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On spectral and scattering theory for /N-body Schrodinger
operators in a constant magnetic field

MFERFHESE B [E# (Tadayoshi ADACHI)
Faculty of Science, Kobe University

1 Introduction

- In this article, we study the spectral and scattering theory for N-body quantum systems in a
constant magnetic field which contain some neutral particles.

The scattering theory for N-body quantum systems in a constant magnetic field has been
studied by Gérard-Laba [10, 11, 12] (see also [13]). But they have assumed that all particles in
the systems are charged, that is, there is no neutral particle in the systems under consideration,
even if the systems consist of only two particles (see also [17, 18]). Under this assumption, if
there is no neutral proper subsystem, one has only to observe the behavior of all subsystems
parallel to the magnetic field. Skibsted [24, 25] studied the scattering theory for N-body
quantum systems in combined constant electric and magnetic fields, but his result needs the
asymptotic completeness for the systems in a constant magnetic field.

Recently we studied the scattering theory for a two-body quantum system, which consists
of one neutral and one charged particles, in a constant magnetic field (see [1]). Showing how
to choose a conjugate operator for the Hamiltonian which governs the system was one of the
ingredients in [1]. By virtue of this, we obtained the Mourre estimate and used it in order to
obtain the so-called minimal velocity estimate which is one of useful propagation estimates.

Throughout this article, we consider an N-body quantum system which contains NV — 1 neu-
tral particles and just one charged particle in a constant magnetic field. Our goal is to prove
the asymptotic completeness of this system under short-range assumptions on the pair poten-
tials. For achieving it, it is useful to obtain the Mourre estimate for the Hamiltonian which
governs this system. The Mourre estimate is powerful also in studying spectral properties of
the Hamiltonian. Finding a conjugate operator for the Hamiltonian is one of the ingredients in
this article.

We consider a system of N particles moving in a given constant magnetic field B =
(0,0,B) € R®, B > 0. Forj = 1,...,N,letm; > 0, ¢; € R and z; € R? be the
mass, charge and position vector of the j-th particle, respectively. Throughout this article, we
assume that the last particle is charged and the rest are neutral, that is,

;=0 if1<j<N-1, qn#0. (1.1)

In particular, the total charge g = ; g; of the system is non-zero in this case.



The total Hamiltonian for the system is defined by

N-1

7 1 2 1 2

H = E —D,. + —~(D.,, — A +V .
(j=l 2mj 3 ) om ( v — 4N (xN)) (1.2)

acting on L2(R3*"), where the potential V is the sum of the pair potentials V;(z; — i), that

1is,
Z Vik(z; — ),

| 1<j<k<N
D,, = —iV.,j =1,..., N, is the momentum operator of the j-th particle, and A(r) is the
vector potential. Using the Coulomb gauge, the vector potential A(r) is given by

B
A(T) = 5(_7'2,7.170)1 r= (7‘1,7‘2, 7'3). (1.3)

As is well-known, it is easy to remove the center of mass motion of the system parallel to the
field from the Hamiltonian H (see e.g. [5]). In order to achieve it, we write the position z; of
the j-th particle for z; = (y;, 2;) with y; € R? and 2; € R. Moreover we identify the vector
potential A(z;) € R® with A(y;) = (B/2)(~y;2,Y;1) € R? because A(z;) can be written
as (A(y;),0). Thus we study the spectral and scattering theory for the following Hamiltonian :

= Ni D, + —1—(D — anvA(yn))? - LA +V (1.4)
o 2mj Y; 2mN YN 2
acting on L2(R**N x Zomax), where Z%= is defined by

Z%max = {z=(zl,... ,2n) € RN

N
Z m;z; = 0}
j=1

which is equipped with the metric
(2,2) = ZszJzJ’ |z]1 = V{2, 2)

for z = (21,... ,2n) € RVNandz = (3,...,2n) € RY, and A jemax is the Laplace-Beltrami
operator on Z%max, ‘
Moreover, introducing the total pseudomomentum ka1 Of the system perpendicular to the

field B which is defined by

N-1 )
ktotal = (E Dyj) + (DyN + QNA(yN))a (15)

i=1



one can remove the dependence on ki, from the Hamiltonian H : It is well-known that k4.
commutes with H, and that since the total charge ¢ = qx of this system is non-zero, the two
components of the total pseudomomentum k., cannot commute with each other, but satisfy
the Heisenberg commutation relation (see e.g. [5]). Now we introduce the unitary operator

U — e—iycm'qA(ycc)e":qucm,lycm,2/2eiDycm,lDycm,2/(qB) (1.6)

‘on L2(R*N x Zome<) with

1 & 1
Yom = 37 D MY Yoo = Equyj, 1.7)
j=1 i=1

where M = ) ;M is the total mass of the system. We note that y.. = yn holds in this case.
Then we obtain

U*ktotal,lU = -Dycm,ls U*ktotal,2U = qucm,la (18)

and see that U*HU is independent of (D, .. ,,¢Bycm,1) (see [10, 11, 12], [24, 25] and [1, 2]).
Here the dot - means the usual Euclidean metric, and we wrote Kiotal = (Ktotal,1, Ktotal,2)> Yom =
(Yem,1) Yem,2) and Dy = (Dy.. ., Dy...). Thus one can identify the Hamiltonian U*HU
acting on U*L2(R**N x Z%mx) with an operator acting on H = L?(Y%mex x R, , x Z%max),
where Y%~ is defined by ‘

N
> myy; = 0}

i=1

Y Omax — {y = (yl,.-- ,yN) € R2><N

which is equipped with the metric
N
W, 9 =>_mu; -G, lvh=vv)
j=1

fory = (y1,...,ynv) € RPN and § = (§u,... ,9n) € R>*N. We denote this reduced
Hamiltonian acting on 7 by H. It is a part of our goal to study the spectral theory for H.

