental theorem by Moore-Aronszajn, we have:
Proposition 1.1([1]) For any positive matriz K(p,q) on E, there ezists a
uniquely determined functional Hilbert space Hyx comprising functions {f} on

E and admitting the reproducing kernel K(p,q) (RKHS Hg) satisfying and
characterized by

K(-,q) € Hk forany q€ E (1.1)



and, for any q € E and for any f € Hg
fla)=(f(), K(, )b (1.2)
For some general properties for reproducing kernel Hilbert spaces and for

various constructions of the RKHS Hg from a positive matrix K(p,q), see the
recent book [14] and its Chapter 2, Section 5, respectively.

2. CONNECTION WITH LINEAR TRANS-

-FORMS

Let us connect linear transforms in the framework of Hilbert spaces with re-
producing kernels ([7]).

For an abstract set E and for any Hilbert (possibly finite-dimensional) space
H, we shall consider an H-valued function h on E

h: E—H (2.1)
and the linear transform for H

f(p)=(f,h(p))n for feH (2.2)

into a linear space comprising functions on E. For this linear transform (2.2),
we form the positive matrix K(p,q) on E defined by

K(p,q) = (h(q),h(p))n on ExE. (2.3)

Then, we have the following fundamental results:

(I) For the RKHS Hg admitting the reproducing kernel K (p,q) defined by
(2.3), the images {f(p)} by (2.2) for H are characterized as the members of
the RKHS Hg.

(I1) In general, we have the inequality in (2.2)

WAl = W Fllas (2.4)
however, for any f € Hg there exists a uniquely determined f* € H satisfying

fe)=(f"h(p))u onE (2.5)
and

I flla = 1FNn- (2.6)

In (2.4), the isometry holds if and only if {h(p);p € E} is complete in H.

(III) We can obtain the inversion formula for (2.2) in the form

f—r (2.7)
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by using the RKHS Hp.

However, this inversion formula will depend on, case by case, the realizations
of the RKHS Hy.

(IV) Conversely, if we have an isometric mapping L from a RKHS Hg ad-
mitting a reproducing kernel K(p,q) on E onto a Hilbert space H, then the
mapping is linear and its isometrical inversion L~! is represented in the form
(2.2). Here, the Hilbert space H-valued function h satisfying (2.1) and (2.2)
is given by

h(p) = LK(-,p) on E (2.8)

and, then {h(p);p € E} is complete in H.

When (2.2) is isometrical, sometimes we can use the isometric mapping for
a realization of the RKHS Hyp, conversely—that is, if the inverse L=! of the
linear transform (2.2) is known, then we have ||f||x, = |~ f| 5.

We shall state some general applications of the results (I)~(IV) to several
wide subjects and their basic references:

(1) Linear transforms ([7],[11]).

The fact that the image spaces of linear transforms in the framework
of Hilbert spaces are characterized as reproducing kernel Hilbert spaces
defined by (2.3) is the most important one in the general theory of repro-
ducing kernels. Therefore, the fact will mean that the theory of repro-
ducing kernels is fundamental and a general concept in mathematics. To
look for the characterization of the image space is a starting point when
we consider the linear equation (2.2). (II) gives a generalization of the
Pythagorean theorem (see also [6]) and means that in the general linear
mapping (2.2) there exists essentially an isometric identity between the
input and the output. (III) gives a generalized (natural) inverse (solu-
tion) of the linear mapping (equation) (2.2). (IV) gives a general method
determining and constructing the linear system from an isometric rela-
tion between outputs and inputs by using the reproducing kernel in the
output space. :

(2) Integral transforms among smooth functions ([18)).

We considered linear mappings in the framework of Hilbert spaces, how-
ever, we can consider linear mappings in the framework of Hilbert spaces
comprising smooth functions, similarly. Conversely, reproducing kernel
Hilbert spaces are considered as the images of some Hilbert spaces by
considering some decomposed representations (2.3) of the reproducing
kernels. Such decomposition is, in general, possible. This idea is impor-
tant in (18] and also in the following items (6) and (7).
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(3)

(4)

(5)

(6)
(7)

(8)

(9)

Nonharmonic integral transforms ([8]).

~If the linear system vectors h(p) move in a small way (perturbation of
the linear system) in the Hilbert space H, then we can not calculate
the related positive matrix (2.3), however, we can discuss the inversion
formula and an isometric identity of the linear mapping. The prototype
result is the Paley-Wiener theorem on nonharmonic Fourier series.

Various norm inequalities ([8],{12]).

Relations among positive matrices correspond to those of the associated
reproducing kernel Hilbert spaces, by the minimum principle. So, we
can derive various norm inequalities among reproducing kernel Hilbert
spaces. We were able to derive many beautiful norm inequalities.

Nonlinear transforms ([12],[15]).

In a very general nonlinear transform of a reproducing kernel Hilbert
space, we can look for a natural reproducing kernel Hilbert space con-
taining the image space and furthermore, we can derive a natural norm
inequality in the nonlinear transform. How to catch nonlinearity in con-
nection with linearity? It seems that the theory of reproducing kernels
gives a fundamental and interesting answer for this question.

