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1 Introduction

Let & C R*, n = 1,2,3, denote a bounded domain with the smooth boundary 9%,
and let f be a non-decreasing continuous function defined on R satisfying f(0) = 0.
The initial-boundary value problem for a degenerate parabolic equation

u—AfW)=0mQx(0,T), fWlm=0, uko=uz)  (1.1)

describes several physical phenomena, for instance, the flow of homogeneous fluids
through porous media, two phase Stefan problem in the enthalpy formulation, and
the fast diffusion. ' ' '
- In [8], the authors and their colleague presented a semidiscrete finite element
scheme to (1.1) provided with order-preserving and L! contraction properties, mak-
ing use of piecewise linear trial functions and the lumping mass technique. Stability
in L', L* and convergence are also established there by applying nonlinear semi-
group theory.

The purpose of this paper is to summerize results of [8] and to describe some

remarks on the way of numerical implementation. Moreover we shall give some
numerical examples to show the accuracy of our scheme.

The plan of this paper is as follows:
§2 Nonlinear semigroup theory;
83 Finite element approximation;
84 Wellposedness, stability and convergence;

§5 Full-discrete schemes;
§6 Numerical examples.
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2 Nonlinear semigroup theory

We Set, X=10 () and introduce operators L and A in X as
DIL)={wveWl; lweX},  Lv=-Av k('u e D(L)),
D(A) = {v e X; f(v) e D(L)}, Av=Lf(v) (ve D(A4)).

Then the problem (1.1) is reduced to the nonlinear evolution equation

E"ti+Au=o, u0)=u (2.1)

in X for up € X. Brezis-Strauss [3] ‘proved that

fo = )+ llzre) < Nl — 0+ Adv — AAD]4 |22 @) (v, 9 € D(A), A>0), (2.2)

where [v], = max{0,v}, and also that R(1 + AA) = L'(Q2) = D(A). Namely, —A
is an order-preserving and m-dissipative operator in X. Therefore the theory of
Crandall-Liggett [5] assures the generation of a semigroup {S(t)}:>0 on X through
the formula

S(t) = s-lim (1 + —t-A) , 2.3)
and u(t)= S(t)uo is regardéd as a solution of (1.1). From (2.2) and (2.3), we have

1S @0 — S®)tol+ ey < o — o+ /sy (w0, € X, 0<t<T), (24)

which will be referred as an order-preserving and L' contraction semigroup on X.
On the other hand, L* stability of resolvents

10+ AA) gl < lgllze@ (g€ XNIX(@), A>0)  (25)
is also proved by [3], and this implies L stability of semigroups

1St uoll @y < lluollo@ (uo € X NLX(Q), 0t < T). (2.6)

3 Finite element approxim‘a'tilon |

For the sake of simplicity, hereafter, we suppose that {2 is an n-dimensional polyhe-
dron. We consider a family of triangulations {7} defined on (2, where each element
o € T, is assumed to be a (closed) simplex. The maximum side length of all elements
in 7, is denoted by h. We will use the piecewise linear approximation. Namely, we

X, = {x € W; x|, is a linear function on o (Vo € T)}, ° (3.1)
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where W = C(Q) N H} ().

Let I, be the set of all vertices of o0 € 7, locating in Q. Each a € I,, w, € X,
is defined by w, = 6, (b € I,) and then {w,; a € I,} forms a basis of X,.
7, : W — X, denotes the linear interpolation operator described as

Y = Z vie)w, (veWw).

Each a € I, takes the barycentric domain D,. See commentary to Chapter 6 in [6],
for its precise definition. Let

_ 1 (z€D,)
""'(“’):{ 0 (zef\D,),

and denote by X, the vector space spanned by {w, | a € I,}. The linear transfor-
mation M}, : X, — X, sometimes referred to as the lumping operator, is defined
through w, — ,. Let us denote by (-,-) the usual L?(2) inner product.

Under those notations, we consider a semidiscrete scheme described as

= 0, ) + (Vmaf (wn), Vo) =0, (w(0), ) = (mivo,ws)  (32)

for any a € I, where %, = Mju; and uyg is assumed to be in W.
The scheme (3.2) can be represented in an operator theoretic way. We introduce
the finite element approximation Ly : X; — X}, of L as

(Lnxn,vn) = (Vxn, Vi) (Vxn, v € Xa),

Let M} : X, — X, be the adjoint operator associated with the L? inner product,
and set

Kh = M,:Mh : Xh - Xh.