Now we state the assumptions on the pair potentials Vj,. For r = (r1,7r2,73) € R3, we de-
note (r1,72) by r, and write V,,, = V. For any interval I C R, we denote the characteristic
function of ] on R by 1;.

(V1) Vi = Vi(r) € L2(R®) + L*®(R?®) (1 < j < k < N) is a real-valued function.
J J €
(V.2)If j and k satisfy that 1 < j < k < N — 1, r - VVj; is —A-bounded and satisfies

’ 11,00) (M) r-VVi(-A+1)7[=0(R™*), R- oo,

R




for some p > 0. Otherwise, that is, if  satisfies that 1 <! < N — 1, V, Vin, |V Vin|? and
r - VVin are all —A-bounded, and satisfy

T -
11,00) (l—RI) ViVin(-A+1)™!

1 () 1V2VinP (-0 + 1)

I =O(R™), R— oo,

=O(R™), R - oo,

1[1,00) (ILRI) r-VVin(-A+ 1)_1” =0(R™), R — oo,
for some y > 0.

(V.3) If j and k satisfy that 1 < j < k < N — 1, (r - V)?V}; is —A-bounded. Otherwise, that
is, if  satisfies that 1 <! < N — 1, (V1)*Vin, (- V)2Vin, Vi(r- VVin) and 7, : V Vjy are
all —A-bounded.

(SR) Vj satisfies that VVjy is —A-bounded and

”1[1,00) (%) Vi(—A + 1)~ = O(R™#s1),
|1[1:°°) (ITTZ!) Vij(-A + 1)_1 = O(R—l—#sz)

as R — oo, with ug; > 1and pg, > 0.

Under these assumptions, the Hamiltonians H and H are self-adjoint.

To formulate the main result in this article precisely, we introduce some notations in many
body scattering theory : A non-empty subset of the set {1,... , N} is called a cluster. Let C;,
1 < j < jo, be clusters. If Ui<;<;,C; = {1,... ,N}and C;NC, = Bfor1 < j < k < jo,
a = {Cl, . ,Cjo} is called a cluster decomposition. We denote by #(a) the number of
clusters in a. Let A be the set of all cluster decompositions. Suppose a, b € A. If bis a
refinement of a, that is, if each cluster in b is a subset of a certain cluster in a, we say b C a,
and its negation is denoted by b ¢ a. Any cluster decomposition a can be regarded as a
-refinement of itself. If, in particular, b is a strict refinement of a, that is, if b C a and b # a,
we denote by b ¢ a. We identify the pair (j, k) with the (N — 1)-cluster decomposition
{{i, 6}, {1},--., 5}, ... . {k},..., {N}}. We denote by arax and ap;, the 1- and N-cluster
decompositions, respectively. In this article, we often use the following notation

A(@max) = A\ {Gmax}.

We divide clusters into three types, that is, neutral, charged and mixed ones : Let a =
{C1,... ,Cy()} € A. Choose ji such that 1 < j; < #(a) and {N} C C},. Of course,
this j; associated with a exists uniquely. If necessary, by renumbering the clusters in a, one



can put j; = #(a) without loss of generality. C;, j = 1,...,#(a) — 1, are called neutral
clusters. If Cya) = { N}, Cy(q) is called a charged cluster. Otherwise, C(q) is called a mixed
cluster.

For a € A, the cluster Hamiltonian H,, is given by

N-1
1 2 1 s 1
= Py ) a. - ] - —Azamax a,
H, <Z 2m; Dy: ) + MmN (DyN QJA(ZJN)) 5 +V
= ,. (1.9)
Ve= Y Viz; — )
(j,k)Ca

acting on L?(R>*" x Zamax). We define the innercluster Hamiltonian H on L2(R>*#(C) x
Z%%) for each cluster C; = {c;(1),... ,¢;(#(C;))} in a, where #(C;) is the number of the
elements in the cluster C; : For a neutral cluster C;, H G is defined by

| 1 1 | | 4 N
B = (S D2 | 280 4V, VO= T Vigloy —z).  (L10)
lec; <" {zll,zz}lccj
1<tg

For a charged cluster Cyg(q), HO#(® is defined by

1
HC#@ = _2m_N(DyN — qNA(yN))z. (1.11D)

For a mixed cluster C(q), H# is defined by

1 1 1 o
HO%@ = Zn 2_7;51)1/12 + ém—N(DyN - ‘INA(yN))2 - §Azc#(a) + V¥,
1€, ) _ (1.12)
VCj = Z WIIQ('TII - mlz)'
{l1,l2}CC;j .
Ll

where CJ, ) = Cy(a) \ {N}. What we should emphasize here is that this H# is just the
#(C4(a))-body Hamiltonian under consideration. Here the configuration space Z¢i is defined
by ’

