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Asymptotics of Green functions and Martin boundaries
for elliptic operators with periodic coefficients
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1. INTRODUCTION

We consider a second order elliptic operator on R¢, d > 2,

d d ‘ 1 -
L=~ Viaj(z)V; —,Z bi(2)V; +c(z) = =V - a(z)V = b(z) - V + c(2),

1,5=1

where V; = 9/0z; and z = (z, ...,24). We assume that the coefficients have VAR
periodicity, i.e. a;;(z+2z) = a;;j(z), bj(x+2z) = bj(x) and c(z+2) = c(z) forany z € vAS
Assume that the coefficients are real-valued, that a;;, b; € C1*(R?) and ¢ € C*(RY)
and that the matrix (a;;) is symmetric and satisfies E:'i,j=1 aij(z)&i&; > ~|€|? for some
~ > 0 and all z,£ € RY. In this paper we give asymptotics of the Green function G(z,y)
of L as |z — y| = oo, and determine the Martin boundary for L using the asymptotics.

- Among many studies of elliptic operators with periodic coefficients let us note the
following. Agmon [A2] discussed positive solutions called exponential solutions to (L-—
A)u = 0 and the spectral properties for L. Developing his results, Pinsky [Pinsl] gave a
relation between the criticality of L — X and the structure of the exponential solutions.
Further generalization to operators on manifolds with a group action was achieved by
Lin and Pinchover [LP]. About asymptotics of the Green function as |z| — oo, Schroeder
[S] gave an exponential decay rate by means of a variational quantity for Schrodinger
operators with periodic potentials. On p.87 in [Pinsl1], a conjecture of the asymptotics
by Agmon was stated. In this paper we will give an asymptotics which is more precice
than his conjecture.

We recall some results to state our theorems. For each k € C? let L(k) be an operator
acting on functions on the d-dimensional torus T?¢ = R%/Z? defined by

L(k) = e Let*® = _(V + ik) - a(z)(V + ik) — b(z) - (V + ik) + ¢(z).

We regard L(k) and L(k)*, the formal adjoint of L(k), as closed operators on C(T?)
with domain C%%(T4). By the Krein-Rutman theorem, for 8 € R?, L(i3) has an
eigenvalue A(i8) € R of multiplicity one such that the corresponding eigenspace is
generated by a positive function in C%2(T?). Furthermore, A(i3) is also an eigenvalue
of L(i3)* of multiplicity one such that the corresponding eigenspace is generated by
a positive function in C*%(T¢) (cf. Theorem 4.11.1 in [Pins2]). We call A(i3) the
principal eigenvalue of L(:3).

Let C, be a cone of positive solutions for L: Cr, = {¢ € C*(R%); Ly = 0 and ¢ > 0}.
When a positive Green function exists for L, L is called subcritical. In this case Cr, #0
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(cf. [Pins1]). When a positive Green function does not exist for L but Cy, # @, L is called
critical. When C, = 0, L is called supercritical. Put A = sup{\; L — )\ is subcritical}.
It is known that —co < A, < 0o, L — A is subcritical for A < )., either subcritical or
critical for A = A, and supercritical for A > ..

Suppose that L is subcritical. For R > 0 let L be the Dirichlet realization of L in
L*(Bpr), where Bp is the ball {|z| < R}. Then the resolvent L' exists and the Green
function Gp is positive. Since L is subcritical there exists the limit G = limg_,o, Gr
which is called the minimal Green function.

Define I'y = {8 € R thereexists ¥ = e #*u € Cr_, withu € C%*(T%)} and
K = {B € R?; there exists ¥ = e~#%u > 0 such that (L=X)y > 0 with » € C%(T?)}.
Our arguments are based on results in [A2] and [Pinsl], so we extract them. Note that
the relation between our function A and a function )¢ in [Pins1] is A(iB8) = —o(—2).

Theorem AP. (i) If XA > A, thenTx = Kx = 0. If A = X, then Ty = K = {6}
with some fo € R4. If A < X, then K) is a d-dimensional strictry convez compact set
with smooth boundary T

(11) The function A(iB) of B € R? is real analytic and strictly concave, and its
Hessian HessgA(i8) is negative definite.