The operator M, has a bounded inverse so that K ! = M, }(M;)~! is also bounded.
Then (3.2) is equivalent to

d
% + Anup =0, us(0) = mhug (3:3)
in X}, where
A= K;thth(’U) (’U c W) (34)

4 Wellposedness, stability and convergence

We summerize theoretical results to the scheme (3.3) without proofs; the proofs
could be found in [8].



Throughout this section, we assume that the acuteness condition on {m.}:

(H1) Given 0 € T, a vertex P, C o, and the opposite face FF C o to Py, let S
be a plane including F. Then the foot of the perpendicular from P, to S is always
included in F'.

We remark that (H1) always holds if n = 1, and it is equivalent to saying that
each o € 7, is a right or an acute triangle if n = 2. ,
X, forms a Banach space equipped with the norm

lIxallon = / Myh| x| (xn € Xn)- (4.1)
Q

We have
| Mamnlvn — Dn)4ll; < || Mamn [on — O + AAnvn — Mutn). |, (4.2)

where vs, O € X, and A > 0. Furthermore R(1 + AAs) = X. That is, —A, is
order-preserving and m-dissipative in X, with (4.1).

Consequently, wellposedness of the scheme is proved in the similar way to (2.1).
Namely, the scheme (3.3) is uniquely solvable in time globally, and the solution is
given as us(t) = Sh(t)mruo for any ug € W, where

S(t) = lim (1 4 %Ah) . (4.3)
Moreovér, we have analogous inequalities to (2.4), (2.5) and (2.6): -
11Sa(E)mntio — Sa(®)Trdal+lin < lmauo — madol+llin (w0 Go €W, 0 << T),
(1 + AAn) " gl < Imaglliz=@ (9 € W, A>0)
and
I1Sh(E)mntiol| ooy < Imatiollioo(y (o € W, 0< ¢ <T).
To state results about convergence, we pose the following condition on the shape

of a domain Q C R3:
(D) If n = 3, there is a p > n = 3 such that the Dirichlet problem

~Aw=g inQ, w=0 ondN
admits the elliptic estimate
“w||W2-P(Q) <G "g”LP(Q)

for p € (1, p). v

Condition (D) is fulfilled, when all edges and all vertices of a polyhedron 2 C R3
are small enough not to produce singularities. See, for a more complete description,
Theorems 8.2.1.2 and 8.2.2.8 of Grisvard [7]. |

We recall that {73} is said to be quasi-uniform, if it is regular and satisfies the
inverse inequality (See Ciarlet [4]).
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Theorem 4.1 (Convergence). Suppose that Q is convez and provided with the
property (D) (if n = 3). Assume that {r,} is of quasi-uniform and satisfies the
acuteness condition (H1), and moreover that f is strictly increasing. Then we have

l'l;lll].? ”(I + ’\A)-lg - (I + Mh)—lﬂhg”Lm(n) =0, (44)

where g € W and X > 0, and furthermore

lihﬁloi‘,‘g [|Sn(t)mnuo — S(t)uoll 110y =0 (4.5)

for anyug € W.

5 Full-discrete schemes

(A) Backward difference approximation. Take large N € N, and put 7 = T/N
and t,, = m7 for 0 < m < N. The backward difference approximation to (3.3) is
given by

U (tmi1) — Up(tm)
T

+ A;,u{(tmﬂ) = 0, 'U,Z(O) = ThrlYyg. (51)

Thus, uf(t) € X» may be regarded as the approximation of u,(t) = S,(t)m,ue at
the time level ¢t = t,,,. We have

up(tm) = (1 4+ 7An) " muo

for 0 < m < N. If {r,} satisfies the acuteness condition, then the scheme (5.1) is
stable in the sense that

” [(I + TAR) " maue — (I + TAh)_mWhﬁO]+||1 N < ||[uo - "10]+”1,h

and
(I + TAn) ™ mnuollLeo() < ImntiollLo(a)

for ug, Gip € W. See, for the proof, 8] _
At this stage, we describe the matrix representation of (5.1):

B T KOLf™) =0, ul = w. (5.2)
=

Here

] uf‘m) = [Ua]aelh for0<m < N7 where u‘,’;(tm) = EBGI}: Uata;

o wyo = [Udlaer,, Where Tato = 3 o) Uswa;
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. £(v) = [f(va)les, for v = [Valaer;

o L,= [(Vwa; Vwy)lyper, (the stiffness matrix);

o K = [(Wa, Wp)), pes, = [0ab| Dall, e I (the lumping mass matrix).
The scheme (5.2) is unconditionally stable. However in order to compute uﬁlmﬂ,)
from uflm) in accordance with (5.2), one has to solve a nonlinear system of the form

; + JpLpf(u) = g,

where J;, = K;l = [5ab|Da|—1]a,b€Ih'
(B) Forward difference scheme. It is written as

uglm+1) _ ugm,)

Namely, we obtain uflm) through the recursive formula
u{™t = o™ — I Luf(ul™), up” = up,

which is stable for sufficiently small 7.