ZC% = {(zcj(l), . ,ch(#(cj))) € R#(C5)

=1

#(C)) ~
Z Me; (1) Zc;(1) = 0},

which is equipped with the metric defined by

#(C;)

¢, ¢) = Z Me;()2e;()Ze; (), €11 = V((, C)
=1



for ¢ = (2¢;(1), -+ » 2e,(csn) € BF D and € = (2,00), -+, Zeyiicyn) € R¥Y, and A e,
is the Laplace-Beltrami operator on Z%. We also define two subspaces Z° and Z, of Z%==< by

r-{serm

Z myz; = 0 for each cluster C; € a}, Zy = 2% Z°.
leC;

And we denote by A,. and A,, the Laplace-Beltrami operators on Z* and Z,, respectively.
As is well-known, one can identify Z° with ZC! @ - - - @ ZC#@ . The cluster Hamiltonian H,
is decomposed into the sum of all the innercluster Hamiltonians HC and —A,_/2 :

#(a)
H,= (ZId@---@Id@HCJ‘®Id®---®1d) +1d®---®Id® (—%Au)

=1 .
(1.13)
on LY R¥N x Zom=) = [A(RP#*(C) x Z20W) ® ... ® L}(R¥**C#@) x ZC#@) ® L%(Z,).
We consider the sum of all the neutral innercluster Hamiltonians H®,j = 1... ,#(a)—1:
#(a)-1
K@= ) Id®---®ld®H% ®Id---®Id (1.14)
j=1

on K(a) = L*(R¥*#(O) x 701)®. . .@ L2(R>*#*(C#@-1) x ZCO#@-1). If one removes the center
of mass motion perpendicular to the field B of this (N — #(Cy4)))-body system from K (a),
the obtained Hamiltonian is an (N — #(Cg)))-body Schrodinger operator without external
electromagnetic fields in the center of mass frame : We equip R**#(%), j =1 ... #(a) -1,

with the metric
#(C;)

(Tl, ﬁ) = Z ij(l)ij(l) : gq,'(l)a |7I|1 =V (777 77) |

=1
for 1 = (Ye;a)s- - » Yesecy) € BHD and i = (Ge;1), - -+ > Tetics) € R, and
define two subspaces Y'C7 and Yg, of R¥>#() by

#(C;

)
D Moo = 0}’
=1

ch = {(ij(l)i cee aij(#(Cj))) € R2X#(Cj)

Yo, = R¥>#(Ci) g y©Ci,

And we put X% = YCix ZC and X*" = X1 x- - - x XC#@-1, and define two subspaces Y *"
and Y, , of R2*(N=#(Cy(a))) byY*® =YCix...xYC#@-1 and Y, = R>*WN-#(Cg@) gyan
which are equipped with the metric (, ). Then K (a) can be decomposed into

K@)=K'®Id+1d® (—%A,,M) (1.15)



on K(a) = L3(X*") ® L*(Y,,), where A, is the Laplace-Beltrami operator on Y, ,. As
we mentioned above, this Hamiltonian K¢ is an (N — #(Cj(a)))-body Schrodinger operator
without external electromagnetic fields in the center of mass frame. Thus we have

H,=K°®Id®Id® Id+ Id® H°*» @ Id® Id

1 (1.16)

) |

+Id®Id® (—-EA,M) ©Id+1d®Id®Id® (—EA,,G)
on L2(R¥*N x Zomax) = [2(X %)@ L} (R #(C#@) x ZO#@)Q L%(Y,n) ® L*(Z,). Denoting
by P and P the eigenprojections for K on L2(X") and for HC#® on L?(R*>*#(C#@) x
ZC#@), respectively, we put

PP=P'@P'QId®Id

on L2(R2><N x Zam“) — L2(xa,n) ® L2(R2x#(c#(“)) % ZC#(,,)) ® Lz(Ya,n) ® Lz(Za).
Then the usual wave operators W=, a € A(amax), are defined by

WZ =s-lim e e #Ha po, 1.17)
t—+o00

The main result of this article is the following theorem.

Theorem 1.1. Assume that (V.1), (V.2), (V.3) and (SR) are fulfilled. Then the usual wave
operators W%, a € A(amax), exist and are asymptotically complete -

LY(H) = Z ® Ran WZ.

a€A(amax)

Here L2(H) is the continuous spectral subspace of the Hamiltonian H.

The problem of the asymptotic completeness for N-body quantum systems has been stud-
ied by many mathematicians and they have succeeded. For example, for N-body Schrbdinger
operators without external electromagnetic fields, this problem was first solved by Sigal-
Soffer [22] for a large class of short-range potentials, and some alternative proofs appeared
(see e.g. Graf [14] and Yafaev [26]). On the other hand, for the long-range case, Derezifiski (7]
solved this problem with arbitrary N for the class of potentials decaying like O(|z; — zx|#L)
with some p; > V3 — 1 (see also e.g. [8]). As for the results for the systems in external
electromagnetic fields, see e.g. the references in [8] and [13].