(i11) A = supg A(iB) and the supremum is attained uniquely at B in (i), in partic-
ular, VgA(iB) =0 if and only if B8 = fo.

(iv) Tx = {8 € R4 A(iB) = A} and K = {8 € R A(iB) > A}

First assume that supg A(i3) > 0. Then it follows from the above theorem that L is
subcritical, and for each s € S4~! there exists 8, € I’y uniquely such that the supremum
supger, O - 8 is attained at 3 = B,. For s € S~!, choose {e,,,-}';;} C R4 such that
{es 1, - ,€s,a-1,8} is an orthonormal basis of R?. For 8 € RY let ug € Cz"'(Rd)
and vg € C**(R?) be positive Z?-periodic solutions to (L(i8) — A(iB))u = 0 and
(L(8)* — A(:B))v = 0, respectively. Put (u,v) = Jpa v(z)v(z)dz for L?(T?)-functions

u and v. Our first main theorem is the following.

Theorem 1.1. Assume that supg A(iB) > 0. Then the minimal Green function G of
L has the following asymptotics as |z — y| — oo: :

o G [VsA(iB,)|(4=3)/2 ug, (z)vg, (v)
(2.9) =G = y|)(@=1/2 (det(—e,; - Hessg A(iB,)e, k) k) /2 (ug,,vp,)
x (14 O0(|z —y|™)), (1.1)

where s = (z — y)/|z — y| and the term O(|z — y|™') satisfies that |O(|z — y|~1)| <
Clz — y|™! for |z — y| > R with positive constants C and R independent of z,y.

In the next section, we shall reduce the proof of Theorem 1.1 to the following theorem,
where L is regarded as a closed operator on L?(R%).

Theorem 1.2. Assume A(0) > 0. Then the resolvent L™ ezists and the integral kernel
G of L™ has the same asymptotics as in Theorem 1.1.

Next assume that supg A(i) = 0. Then, by Theorem 2 in [Pinsl), L is critical if
d < 2 and subcritical if d > 3. Our second main theorem is the following.
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Theorem 1.3. Let d > 3. Assume that supg A(iB) = A(ifo) = 0. Put H = —Hessg

A(iBo). Then the minimal Green functzon G of L has the following asymptotics as
|z —y| —= oo:

D(42) 9B oy (o 80¥) 3 4 o(le —yI7Y), (1.2)

e —
(®Y) = (et D)2 (7 (s — ) [72  (upo,vp,)

where the term O(|z — y|™') satisfies that |O(|z —y|™!)| < Clz —y|™! for |z —y| > R
with positive constants C and R independent of z,y.

Here, by applying Theorem 1.1, we explicitly determine the Martin boundary of R4
for L in the case supg A(i8) > 0. As for the definition and basic properties of Martin
boundary, see [M] and [Pins1,2]. Fix a reference point zo in R?. Then the following
proposition is a direct consequence of Theorem 1.1.

Proposition 1.4. Assume that supg A(iB) > 0. Then the Green function satisfies that
for any sequence {y,} in R? such that |y,| = o0 and yn/|yn| — v,

lim E_(_?_’_y_n_)_ — e—(I—l‘o)'ﬂ_y uﬂ—u(z)

. zeRY 1.3
A o, vn) a5, (%) (1-3)

(1.3) was conjectured by Pinchover, as was mentioned in p.90 of [Pinsl]. Denote by
K(z,v) the right hand side of (1.3). Then K(-,v) € Cf, K(zo,v) =1, and K(-,v) #
K(-, p) if v # p. Furthermore, it is well-known that for any v € S4~1, K(-,v) is minimal
in Cp, i.e., if Y € Cf satisfies g[)( ) < K(-,v) on R? then ¥ = CK(-, ) for some positive
constant C. Hence we can explicitly determine the Martin boundary of R? for L as
follows

Theorem 1.5. Suppose that supg A(iB) > 0. Then the Martin boundary and the mini-
mal Martin boundary of R for L are both equal to the surface S~ at infinity which is
homeomorphic to T'y; the Martin kernel at v € S~ is equal to K(-,v); and the Martin
compactification of R% for L is equal to {z € R%; |z| < 1} U[1,00] x S4~! equipped with
the standard topology.

In the case where supg A(zﬂ) =0and d > 3, we obtain the following propsition and
theorem. These results, however, are also 51mple consequences of the known results
that Cp, is one dlmensmnal in this case.

