Title
Infinitesimal Hilbert 16th Problem (Dynamics of Functional Equations and Related Topics)

Author(s)
Zhang, Zhifen

Citation
数理解析研究所講究録 (2002), 1254: 119-121

Issue Date
2002-04

URL
http://hdl.handle.net/2433/41880

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Infinitesimal Hilbert 16th Problem

Zhifen Zhang*
(Peking University)

Hilbert 16th Problem (Second Part) is the following:
Given
\[\frac{dy}{dx} = \frac{P(x, y)}{Q(x, y)}, \quad (1) \]
where P and Q are real polynomials of x and y, what may be said about the number of limit cycles and their relative positions.

Infinitesimal Hilbert 16th problem is one of the restricted version of Hilbert 16th problem, it was posted by V. I. Arnold in 1977 [1] as follows:
Given
\[H(x, y) = h, \quad \omega = Q_n dx - P_n dy, \]
where H, P_n and Q_n are real polynomials of x and y.

\[\max(\deg P_n, \deg Q_n) = n, \quad \deg H = m + 1. \]

Then
\[\Gamma_h \subset (H = h), \]
\[I(h) = \int_{\Gamma_h} \omega. \]

Problem: What is the number of isolated zeros of $I(h)$?

*Author would like to express her gratitute to Professors T. Hara and J. Sugie for their help to her visit to Japan. She was invited to Japan by Grant-in-Aid for Scientific Research (A) No.11304008, Japanese Ministry of Education, Science, Sports and Culture.
This problem is closely related to the problem of estimating the number of limit cycles of the following Hamiltonian System with small perturbations:

\[
\begin{align*}
\frac{dx}{dt} &= \frac{\partial H}{\partial y} + \epsilon P_n, \\
\frac{dy}{dt} &= -\frac{\partial H}{\partial x} + \epsilon Q_n,
\end{align*}
\]

where \(0 < |\epsilon| \ll 1\).

\[H = h\]

Then we have

\[
\Delta H = \int_0^{T(P, \epsilon)} \frac{dH}{dt}|_{(2)} \, dt \\
= \epsilon \int_0^{T(P, \epsilon)} \left(\frac{\partial H}{\partial x} P_n + \frac{\partial H}{\partial y} Q_n \right) \, dt \\
= \epsilon \int_{\Gamma_h} (Q_n dx - P_n dy) + O(\epsilon^2) \\
= \epsilon I(h) + O(\epsilon^2), \quad h_1 < h < h_2,
\]

where \(T(P, \epsilon)\) is the time along \(PP_1\). Hence, there exists a periodic orbit of (2) passing through \(P \in \Gamma_h\) if and only if \(\Delta H(h) = 0\), i.e. \(I(h)\) is the first approximation of the Poincaré return map \(\Delta H\) with respect to \(\epsilon\).

Relationship:

(i) If \(I(h) = 0, I'(h) \neq 0 \implies \exists hyp.\ limit cycle \ L_{h(\epsilon)} \to \Gamma_h \ (\epsilon \to 0)\); conversely, if \(\exists hyp.\ limit cycle \ L_{h(\epsilon)} \to \Gamma_h \ (\epsilon \to 0) \implies I(h) = 0\).

(ii) If \(I(h) = I'(h) = \cdots = I^{(k-1)}(h) = 0, I^{(k)}(h) \neq 0 \implies \text{there are at most } k \text{ limit cycles bifurcated from } L_h\).

(iii) \(\#\{\text{limit cycle s.t. } L_{h(\epsilon)} \to \Gamma_h \ (\epsilon \to 0)\} \leq \#\{I(h) = 0\} = Z(m, n)\).

Here multiplicity taking into account.
In this talk it will be introduced the main results and main methods of how to estimate the number of isolated zeros of $I(h)$.

The main methods are as follows:

1. Argument principle [2], [3];
2. Generalized Rolle Theorem [4], [5];
3. Estimate zeros of analytic functions [6], [7].

References