Throughout this article, we assume that the number of charged particles L in the system
under consideration is just one. In the case when L > 2, by virtue of the constant magnetic
field, the physical situation in R® seems quite different from the one in R? : Imagine N-body
quantum scattering pictures both in R? and in R? under the influence of a constant magnetic



field. Suppose that the last L particles are charged and cannot form any neutral clusters. Put
C*={l,...,N—L}and C° = {N — L +1,...,N}, and introduce the set of cluster
decompositions :

B = {a = {Cy,... ,C#(a)} €A I C° C C#(a)}

with renumbering the clusters in a if necessary. For simplicity of the argument below, we
suppose that the pair potentials are “short-range”. As in the case when L = 1, one can also
introduce the Hamiltonian H, cluster Hamiltonians H, and the wave operators W. Then one
expects that the statement of the asymptotic completeness says that

L}(H) = Z ® Ran W

aeA(am;x )

when the space dimension is three. As is well-known, it is equivalent to that the time evolution
of any scattering state ¢ € L2(H) is asymptotically represented as

ey =Y e HepiyEio(l) ast— +oo (1.18)

with some ¢F € L2(R**N x Z%m=). We note that each summand e—**#= P34 describes the
motion of the particles in which those in the clusters in a form bound states and the centers
of mass of the clusters in a move freely. Since the motion of the particles parallel to the
magnetic field B is not influenced by B, we need take a superposition of e~**H P23+ whose
index a ranges in the whole of .A(amax) in general, as in the case when H is a usual N-body
Schrodinger operators without external electromagnetic fields.

On the other hand, when the space dimension is two, the statement of the asymptotic com-
pleteness may be

LX(H)= ) @®RanW¥,
a€B(amax)

where B(@max) = B\ {@max} C A(@max). This says that the time evolution of any scat-
tering state p € L2Z(H) is asymptotically represented by a superposition of e~*Hs Pay¥,
a € B(amax), Which particularly describes the particles in the only charged cluster Cg(,)
in @ € B(amax) form bound states. The reason why we should take this B(apa,) instead of
A(amax) is as follows : All charged particles are bound in the directions perpendicular to the
magnetic field B by the influence of B, because they cannot form any neutral clusters. So
one expects that the distance among all charged particles is bounded with respect to time ¢,
and one can suppose that all charged particles belong to the same cluster. Hence we need
not consider cluster decompositions a € A(amax) Which have at least two charged clusters.
Moreover, neutral particles can move freely without being influenced by the magnetic field B
even when the space dimension is two. Thus one should study the motion of particles in the
directions perpendicular to B more carefully in the case when L > 2. Recently we proved the



existence of a conjugate operator for the reduced Hamiltonian H and the Mourre estimate also
in this case, under the additional assumption that the interactions between neutral and charged
particles are finite-range (see [3]). Though we assumed that the space dimension was three in
[3], the proof is valid also in the case when the space dimension is two, by virtue of that they
are finite-range.

Now what we would l;ke to emphasize here is that the case in this article, that is, the case
when L = 1 is the unique one in which |

B(amax) = A(amax)

holds, because C° = {N} only when L = 1. In fact, our argument can also be applied to
studying the problem in R% when L = 1, because the motion of the only charged particle in
the directions perpendicular to B can be controlled by the total pseudomomentum kot Which
does commute with the Hamiltonian H. This fact is a key in order to prove the main result.

2 The Mourre estimate

In this section, we find a conjugate operator for the Hamiltonian H.

First we define the set of thresholds @ for H (or H ) by induction in the number of neutral
particles in the system. If N = 2, we put © = 7 (see [1]). Here

TN:{M(HE)
mn 2

Next let N > 3 and suppose that the sets of thresholds are defined for all k-body sys-
tems in which the number of charged particles is just one, with 2 < k < N — 1. Let
a={C1,...,Ca@m} € A(@max) With {N} C Cyu(). As we emphasized above, if Cy(a)
is mixed, HO#@ is just the #(Cg(q))-body Hamiltonian under consideration. Then one can
define the set of thresholds 7, . for H# by the assumption of induction. Here it seems con-
venient that in the case when Cy,) is charged, one puts 7, . = 0. Puto, . = opp(H Ca(a ). Next
we consider K'(a) on K(a). As we noted above, (1.15) holds, and K* is an (N — #(Cx(q)))-
body Schrédinger operator without external electromagnetic fields in the center of mass frame.
Thus one can define the set of thresholds 7, ,, for K¢ as in the usual way. Put o, , = opp(K*?).
And set 7,5, = Ton U 0gp and 75 ¢ = Tpc U 04 c. Now we define the set of thresholds O for H
(or H ) by ‘

nENU{O}}. ' (2.1)

0= |J (Fan+Tac) @2

a€A(amax)
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Now we find the origin operator A of a conjugate operator A for the Hamiltonian H. In order
to achieve it, we recall the argument in [1] for a two-body system. Begin with the following
self-adjoint operator A; on L2(R**? x Z°m=) for H :

1
Ay = -2—{((30'““’ DZ“m“> + (Dz“m“"v zam“» + (yl ) Dyl + Dyl : yl)}' (2.3)
Putting Hy = H,_, , one can obtain the following commutation relation by a straightforward
computation :
i[Ho, Ar] = —Asemae + —— Dy =2 ( Ho — ——(Dy, — 2 A(32))? 2.4)
0, /11 20max m n 0 2m2 V2 . .

