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1 Introduction

There are many fruitful results on repre-
sentations of fuzzy numbers, differentials and
integrals of fuzzy functions ( see, e.g., in Au-
mann [1], Goetschel-Voxman [8, 9], Dubois-
Prade [3, 4, 5, 6], Puri-Ralescue [13], Fu-
rukawa [7], Kaleva {10, 11] etc). They estab;
lish fundamental results concerning differen-
tials, integrals and fuzzy differential equations
of fuzzy functions which map R, where R is
the set of real numbers, to a set of fuzzy num-
bers. By using the results it seems to be dif-
ficult to apply all the practical and significant
problems. In this study we introduce the cou-
ple parametric representation(see [14]) corre-
sponding to thebrepresentation of fuzzy num-
bers due to Goetschel-Voxman so that it is easy

to solve fuzzy differential equations.

In Buckley [2], Kaleva [10, 11}, Park [12] and
Song [17], various types of conditions for the
existence and uniqueness of solutions to fuzzy
differential equations. By the couple represen-
tation some kinds of differential and integral

of fuzzy functions can be easily treated in an
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analogous way with the real analysis as well as
some type of fuzzy differential equations can
be solved without difficulty. In Section 2 we
denote a fuzzy number z by (z1,z2), where
z1, Ty are endpoints of a—cut set of the mem-

bership function u,, respectively. We consider

some kind -of metric space which includes the

set of fuzzy numbers as well as prove the conti-

nuity of z1, . In Section 3 we give dveﬁnitions\

of differential and integral of fuzzy functions
and sufficient conditions for fuzzy functions to
be differentiable or integrable. In Section 4
we show the existence and uniqueness 6f so-
lutions for initial value problems of fuzzy dif-
ferential equations a:lk = F(t,x),z(to) = zo,
where t € R and z is a fuzzy number.. More-
over we discuss global behaviours of solutions
for ¢ = p(t)x, where p is a continuous fuzzy
function on R. In Section 5 we treat a fuzzy
differential equation zr =f (t, z, m’) with fuzzy
boundary conditions z(a) = A,z(b) = B
,where f is a fuzzy-valued function defined on
J = [a,b] in the set of real numbers R, and

A, B are fuzzy numbers.
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2 Parametric Representa-
tion of Fuzzy Numbers

In order to introduce a metric space which
includes the set of fuzzy numbers, we define

the following set.
X = {z = (z1,22) € C(I) x C(I)}

where I = [0,1] C R and C(I) is the set of con-

tinuous functions from I to R. Denote a metric
by d(z,y) = sup,¢;(|z1(e) — y1(a)| + |ya(a) —
y2(a)|) for z = (x1,22),y = (y1,31) € X. Then
the metric space (X,d) is complete. The fol-
lowing definition means that fuzzy numbers are
identified with membership functions.

Definition 1 Consider a set of fuzzy numbers
with bounded supports as follows:

Fo' = {u: R - I satisfying (i)-(iv) below}.

(i) There ezists a unique m € R such that
n(m) =1.

(i) The set supp(u) = cl({€ € R : p(¢) > 0})
is bounded in R..

(iii) One of the following conditions holds:
(a) p is strictly fuzzy conves, i.e.,

p(cb1 + (1 - c)é2) > min(u(£1), u(2)]

for&,6€R,0<c<1;
(b) u(m) =1 and u(€) =0 for £ #m.

(iv) p is upper semi-continuous on R.
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Remark 1 The above condition (iiia) is
stronger than one in the usual case where  is
fuzzy convez. From (iiia) it follows that u(£) is
strictly increasing in ¢ € (—oo,m) and strictly

decreasing in £ € (m, 00). This condition plays

an important role in the proof of Theorem 1.

We introduce the following parametric rep-

resentation of u € F2t,

zi1(a) = minLa(p),

r2(@) = maxL,(p)

for0<a<1and

La(p) {€eR:pu(€) > a},
21(0) = mincl(supp(u)),
22(0) = maxcl(supp(n)).

Remark 2 From the extension principle of
Zadeh, it follows that

Bzty(€)
= in (1s:(£:)))

max mi
E=t1+62=1,2
= max{a€l:&=4¢ +&,& € La(m)}
= max{a€l:

€ € [71(@) + 11(a), z2(a) + ya(a)]},

where u,, s are membership functions of z,y,
respectively. Thus we get z+y = (21 +y1, 22+ °
).

The following theorem is a basic result.