Proposition 1.6. Let d > 3. Assume that supﬂ A(zﬂ) = A(z[i‘o) = 0. Then for any
sequence {y,} in R? such that |y,| —= oo;

G(z,yn) —(z—20)-Bo U8B () d
lim ——" = g—(#=®0)fo L2775 c R% 14
2% Clzo, va) uso(z0) (4)

Theorem 1.7. Suppose that supz A(i3) = 0 and d > 3. Then the Martin boundary and
B

the minimal Martin boundary of R for L are both equal to one point co; the Martin
kernel at co is equal to the right hand side of (1.4); and the Martin compactification of
R? for L is equal to the one point compactification R? U {oo} of R.

In the rest of the paper we prove Theorems 1.1, 1.2 and 1.3. In §2, we study the
spectra of L(k) and L, and give an integral expression of the resolvent of L in terms
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of the resolvent of L(k). At the end of the section, we prove Theorem 1.1 under the
assumption that Theorem 1.2 is true. In §3, we analyse the set of zeros of A and
an asymptotics of L(k)™! near the zero set. Furthermore, we present a saddle point
method, which is a basic tool in obtaining the asymptotics of the Green function. In
§4, using results in §2 and §3, we show Theorem 1.2. Finally, Theorem 1.3 is proved in
§5.

2. INTEGRAL EXPRESSION

In the following, L(k) and L are regarded as closed operators on L?(T?) and L?(R?)
with domains H2(T?) and H?(R?), respectively. For an operator T, we denote by o(T)
and p(T) the spectrum and the resolvent set of T, respectively. We first study the
spectrum of L(k).

Proposition 2.1. Leta, 8 € R? and A € C with A(i3) > ReX. Then X € p(L(a+if)).
In particular, for any k € R4, {A € C;Re X < A(0)} C p(L(k)).

Proof. We have only to show that if u € H?(T?) satisfies L(a +i8)u = Au ,then
u = 0. Using Kato’s inequality

V -a(z)V|u| > Re[(sgn@)(V + ia) - a(z)(V + ia)u]
in the sense of distributions (see Lemma A in [Ka]), we have

L(iB)lu| = [-V -a(z)V + V - a(z)B + B - a(z)V — B - a(2)B — b(z) - (V — B) + c(z)]|u]
< Re[—(sgn@)(V +ia) - a(z)(V + ia)u]
+[V-a(z)8+8-a(z)V - 8- a(z)B — b(z) - (V = B) + ¢(=)]u]

=Re [(sgn i)[—(V +ia)-a(z)B — B-a(z)(V +ia) + 8- a(z)B

+b(z) - (V+i(a+iB)) —c(z) + /\]u]
+[V-a(z)B+0-a(z)V - F-a(z)8 - b(z) - (V — ) + ¢(2)][u|
= Re A|u|. (2.1)

Let 3 > 0 be an eigenfunction to L(i8)*y = A(i8)%. Then by (2.1), we have

Red [ 1w > [ LGBy = AGH) [ 1ty

This shows u = 0 by the assumption A(i3) > ReX. 0O
Proposition 2.2. Let a € R*\ (27Z)? and B € R?. Then A(iB) € p(L(a + iB)).

Proof. We have only to show that if u € H?(T?) satisfies L(a + i8)u = A(iB)u, then
= 0. First we show that L(if)|u| = A(iB)|u|. As in the proof of Proposition 2.1,
by Kato’s inequality, we have [1.,(L(i8) — A(i8))[ulp < 0 for any 0 < ¢ € C(T9).
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Suppose that there exists po > 0 such that [1..(L(i8) — A(i8))|u|po < 0. Let ¥ > 0 be
an eigenfunction to L(i3)*y = A(i8)¢ and take ¢ > 0 such that 0 < epo < 9. Then

M) [ty = [ LGty = [ LGB)ulevo+ [ | LGBI — <o)

AGH) [ lulv.

This is a contradiction. Hence, [14(L(:8) — A(i8))|ulp = O for any ¢ > 0. Therefore
L(iB)|u] = A(:B)|u|. This implies that either |u| > 0 or u = 0. -
Next we show u = 0. Suppose that |u| > 0. Then a direct calculation shows that

(268) ~ AGENI = —ful (2T 4 ) afo) (T )

|ul? |ul?