As is well-known, the spectrum of the last term consists of the Landau levels 7. The commu-
tation relation (2.4) seems nice for studying the spectral theory for the reduced Hamiltonian
H. However, since A; does not commute with ko1, U*A;U cannot be reduced on H. In
order to overcome this difficulty, we introduce the self-adjoint operator A; on #, which is
obtained by removing the dependence on the total pseudomomentum (Dy,. 1, dBYcm,1) from
the operator U*A,U. This Ajisa conjugate operator for the reduced Hamiltonian H.In[1],
using the relative coordinates and the center of mass coordinates, we obtained this /il, but its
representation was slightly complicated and unsuitable for generalizations to N-body systems.
Now we review the argument in [1] : We see that the self-adjoint operator U(A; ® Id)U* on

L*(R*¥? x Zo=) = U(H ® L*(R,...,)) can be written as

- 1
U(A ® Id)U* = 5{((3“‘“"‘, D.omax) + (Dsomax, 2°°)) + (w1 - Dy, + Dy, -w1)}  (2.5)
with
— - = 2 Alkn) 2.6)
W =Yt = Yecs Yec = q32 tal )y .

where Id is the identity operator on L?(R,,,, ), and 7 is called the center of orbit of the
center of charge of the system (see [S] and [11, 12, 13]). In this case, one knows that ¢ = g2,
of course. Now we note that

2
Yec = Yec = Y2 — Yec = WA(Dyx + (Dyz - Q2A(y2))) (27)

is H-bounded. Since y..—7.. commutes with the total pseudomomentum kiotat, U* (Yee —Yec)U
is H-bounded, where we regarded U*(y.. — 7Y.c)U as the reduced one acting on . We notice
that one can write

i[Vig, Ai] = —(z1 — 2) - VVia(21 — 22) — (U* (32 — Yec)U) - Vi Via(21 — 2)
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on H, noting that Vi, commutes with k.. Under the assumptions (V.1) and (V.2), we see
that (Hy + 1)~1i[Via, A](Ho + 1)~ is bounded on #, and that for any £ > 0 and real-valued
f € C§°(R) there exists a compact operator K on H such that :

F(H)i[Vig, Ailf(H) > —f(H)* + K

holds. Here we used the fact that U*(ycc — Yec)U is H-bounded, which was mentioned above.
Since both D,, and kot commute with Hy, it is clear that

i[Hy, Ay] = 2 (ﬂo - U* {2_1'(Dy2 - qu(y2))2} U) (2.8)
mo

holds by virtue of (2.4), where Hy and U*{(1/2m,)(D,, — q2A(2))?}U are the reduced
operators acting on H of Hy and (1/2m;)(D,, — g2A(y2))?, respectively. By virtue of these
two estimates, we obtained the desired Mourre estimate in [1] (see also Theorem 2.1 in this
section).

Now we return to the present problem. We define the origin operator A of a conjugate
operator A for the reduced Hamiltonian H :

N-1
1
A= 5 {((Zamax, Dzamax> + <Dzamax, Zama")) + Z('LU] . Dy]- + Dyj . 'LUJ)} (2.9)
. e ‘
with
Wi =Yj — Yecy  Yec = __—A(ktotal)a J= 1a “ee aN - L (210)

qB?

We see that A commutes with the total pseudomomentum K;qta), by taking account of the fact
that D, and w;, j = 1,...,N — 1, commute with ki.ta. Here we note that ¢ = gx and
Yec = Yn in this case, and that

N-1 ‘ K
Yec = VYec = %A ((Z Dyj) + (DyN - (INA(yN))) (211)
j=1

is Hy-bounded. We also notice that U*(ycc — Yec)U is Hy-bounded, since ye. — Yoc COMmMutes
with kot and is Hy-bounded as we mentioned just now, where we regarded U*(yec — Yec)U
as the reduced one acting on H. Since D, j = 1,... , N — 1, and kit all commute with Hy,
it is clear that

N1 ‘ : : S ]

. 1 1 ‘

Z[Ho,A] = —Az'amax + E ED%? =2 (Ho - %(Dyl\, - qNA(yN))Q) (212)
J=1 ‘ ‘ "
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holds. And we define a conjugate operator A for the reduced Hamiltonian H as the reduced
operator on H of A. The Nelson’s commutator theorem guarantees the self-adjointness of A
and A (see e.g. [21]). Moreover, by virtue of the fact that U*(y.. — 7Yec)U is fIO-bounded,
one can check that (Hy + 1)~[V, A](H, + 1)~! is bounded on # in the same way as in the
two-body case which we mentioned above, under the assumptions (V.1) and (V.2). We have
only to keep in mind that wj, — w;, = y;, —yj, With1 < j;, jo < N — 1.