Theorem 1 Denote p = (z1,72) € F,
where z1,z3 : I - R. The following properties
(i)-(iii) hold.

(i) z1,z2 are continuous on I.



(i) maxzi(a) = z1(1) =

z2(1) =

m and minzz(a) =

(iii) One of the following statements holds:
(a) z1 is strictly increasing and zp is
strictly decreasing with z1(c) < z2(a);

(b) z1(a) =z2(0) =m for0<a <1

Conversely, under the above conditions (i)

-(iii), if we denote

p(€) =sup{a € I : z1(a) < € < z2(a)}

then p € Fgt. Moreover it follows that R C F!

and that F' is a complete metric spcae in X.

In the following example we illustrate typi-

cal three types of fuzzy numbers.

Example 1 Consider the following L — R
fuzzy number z € Ft with a membership func-

tion as follows:
) L) foré<m
pa() = RED), forg>m
where m € R,l > 0,r > 0. L, R are into map-
pings defined on Ry = [0,00). Let L(§)4+ =
max(L(¢),0) etc. We identify p. with x =
(z1,z3) Then we have z1(a) = m — L™} (a)l
and z2(a) = m + R™1(a)r provided that L™!
and R™! exist.
Let L(¢) = —c1€é + 1, where c; > 0. We
illustrate the following cases (i)-(iii).
(i) Let R(¢) = —c2€ + 1, where c > 0. Then
cel(zg — m) = cir(m — z1). |
(i) Let R(¢) = —co/€+1, where cz > 0. Then
col(za — m)? = c1r?(m — 7).

(iii) Let R(¢) =

Al (zg — m) = Er(zy — m)2.

—c282 + 1, where cz > 0. Then

3 Differential and Integral
of Fuzzy-valued Func-

tions

Let an interval J C R. Denote an
Fgt—valud function by

z(t) = (21(t),z2(2))
= {(ml(t, a),$2(t, a))T (S R2 ra € I}.

We define the continuiety and differentiabil-

ity of fuzzy-valued function as follows:

Definition 2 A fuzzy-valued functionz : J —

Fgt is continuous at t € J if
lim d(z(t + h), z(t)) = 0.
h—0

Letx:J — Fgt be

zt) = {(z:1(t,q),z2(t,0))T €R?:a €T}
= (z1(t, ), z2(t, ) = =(t, )

for t € J. The function z is said
to be differentiable at t € J if for any
a € I there exist (t a), 6;2 (t,a) such
that (t a) < -a—w—z(t o) and per(t,”) €
Fit, where uaz(t &) = sup{a € I

%i(t,a) < & < %2(t@)}. The func-
tion x is said to be differentiable on J if
a: is differentiable at any t € J. Denote
62:1 6(1:2
(t)—-a:(t)—( — (¢, "), 6t(t -)) and it is
sazd to be the denvatwe of z(t).

We consider the following definition of the

integral of F'— valued functions.

Definition 3 Let ¢ : J — Fg be z(t,") =
(z1(t,-), z2(t,)) for t € J. The function z is
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said to be integrable over [t;,t5), if z;,z, are
Riemann integrable over [t1,t2). Then we de-

fine the integral as follows:
t3
/ 2(s, )ds
t

= {( / " z1(s, a)ds, / " T2(s,a)ds)T € R?:

acl}.

Remark 3 Let z(t) = (z:1(t,-), z2(t,-)) € F2t
forte J

(i) If z is differentiable at t, we get the inte-
gral over [t1,t2] C J as follows:

/ * 2 (0, s + 2(t1,) = a(ta, ).

t1
(i) If z(t) € Fgt is integrable over [t;,t)],
then we have ftt: z(s,-)ds € Ft. We have

t2

d( [ 2(s,-)ds,0) < / * da(s, ), 0)ds.

t 1

4 Initial Value Problems of
Fuzzy Differential Equa-
tions

Consider the following initial value prob-

lem of a differential equation
z(t)=f(t2), a(t)=20 (N

where tg € R, 2o € Ft. Let f : J.xB(zo,7) =
Fit, where J. = [to,to + c],c > 0, B(zo, r) =
{z € gt : d(z,0) <r}.

By applying the contraction principle we get
the following theorem.