(cf. the proof of Theorem 3.1 in [Pins1]). Since L(i8)|u| = A(i8)|ul, |u|*Im(aVu)+a =
0. Put v = u/|u|]. Then we have Im(3Vv) = |u|"?Im(2Vu) = —a. Since vo = 1,
Re(Vv) = 0. Thus, 5Vv = —ia; and so Vo +iva = 0. This implies that V(ve'*®) = 0;
and so ve!** = ¢ for some constant c. Hence u = c|u|e ixz  But since a € Rd\(ZwZ)d
u is not periodic. This is a contradiction. O

Next we study the spectrum of L, and give an integral expression of the resolvent of

L. Let 27T¢ = R?/(27Z)%. Let H be an L2-space of L?(T?)- valued functions on 21er
W1th measure (27) " 4dk:

_2»“_515_,/20,_@ o _dk
H_L(ZT,(zﬂ)d,L(T))_/z”T (1) oy

Define an operator F from LZ(R?) to H by
(FF)k2) = D flz = e =%,
. lezd

Then F is a unitary operator, and the adjoint F* is given by, for g € H,

Fe-n=[ d

2xTd (27r)d

(see Lemma on p.289 of [RS] or Theorem 2.2.5 in [Ku]). For f € H!(R?), we have

e Dkg(k,z), zeT? ezt

(Vs + ik)Ff = F(V). (2.2)

Let L = fzeerd L(k)(.%fy; be an operator on H defined by (Lg)(k) = L(k)g(k) with

domain
D(L) = {g € H; g(k) € D(L(k)) = H*(T?) a.e. k and L(k)g(k) € H}.

Since L(k) is closed, L is closed. ClearlyLD(i) > L*(2n'T¢, (27) ~4dk; H?(T?)). Let us
show the opposite inclusion. Let g € D(L). Then we see that g is a measurable square
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integrable H2(T?)-valued function. In fact, the measurablity follows from g € H, and

the square integrablity follows from ||g(k)|| g2 < c(||L(k)g(k)||z2 + llg(k)|lz2). By (2.2),
we have

FL=LF. (2.3)
Let ReA < A(0). By Proposition 2.1, we see that (L(k) — A)~! is a real analytic

function from 27T to the Banach space of bounded operators on L*(T¢). Thus,
by Theorem XIIL.83 in [RS], we can define a bounded operator M on by M =

S (L(R) = )~ kg

Proposition 2.3. Let Re A < A(0) . Then X € p(L) and (L — A\)™! = F*MF, i.c.,
for any z € T4, 1 € Z¢ and f € L*(RY),

(=N (e —1) = [2 i F(k)%, (2.4)
where ‘ » . A
F(k) = &R (k) = )7 ( D (- — m)em=mHy (). (2.5)
mezZd

Proof. For any f € H, put g = Mf € H. Then g(k) = (L(k) — A\)"! f(k) for a.e.
k. Thus (L(k) — A)g(k) = f(k) and g(k) € H%(T?); hence (L — A)g = f. This implies
that M is a right inverse of L — A. For any g € D(L), put f = (L — A\)g. Then
f(k) = (L(k) — M)g(k) for a.e. k. Thus (L(k) — X)~1f(k) = g(k) and f(k) € H, i.e.,
M f = g. This implies that M is a left inverse of I, — \. Hence (i —A)~! = M. By the
unitary equivalence (2.3) of L and L, we have that A € p(L) and (L — A)"l=F*MF.
a

Lemma 2.4. The spectrum of L(k) and L(k + 2xz) coincide for each k € C? and
z € Z%. If (L(k) — X\)™! ezists for A\ € C and k € C4, then F(k) = F(k + 2n2) for any
z €24,

Proof. The first claim clearly holds. Let us show that the second. Note
e2™ T (L(k + 2rz) — A)7! = (L(k) — A)"1ei?"* =,
Then we have

F(k + 2nz) = ei(z-l)-kemwz-z(L(k + 27!'2) _ ,\)—l( Z f(— m)e—i(._m).(k+21rz))(z)
meZd
— ei(z—l)-k(L(k) _ ,\)—l(ei21r:-(-) Z f( _ m)e‘i('“'")’("+2"’))(:c) _ F(k)
meEZ4

O

We close this section by showing that Theorem 1.1 follows from Theorem 1.2.