Linear integral equations ([19]).

Linear differential equations with variable coefficients ([19]).

In linear integro-differential equations with general variable coeflicients,
we can discuss the existence and construction of the solutions, if the
solutions exist. This method is called a backward transformation method
and by reducing the equations to Fredholm integral equations of the first
type -(2.2)- and we can discuss the classical solutions, in very general
linear equations.

Approximation theory ([3],[2]).

Reproducing kernel Hilbert spaces are very nice function spaces, because
the point evaluations are continuous. Then, the reproducing kernels are
a fundamental tool in the related approximation theory.

Representations of inverse functions ([13]).

For any mapping, we discussed the problem of representing its inverse
in term of the direct mapping and we derived a unified method for this
problem. As a simple example, we can represent the Taylor coefficients
of the inverse of the Riemann mapping function on the unit disc on the
complex plane in terms of the Riemann mapping functions. This fact
was important in the representation of analytic function in terms of local
data in ([22],[23]). '
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(10) Various operators among Hilbert spaces ([16]).

Among various abstract Hilbert spaces, we can introduce various opera-
tors of sum, product, integral and derivative by using the linear mapping
(2.2) or very general nonlinear transforms. The prototype operator is
convolution and we discussed it from a wide and general viewpoint with
concrete examples.

(11) Sampling theorems ([14], Chapter 4, Section 2; [5]).
The Whittaker-Kotel’nikov-Shannon sampling theorem may be interpre-
tated by (I) and (II), very well and we can discuss the truncation errors in
the sampling theory. J. R. Higgins [5] established a fully general theory
for [14].

(12) Interpolation problems of Pick-Nevanlinna type ([8],[9]).
General and abstract theory of interpolation problems of Pick-Nevanlinna
type may be discussed by using the general theory of reproducing kernels.

(13) Analytic extension formulas and their applications ([20],[10]).

We were able to obtain various analytic extension formulas and their
applications from various isometrical identities (II). For their applications
to nonlinear partial differential equations, see the survey article by N.
Hayashi [4].
In this survey article, we shall present also new results on

(14) Inversions of a family of bounded linear operators on a Hilbert space into
various Hilbert spaces,

- which are generalizations of [21] and [6].

3. OPERATOR VERSIONS

We shall give operator versions of the fundamental theory (I) ~ (IV) which
may be expected to have many concrete applications. In particular, for full
generalizations of the Pythagorean theorem with geometric meanings, see [6).
Some special versions were given in [21].

For an abstract set A, we shall consider an operator-valued function Ly on

A,
A — L, (3.1)

where L) are bounded linear operators from a Hilbert space H into various
Hilbert spaces H,,

Ly:H — H,. (3.2)
In particular, we are interested in the inversion formula

Lyz — z, zxz€H. (3.3)
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Here, we consider {Lyz;\ € A} as informations obtained from z and we wish
to determine x from the informations. However, the informations Lz belong
to various Hilbert spaces H), and so, in order to unify the informations in a
sense, we shall take fixed elements by ., € Hy and consider the linear mapping
from H

Xb(/\,u)) = (L,\l‘,b)\,w)H/\
= (z,L3bxw)H, z€H (3.4)

into a linear space comprising functions on A x 2. For the informations Lz, we
shall consider X}, (A, w) as observations (measurements, in fact) for z depending
on A and w. For this linear transform (3.4), we form the positive matrix

Kp(Aw; X, w') on A x €2 defined by
KA w; XN w') = (Lybaw,Librw)w
= (L,\Lf\;b)\rwa,b)‘,w)H/\ on A x €. (35)
Then, as in (I) ~ (IV), we have the following fundamental results:
(") For the RKHS H Ky, admitting the reproducing kernel Ky, (A, w; X', w’) de-
fined by (3.5), the images {X},(A,w)} by (3.4) for H are characterized as the
members of the RKHS H K-
(IP’) In general, we have the inequality in (3.4)

IXpllai, = Izl (3.6)
however, for any X}, € H Ky, there exists a uniquely determined r € H satis-
fying

Xp(Aw) = (z,Libyu)r on AxQ (3.7)
and ,

N Xp e, =1z lla (3.8)
In (3.6), the isometry holds if and only if {L}by o; (A\,w) € A x Q} is complete
in H.
(II") We can obtain the inversion formula for (3.4) and so, for the mapping
(3.3) as in (III), in the form

Lyz — (Lraz,byu)yg, = Xp(Aw) — =, (3.9)
by using the RKHS H K,

(IV’) Conversely, if we have an isometric mapping L from a RKHS H Ky, ad-
mitting a reproducing kernel Ki, (A, w; X',w’) on A x £2 in the form (3.5) using
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bounded linear operators Ly and fixed vectors by ., onto a Hilbert space H,

then the mapping L is linear and the isometric inversion L~! is represented in
the form (3.4) by using

Libyo = LKy (-, A w) on A x Q. (3.10)

Further, then {L}b) ,; (A, w) € A x 2} is complete in H.
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