Theorem 2 (cf. (17] ) Suppose that the fol-

lowing conditions (i) and (ii) are satisfied.
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(i) f is bounded, i.e., there erists an M > 0
such that d(f(t,z),0) < M for (t,z) €
Je X B(zo, 1);

(i) f is Lipschitzian in z ,i.e., there exists
an L > 0 such that d(f(t,z), f(t,y)) <
Ld(z,y) for (t,z),(t,y) € J. x B(zo, 7).

Then there ezists a unique solution x for (N )
such that z(t) = zo + f; f(8,2(s,-))ds fort €
JP = [th to +p]r where p = min(c: T/M)

In the following example we obtain an initial
valu problem of ordinary differential equations
which are arising from fuzzy problems.

Example 2 Consider the following problem of
Juzzy differential equation

T =pt)z+qt), z(te)=z0 (E)

t € R,zo,x(t) € Ft. Functionsp,g: R > R

are continuous, respectively.

Le¢ p : R — (—00,0] and
z(t) = (z1(t),z2(t)). Then we have
21(t) = p(t)2a(t) + a(t), 23 = p(t)x1(t) + q(t),
by denoting o = (ao,bp), s0 i(t,a) and
z2(t, a) satisfy

( z1(t, @) ) — 8(t,a) ( ao(t, ) )

z2(t, a) bo(t, a)
t_ q(s, @)

+3(t,a) /to 3-1(s, a) ( P )ds,

where (-, ) is a fundamental matrix of

S @1(6,0),72(t,00)"
= (P(t, a)$2(t1 a),p(ta a)zl (t’ a))T



ie.,
t,a t,a
o(ta) = $11(t,0) ¢2(t, @) ,
én(t,a) ¢t )
where
ft p(s,a)ds —ft p(s,a)ds
$1(t a) £2 te ™
11\%
2
¢ (t ) ef:o p(s,a)ds _ e— f:o p(s,a)ds
12\, @) =
2
¢2 ( ) ef:o p(s,a)ds _ e— f:o p(s,a)ds
1(t, a =
2
f‘ p(s,a)ds —ft p(s,a)ds
e’to +e to
¢22(ta a) - 9

for t > tg,a € I. Then we get the following
theorem in which solutions of fuzzy differen-

tial equation mean unstability in case that the
initial value zg € Fg'\R.

Theorem 3 Let g(t) = 0. Then solutions of
(E) satisfy following statements (i) - (iii).

(i) Any solutions z such that zo € R satisfy
Jim d(z(t),0) = 0;

(ii) Any solutions z such that zo € FS\R
satisfy lim d(z(t),0) =00 . and
t—o0
tl_l_)l{.lo |21 (¢, @) + z2(t,a)| =0 for a € I.

Seikkala [16] calculates the solution in case
that p(t) = —1. In what follows we consider
the equation (E) with q(t) = 0.

Example 3 Consider behaviors of solutions
of the following problem of a fuzzy differential

equation

T = p(t)z, z(to) = o (Eo)

where t € R,zo and z(t) € Ft. Here p(t) =
(p1(t,-),p2(t,)) : R = FE¥ is continuous.

Remark 4 Let T(z) = p(t)z. It follows that

T is non-linear.

In analyzing the o_rdinary differential equa-
tion z = a(t)z, wherea : R — tR are continu-
ous, the condition that tl_lglo / a(s)ds = —o0
plays an important role in showing the prop-
erty that tllglo z(t) = 0. Concerning fuzzy dif-
ferential equation (Ep), we get an extension
result of asymptotic behaviors of ordinary lin-
ear differential equations as well as we ob-
serve a little different result as follows. When
p = (p1,p2) is a fuzzy function, we have the

following theorem.

Theorem 4 Consider Problem (Eo). Let
pa(t,a) <0 on R x I and

t
for to € R.. Then solutions of (Eo) satisfy fol-

lowing statements (i) - (iii).

(i) Any solutions x such that o € R satisfy
lim d(a(t),0) =0;

(ii) Any solutions ¢ such that zo € F*\R sat-
isfy tl_x_{& d(z(t),0) = oo.

(i) Let  the
{(z1(t, @), 22(t,@))T € R? :
satisfy |ma(t,a)] £ za(t,e) for
o= Then it follows that
0 < z1(t, @) + z2(t, @) < ef: pi(s,c)ds

forr,te h,a €l

solution  z(t) =

a € I}

[r, 0.