Then we have the following main result of this section by virtue of the abstract Mourre
theory (see e.g. [19] and [6]) and the HVZ theorem for the reduced Hamiltonian A (it is well-
known that the HVZ theorem for H cannot hold, since H has the so-called Landau degeneracy
which was proved in [5]) :

Theorem 2.1. Suppose that the potential V satisfies the conditions (V.1) and (V.2). Put
d(A) = dist(A, 6 N (=00, A])

for X > inf ©, where O is as in (2.2). Then for any \ > inf © and any € > 0, there exists a
0 > 0 such that for any real-valued f € C§°(R) supported in the open interval (A — 8, A + 6),
there exists a compact operator K on H such that

F(H)I[H, Af(H) > 2(d(\) — €) f(H)* + K (2.13)
holds. Moreover, eigenvalues of H can accumulate only at 6, and 6 U oop(H) is a closed
countable set.

As for the proof, see [2].

In order to study the scattering theory for the Hamiltonian H, the following corollary seems
useful, which follows from the fact that H is the reduced operator on H of H and a standard
argument immediately (cf. [1]) :

Corollary 2.2. Suppose that the potential V satisfies the conditions (V.1) and (V.2). Then
forany A € R\ (6 U o,,(H)), there exist § > 0 and ¢ > 0 such that for any real-valued
f € C§°(R) supported in the open interval (A — 4, A + §),

f(H)i[H, Alf(H) > cf(H)? (2.14)
holds.

3 Propagation estimates

In this section, we introduce some propagation estimates which are useful for showing the
asymptotic completeness for the system under consideration.
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Throughout this section, we assume that the potential V' satisfies the following condition
(LR) as well as (V.1), (V.2) and (V.3).

(LR) Vi, is decomposed as Vj; = Vjx s+ Vji, 1, where a real-valued Vji, ;, € C*° (R?) such that
|02Vt ()| < Cafr)~lel—re with 0 < pr < 1, and a real-valued Vjj g satisfies that VVj; g is
—A-bounded and |

= O(R™"sY),

,
1(1,00) (%)V}k,S(—A +1)7!

= O(R_l_””)

as R — oo, with ug; > 1 and pgy > 0.

111,00) ('—g) VVks(—A +1)7!

One can use this condition (LR) in the study of long-range scattering for N-body quantum
systems in a constant magnetic field under the condition that the number of charged particles
in the systems is only one. We note that by putting V;, = 0, (LR) implies (SR).

Inspired by [1], we first introduce the configuration space X = R>*(N-1 5 Zamax which is
equipped with the metric

(&5 - (Zmyyg yJ) (gomex, 2omx), |Z] = V/(E, E)

for & = (yl, . YN-1,2%=x) € X and Z = (J1,--. ,JN-1,2%>) € X. We denote the
velocity operator associated with = by pz = —iVz.

Now, for a = {C1,... ,Cy(s} € A with {N} C Cy(a), we introduce two subspaces ¥
and X, of X as follows :

Xt = {(ylv'- . ayN—l) € R2X(N_1) Z MEYre = 0 forany .7 = 1)' .. ,#(a’) - 1} X Za7

kECj

X, = {(yl,... yn—1) € R®>V-D | Y, =y, ifl;, lo € Cj, forany j =1,... ,#(a) —1;
. yk=0ifk€C#(a)} X Zg.

We see that these two subspaces are mutually orthogonal, and that X* & X, = X’. We denote
by 7* and 7, the orthogohal projections of X’ onto X* and X,, respectively. And we write
=% = r%Z and =, = 7m,=. Denoting the velocity operators associated with =¢ and =, by
pse = —iVze and pg, = —iV z,, respectively, we see that pz« = m°pz and p=s, = m,p=. For
a, b € A, we denote the smallest cluster decomposition ¢ € A witha C candb C cbya Ub,

whose existence and uniqueness are well-known. Then we note that fora, b € A

Xaub = Xa N Xb
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holds, which can be seen easily.
Now we can introduce the so-called Graf vector field as in [14] and [7] (see also [8]) :

Proposition 3.1. There exist a smooth convex function R(Z) on X, bounded smooth functions
4a(Z) and ¢,(Z), a € A, on X which satisfy the following : §,(Z) and ¢.(Z), a € A,
have bounded derivatives. If (j,k) ¢ a, |[EU®)|; > 1/3r¥N-1/10 holds on supp §,(Z) and
supp ¢4(=). In particular, if (j,k) ¢ aand j < k < N, there exists some ¢ > 0 such that
|z; — zx| > c holds on supp G,(=) and supp q.(=). Moreover, one has

YW@ =1, ) @(3)=1,

a€EA acA
max{|Z|,>,C1} < 2R(Z) < |E,2 + C, for some C,, C; > 0,

(V=R)(Z) =) Zada(2),

acA
(VER)(E) 2 ) mada(E),
acA
(& (VZR)(Z)€) — (£, (V=R)(E)) — (V=R)(2),£) + 2R(2) 2 ) _ Gu(E)|&a — Zal®

acA
for £ € X, and that for any a € A, R depends on =, only in some neighborhood of X,.

02(2R(Z) - |Z11%), 02((Z, (V=R)(2)) ~ |Z1") and 82 ((Z, (VER)(E)E) — |E,*) are all
bounded functions on X, for any multi-index a.