(C) Berger-Brezis-Rogers scheme ([1]). If f is locally Lipschitz continuous,

another scheme which is an application of the nonlinear Chernoff formula is available:
Let u > 0 be the Lipschitz constant of f on [—p, p], where p = ||mnuo||Lo(q). We
introduce the regularizing parameter s, > 0 satisfying

liﬁ)l s; =0 and ut/s, < 1, | (54)

and define {u} (tm) Yo - Xnby

. 'r' iy _ —3.,-K;1Lh . |
uh(tm+l)T uh‘(‘tm) + (1 € 5 > th(u;;(tm)) =0 o (55)

ul(0) = mptg,

where {e~*K» 'L}, denotes the linear semigroup in Xj, generated by K L.
We have the formula

| U (tm) = Fi%("’)m’frhuo, ' (5.6)
where

F"h(”’)¢h = ¢n + SL [C_S’K’?L"th (¢n) — Tnf (¢h)] .

+ K;thf(ugm)) = 0, ll,(lo) = Uh0- (53)
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Following the argument of [1], we can prove [[u](tm)||z@) < ||[mauol L(@) SO that
ur(tm) € Xp is well-defined for all 0 < m < N. On the other hand, putting
a = s, /7, (5.6) may be written as

1
up (tmt1) = uj(tm) + a [wh(tm) — 7a f (U} (tm))]
where wj(tm) = wa(7) and wy(t) € X, is the solution of a linear heat equation
—— + aK; ' Lywy, = 0, wi(0) = m, f(uf(tm)).

If the 6-seheme is employed to solve the linear heat equation, then the numerical
algorithm turns out to be as follows: Let 0 < 6 < 1.

0. uf.o) = Upo.
1. Set v{™ = f(ul™);

2. Find w'™ satisfying the linear system

(m) _ m)
TE TR 4 adpLn [owi + (1 - o] =o.

3. Set u{™*) =™ 4 o1 [wf,m) — v,(:")].

Remark 5.1. We will discuss convergence of full-discrete schemes mentioned above
in another paper.

6 Numerical examples

We assume that (2 is a unit square: Q= {0 <z, <1, 0<z; <1}. Wetake 7, as a
uniform mesh composed of 2N? equal right triangles for N € N; each sides of 2 is
divided into N intervals of same length, and then each small-square is decomposed
into two equal triangles by a diagonal. Put h = 1/N. The time discretization makes

use of the forward difference formula.
We choose a sufficiently small 7 relative to h, (specifically we take 7 = h%/100,)
since we are interested in the effect of the space discretization on the accuracy of

the scheme.
Example 6.1. We recall Barenblatt’s self-similar solution

_(r=Dlz—1/2p]7
4y2(t + To)V/7

u (21, 20,8) = (¢ + o)/ [a?

solves u; — Au” = 0 and ulsq = 0 with the initial data uo(z,,z2) = u*(z1,z2,0) in
a generalized sense. Here @ > 0, Top > 0, vy > 1 are given constants and |z — 1/2|?
means (z; — 1/2)? + (z2 — 1/2)2.
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We compute the discrete relative L! error:

EI(N) = (Z |Ua‘) Z |Ua — u*(a, T)I ’

a€ly a€lp

where we have put

up(T) = Z U, W,

acly
In Figure 1 (a), we compare the result taking v = 3/2,3, and 6.
Example 6.2. We solve (1.1) with

u (u<0)
flu)=€eu+<0 O<u<l)
u—1 (u>1)

for ¢ > 0. In this case, the exact solution is not known so that we take as u* the
computed numerical solution with N = 128. v

We compute the cases ¢ = 1/10,1/100, and 0. We notice that the case € = 0
does not satisfy the assumption of Theorem 4.1, since f is not strictly increasing.
The results evaluated at T = 1/10 are compared in Figure 1 (b).

These results show that the L! convergence really takes place. The shape of
f affects the accuracy of the scheme. Especially, if the shape of f is like to a
linear function, our scheme has a high accuracy. We also observe that the rate of
convergence continuity depends on f. This indicates that the assumption that f is
strictly increasing in Theorem 4.1 comes from a technical reason.
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