In the following example we get an extension

of Theorem 3.
Example 4 Consider the following problem

z = Pn(t)z, z(to) = o (Pm)
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P : R = Y such that P, = (-m—qq,—m+
g2) satisfies

m:RxI— R, m(t,a) >0,
g:RxI-sR,

0<4gi(t,a) <m(t,a),i=1,2.
Theorem 5 Suppose that fora € I,to € R

t
hm/m(s,a)ds:oo,
t—o0 to

t
lim e— f‘o m(s,a)ds %

t—o0
t Ll
/ q(s, a)ef,,o 2m(r,a)+q(r,a)) d"ds
to

=0,

where ¢(t,a) = max(q(t, @), g2(t,@)). Then,
if the initial value zo € FE\R, for any so-
lution £ = (z1,22) of (Pn) it follows that
tl_l’rgo |z1(t,a) + z2(t,a)| =0 fora € I.

In the following example we consider the
stability of solutions of fuzzy differential equa-

tions.

Example 5 Let Po(t,-) = (—po(t,-),po(t,"))
satisfy po(t,a) > 0 for t € R, a € I. Consider
the following fuzzy initial value problem

2:' = Po(t):l,', z(to) = To. Po

We treat the following cases (i) -(iv) in order

to observe the behaviors of solutions for (Pp).

(i) The relation z;(t,a) >0fort € Jya eI
leads to zll(ty ) = '—poz2az'2(t ') = poT2 ,
z1(t, @)+ z2(t, @) = ao(a)+bo(a) and the

solution z2(t,a) = boef‘ Po(s,a)de.

(ii) The relations z;(¢,a) < 0 < z3(t,a) and
|z1(t,@)] < za2(t,a) for t € Ja € I
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lead to z;(t,-) = —PoZ2, T,(t,-) = poTs
y T1(t,a) + z2(t, @) = ao(a) + bo(a) and

the solution z(t) = boeft po(s, a)da

(iii) The relations z;(¢,a) < 0 < z3(¢,a) and
|z1(t,@)] > z2(t,a) for t € Ja € I
lead to z,(t,-) = PoZ1,Z,(t,-) = —poz;
» T1(t, @) + z2(t,a) = ao(a) + bp(a) and

the solution 1 (£) = agedvo 2%,

(iv) When z3(t,a) <0 for t € J,a € I, we get
z’l(t’ ) = pozlvz;(t ) = —pozhzl(t C!)+
zo(t, @) = (a) + by(a) and the solution

z1(t, a) = age 'om("a)d’.

Under conditions in Example 5, the zero solu-
tion of (Pp) is uniformly stable. The definition
of stability is as follows.

Definition 4 The zero-solution of (Py) is uni-
formly stable if For each € > 0 there exists a
0 > 0 such that each to € R and each z, € F
such that d(z0,0) < 4, each solution z of (Pp)
satisfies d(z(t),0) < € for t > t,.

The following conditions are sufficient ones for

the stability of the zero solution to (Pp).

Theorem 8 Assume that there erists an M >
0 such that

llmsup/ Po(s,a)ds < M fort >ty > 0,a €
Iin E':mmple 5. Then zero solution of (P,) is
uniformly stable.



5 Boundary Value Prob-
lems of Fuzzy Differential
Equations

Let J = [a,b] C R. In this section we con-
sider the following fuzzy differential equastion
with fuzzy boundary conditions

(F) & =ftzc),
(1) z(a) =4,
(2) =z(b) =B,
where t € J, z = (z1,72) € FHLA =
(A1, A3),B = (B1,B;) € F'. Then we get
ordinary differential equations
a:'l' = fl(t,wl,a:g,mll,x;)
T, = fg(t,xl,mz,mll,:v;)
z1(a) = A1, x2(a) = Az,
z1(b) = B1, z2(b) = B2
with conditions that a:gi)(t,'),i =0,1,2;5 =
1,2, satisfy (i) - (iii) of Theorem 1.

By putting y1 = :z;'l, Yo = z; we have

x 0010 T
z;_OOOI T2
| loooo]|]|wm
Yo 0000 ¥
0
0

+
fl(t’m1s$2ayl’y2)

fa(t, 21, 22,41, 92)
Then, by denoting z = (z1,%2,%1,%2)7 € R%,
we get
(S) z =Bz + F(t,2)
(C) £(Z) = (Ah A2a Bla BZ)T
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Here
0 010 0
0 0 01 0
B = ,F(t,z) =
0 00O f1 (t, Z)
0 00O fa(t, 2)

and £ is a bounded linear operator from

C(J) x C(J) to R* as follows:

L(z) = (z1(a), z2(a), y1(b), v2(b))”.