Following the argument of [5], we introduce the creation operator 3* by using the total
pseudomomentum kioia) = (Ktotal 1, Krotal,2) as follows (see also [1]) :

1 /1 '
B = \—/—5 (q_ktota.l,2 - ikzotal,l) . @3.D

Here we took account of (1.8). In the argument below, we use the localization of the number
operator Ny = 3*(3 in addition to the localization of the energy.

Now we show the following important propagation estimate, which was due to Graf [14] in
the case of N-body Schridinger operators without external electromagnetic fields (see also [7]
and [8])).

Theorem 3.2. Leta € A, J € C§°(X) be a cut-off function such that J = 1 on {Z € X |
|Z)1 <6} and J > 0, and f, h € C$°(R) be real-valued. Suppose that max{(1+pg2)~*, (1+
pL)"'} < v < 1. Then, for sufficiently large @ > 0, there exists a constant C > 0 such that
forany p € L2(R*N x Zome)

| a(3) () runne

—
—

—a
- —P=,

2
: <l
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As for the proof, see [2].
When we take v = 1 in Theorem 3.2, one can obtain an improvement of Theorem 3.2 as

follows :

Theorem 3.3. Leta € A, J € CP(X) be a cut-off function such that J = 1 on {Z
|21 < 0} and J > 0, and f, h € C§°(R) be real-valued. Then, for sufficiently large § > 0

there exists a constant C > 0 such that for any ¥ € L*(R*N x Z “m“‘)
oo
/1

As for the proof, see [2].

—

11/2% (:;) / (%) f(H)h(Noe "”’¢ 2 <ol

ey
=]

— — Pz,

t

holds.

Next we introduce the following maximal velocity estimate

Proposition 3.4. For any real-valued f € C{°(R) there exists M > 0 such that for any

r

for any ¢ € L*(R¥N x
L2(R¥N x Zeomax) such that (1 + | Z];)Y?p € L2(R¥N x Zamax)

‘/1 ‘I[Ml,oo) (Ei"l> f(H)e_itHw

As for the proof, see [2].
Finally we prove the following minimal velocity estimate, which can be shown by virtue of

M2 >M > M,
*< C||¢||2

L (I510) £ sty
Z%max) with C > 0 independent of 1. Moreover for any ¢’ €

holds.

the Mourre estimate in Corollary 2.2.
Theorem 3.5. Let )\, 6, c and f be also as in Corollary 2.2. Theri for any real-valued h €

C3°(R), there exists €q > 0 such that
[ Jroes (21 sanmooers]|

forany € L*(R*N x Zomax), with C > 0 independent of .

< <ol

As for the proof, see [2].
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4 Proof of Theorem 1.1

Throughout this section, we assume the conditions (V.1), (V.2), (V.3) and (SR). First we
prove the existence of the Deift-Simon wave operators

a t—o00

Wt =s-lime*Heg, (%) etH  ac A (4.1)

We note that Ny commutes with H. By a density argument, for 1 € L?(R>*N x Z%m=x) such
that

with f, h € C§°(R), we have only to prove the existence of

—

7t — Tim oitHazy [ =
Wi = lim e qa(t

In order to carry it out, by taking f;, hy € C§°(R) such that f; f = f and h,h = h, we have
only to show the existence of

) ety ac A @4.2)

—

Jim e (N Fu(H)da (3 ) 9, o€ A @3)

Here we note that

—

M)A (HD (5) = o () AN = 0@ (-t-smd) = 0,

As is well-known, Proposition 3.4 implies

s-lim {1 - J? (%) } e *Hf(H) =0, 4.4)

t—o00

where J € C3°(X) be a cut-off function such that J = 1 on {5 € X | |Z|; < 6} and
J 2> 0 with sufficiently large 6 > 0 (see e.g. [1]). By virtue of (4.4), we have only to show the
existence of

lim &y (No) f1(Ho)J (—;—) & (%) J (g) ety g A @5)

The existence of (4.5) is proved by virtue of Theorem 3.3 and Proposition 3.4 (see [2] for the
detail). Therefore we get the existence of the Deift-Simon wave operators W, a € A.

 Using the same argument as the one to show the existence of the Deift-Simon wave operators
W, a € A, one can prove the existence of the usual wave operators Wi, a € A(amax), Which
are defined by (1.17). For the detail, see [2]. We note that one can prove the closedness of the
ranges of W, a € A(amax), their mutual orthogonality and

> @®RanWF c LX(H)

aE-A(amax)
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in the same way as in the case for many body Schrodinger operators without external electro-
magnetic fields.
Finally we prove the asymptotic completeness. We first claim that letting f € C§°(R) as in
Corollary 2.2, we have for any real-valued h € C§°(R)
W

Gmax

f(H)R(No) =0 (4.6)

with sufficiently small 7 > 0 in the definition of {G,(Z) [ a € A}. In fact, by virtue of
Theorem 3.5, we have only to take r > 0 so small that r < €02, where £y > 0 is as in Theorem
3.5.