In this case we get the fundamental matrix

1 0¢t 0
010t
XB(t)=etB=
0010
0 001
Let Up satisfy
1 0 a O
010
L(Xp()20) = 20 =Up2o
1 0 b
010

for 2z € R%. It follows that

b 0 -a O
1 0 b 0 -a

U5 =5 -1 0 1 0
0 -1 0 1
We denote a norm in R* by || z ||= |z1] +
|z2| + 31| + lv2|. Then || Up ||= max(2,a +)
and || U = 2

In the similar way of discussion in [15] the
authors obtain the existence and uniqueness of
solutions for boundary value problems of ordi-

nary differential equations

(Sn) & =D(t)z+F(tz),
(Cn) La(z) =c,



where t € J,z(t) € R*,c € R*,L,, : C(J) -
R"™ is a bounded linear operator, D : J —
R™ ™ and F : J x R® - R™ are continuous.
Denote the fundamental matrix of (S,) by X.
Define a constant matrix U with £(X(-)zo) =
Uzy. Assume that U is nonsingular. Then we
have the following existence and uniqueness

thereoms.

b
Theorem 7 (cf. [15]) LetK =e J.ID(s)lids
and Ky = sup || X(t)X~(s) || and and let
t<b

u
asesrs
a positive number § satisfy
6 <1/(K||U~1|). Assume that F satisfies

b
lim inf 1 sup || F(s,z) || ds

n2e0 N Ja ||zji<n
K-8 U |
1+ K | Lot

If || ¢ I< 8, then ((Sn),(Cn)) has at least one

solution.

Theorem 8 (cf. [15]) Let

b
L(r) = / sup | F(s,21)—F(s,22) || ds

fzll<ri=1,2
for r > 0. If there exists an ro > 0 such that
(K1 || €]l 41)K1L(ro) < 1 and || ¢ ||< ro, then

((84),(Cn)) has one and only one solution.

By applying the above theorems we get the ex-

istence ant uniqueness theorems of ((S), (C)).

Theorem 9  Let R?2— wvalud function f =
(f1, f2)T be continuous on J x R x R and let
61 > 0 satisfy
01 <1/ (e“"”ﬂ%). Assume that

b

liminf = [ sup (1fu(s, 2)] + |fa(s, 2))ds

e N e |zl<n
1/K -6, 2L
< .
1+eba| | gL
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If d(lo, 0) S 61 ’ where 290 =
(A1,A2,B1,B3)T € R4, then (9),(C))

has at least one solution.

Theorem 10 Let R2?— valud function
= (f1,£2)T be continuous on J x R x R and
let Ly(r) =

J s oy<rima(lfi(21) — fi(s,z] +
|f2(8,21) — fa(s,22|)ds for r > 0. If there
ezists an vy > 0 such that (et || £ |
+1)e®=2Ly(r1) < 1 and d(20,0) < r;, where
29 = (A1, 42, B1,B;)T € RY, then ((S),(C))

has one and only one solution.

In the above results we have the following ques-
tion: Do solutions of ((S), (C)) are solutions of
((F),(1),(2)), i.e., solutions of ((S),(C)) sat-
isfy conditions (i) -(iii) of Theorem 1. In or-
der to gauratee the existence of solutions of
((F), (1), (2)) with fuzzy numbers we consider
the following conditions:

Conditions(FZ) Let dy = min(dy,r;). De-
note Sg, = {z € F : d(z,0) < do}. Let
S0 = {(0) = (21(a), 72(a))T € R? : z € Ss
and a € I}. Let the following estimates (i)-
(iv) hold for0<a < B < 1.

(l) Bg(a) - Bl(a) > Ag(a) - Al(a).

(ii) sz(a) —~ Bi(a) >

sup [fa(s,z,y) — fi(s, z,y)]ds.
a z,y€Sq,

(iii) 31(09 — B1(B) > Ai(a) — A1(B)
+/ sup [fl(31 .z-(a), y(a)) Ct)—
Sag

a Y€

fl (8, z(ﬁ)s y(ﬂ): ﬂ)]ds

(iv) Bz(a) — By(B) < Az(a) — A2(8)

b
+/ sup [f2(3sz(a)’y(a))a)
a Z,yESq,

—fa(s,z(B), y(B), B)]ds.



Provided that Condition (FZ) holds, it is
expected that sufficient conditions in Theo-
rems 9 and 10 lead to the same conclusion,

respectively.
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