Now we prove the asymptotic completeness by induction with respect to N > 2. First we
note that in the case when N = 2, the asymptotic completeness was proved in [1]. Assume that
the asymptotic completeness holds for M -body systems in which there exists only one charged
particle with 2 < M < N. By a density argument, we have only to consider ¢ € L2(H) such
that

Y =h(No)y, ¢=Ff(H)Y

with h € C§°(R) and f € C{°(R) as in Corollary 2.2. Here we also notice that © U o, (H) is
a closed countable set (see Theorem 2.1). If we take r > 0 so small that r < £42, we see that

e_qu/) — an, (_‘E;’:) e—itH’L/) — Z e—itH,,W;—,l/) + 0(1)

acA a€A(amax) (47)
= Y eteputy+ Y ee(ld— PYWiY +o(1)
a€A(amax) a€A(amax)

as t — oo. Here we used Proposition 3.1, the existence of the Deift-Simon wave opera-
tors W, and (4.6). For any ¢ > 0, there exist a finite number of P € LAX*), ¢ €
LA (R¥#(C#@) x ZC#w), 4, ; € L*(Y,,) ® L*(Z,) such that '

Wrp— 3 90 @ 92 @ va

7:finite

<e. 4.8)

Now one can apply the asymptotic completeness for K@ and H #(=, where we recall that K°®
is an (N — #(Cy(a)))-body Schrédinger operator without external electromagnetic fields in
the center of mass frame, and H# is the #(Cy(4))-body Hamiltonian under consideration.
We also note that the asymptotic completeness for K under the condition (SR) was already
obtained by several authors (see e.g. [22], [14] and [26]).

Fora = {Ci,... ,Cg@)} € A(amax) With {N} C Cp(), we puta® = {C1,... ,Cy@)-1}
and a° = {Cy,}. Let A" be the set of all cluster decompositions b" of Ufz(‘f)—lcj such
that b C a", and A be the set of all cluster decompositions b° of Cy(4) such that b¢ C a°.
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Put A3(a") = A2\ {a"} and AS(a®) = AS \ {a°}. Taking account of that the asymptotic
completeness for HC#@, a € A(amax), holds by the assumption of induction, we have

Ran(Id— P*)= ) @®RanW*(K* K. 4.9)
breAn(an)
with
WH(K® Kg&) = s- lim 'K itk pa
—00

on L%(X®"), where K% = K°® — I% with

i:: = § : Vlllz(xll _xlz)’
(l1,l2)Ca®
(hid2)gb”

15,;‘,, = Pg ® Id is the eigenprojection for the subsystem Hamiltonian associated with K2,, as
well as

Ran (Id — P*) = ZEB Ran W+ (HC#@, Hb(f#"") (4.10)
bee AS(ac)
with

o C . . :Cuia) _ipgC#(@) A
WH(HC*@  H #®) = s-lim gt T it pa
—00

on L}(R?*#(C#@) x ZC#@), where Hy*® = HC#@ — & with

I:: = § : V;ll2($ll - xlz)’
(l1,§2)Ca®
(lal2)z ¢

P2 is the eigenprojection for H, b(f#“", which is defined in the same way as P*® associated with
H,. Thus there exist @y j € L2(X*"), b" € A%(a"), such that

(Id—Poye = > WHEK" Kp)pw, @4.11)

b €A (am)
by (4.9), and there exist @y ; € L2(RP#*(C#@) x ZC#w@), b¢ € AS(ac), such that

~ “a ~ C AN A
(Id— Py = ) WHHO® HF)pp; @.12)
be€AG(a°)

by (4.10). Thus, taking account of

Id®1Id— P*® P* = (Id - P*) ® (Id — P*) + (Id — P*) ® P* + P* ® (Id — P?),
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we have as t — o0

e-—itHd}
= Y e Py +o(1) + Ofe)
aeA(amax) .
. ~ B ~ Cuiars
+ 2 { Y et (WK, Ko )@, © WHH*®, H* )i j @ thaj)
a€A(amax) \ b"€AG(a")

j:finite b°€ A (a®)

+ Y et (WK, K )Pons ® PUYS ® )
bneAz(an)

+ Z e—itHa paqpa Q@ WH(HC #@, Hg#(“))(ﬁbc,j ® wa,j)}-
be€AS (ac)
(4.13)

Forb" = {B},... , By} € Aj and b° = {B5,..., Bt € Ag, we write
b+ b= {B},..., By, B, By} € Aa={bEA|bCa}.

We note that, for b € AR and b° € AS, we see that b° + b°, b" + af, a” +b° € Aa) =
{b € A| b € a} = A, \ {a}. Taking account of the definition of W* (K, K}.) and
W+(HC*@ , H bcc#(“)), and rearranging some terms in (4.13) with respect to b € A(a), we have
ast — o0

e—itH¢ — Z —thaPaw+w + Z Z e—thbe(,(pb ® waJ) + 0(1) + 0(8)

GEA(amax) GEA(amax) beA(a)
j:finite

(4.14)

with some 9 € L3(X%") ® L2(R>#(%#@) x ZC#@). Multiplying both sides of (4.14) by
e and taking t — oo, we have ‘

v= 3 WiWip+ > Y W ®da;) +0(e). 4.15)
a€A(amax) a€A(amax) bEA(a)
j:finite
Since one can take € > 0 arbitrary, this implies

Y€ Y SRanW

GGA(amax)

by virtue of the closedness of the ranges of W, a € A(amax). The proof is completed. [
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