Proof of Theorem 1.1. Suppose that Theorem 1.2 holds. Assume that the operator
L satisfies supg A(i3) > 0. Choose fp € R? such that A(iB) > 0, and consider
the operator Ly = efo*Le™Po*, Then the principal eigenvalue A, (i) of L,(:8) =
eP*L1e~P% is equal to A(iB+ifo), and so A;(0) > 0. By Proposition 2.3, inf Re o(L;) >
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A1(0). Thus inf Re (L) > 0. Since the minimal Green function G; of L; is the integral
kernel of the resolvent L 1 (cf. Theorem 2.3 in [M]), the Green function G; has the
same asymptotics as in Theorem 1.1. On the other hand, the minimal Green function
G of L satisfies G1(z,y) = e#o*G(z,y)e Po¥. Thus we obtain the asymptotics of G in
Theorem 1.1. O

3. ANALYSIS OF A(k) AND L(k)™?

In this section we assume A(0) > 0. For s € R?, let 8, € Iy be the vector defined
in §1. Put n, = 3,/|8s|. We see that 5, is smooth in s. Choose R4(4-1)_yalued smooth
function e; = (€s,1,...,€s,d—1) ON S4-1 guch that for any s € S471, {es1,.--,€s,d-1,8}
is an orthonormal basis of R%. Since the principal eigenvalue A(:¢8) is nondegenerate,
the analytic perturbation theory shows that A(i3) has an analytic continuation A(k)
to a neighborhood N of iRg, which is also a nondegenerate eigenvalue of L(k) for any
k € N (cf. Theorem XIIL.8 in [RS]). We introduce new coordinates (w, z) near i3, such
that

: d—1
k=wn,+ 2 €, = wn, +Ez,-e,,j, weC, z=(2,...,2d-1) € cé-1,
j=1
We write As(w,2) = A(wns + z - e).

Lemma 3.1. There ezist R > 0 and a C®-function w(s,z) of (s,2) € D =841 x{z €
C? 1 |z| < R} such that w(s,z)n, + z-e, € N for (s,z) € D, w(s,0) = ¢|B,| and
Ay(w(s,2),2z) = 0 on D. For each s € S¥71, w(s,z) is holomorphic in z € {z €
C?1; 2| < R}.
Proof. Note that
A, (i]8s],0) = A(iB,) = 0. (3-1)
It follows from the assumptlon A(0) > 0 that s - 3, > 0 and VgA(:83)|s=p, = —cs for

( |Bs],0) = VgA(if,) -ns < 0. By the implicit function theorem,

for each 3o € S4~1 there exist R,, > 0 and a unique smooth function w,,(s,z) on D,, =
{|s — 80| < Rs,} X {|z|] < Rs,} such that W, (80,0) = i|Bs,| and Ag(wy,(s,2),2) =0
on D,,. By the compactness of S¥~! we can choose a finite number of {s;} such
that S9~! x {z = 0} C U;D,;. Put R = min; R,;. Since A,(w, z) is holomorphic in
(w, 2), it follows from the 1mphc1t function theorem for holomorhic functions that W,

are holomorphic on {|z| < R}. Thus w,,(s,z) = w,,(s,2) on ({|s — ;| < Rs;} N{|s —
skl < Rs.}) x {|z] < R}. So we obtain a desired function w(s,z) on D by takmg
w(s,z) = w,y;(s,2) on DN Dy, The last claim has been shown already. O

Write w,(z) = w(s, z). 18,1,0) =0,1< j <d-—1, we see that

dw,
3Zj

(0)=0) ISJSd_]w

and
-1
2 '|,83|,0)> €s,j " (HesspA)(iBs)esk, 1<j,k<d—1,

8w, OA
820z (0) = ——( 1o
JY<k
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9%A
where HesszA = | ———— . Note that
akmakn 1<m,n<d

o2616,1,0) = 1, - (VeAYiB) = (=i}, - VpAGB) o=,

ns - VaA(iB)lp=p, <0,
(HessgA)(i8,) = —HessgA(iB)|g=p, is positive definite.

Hence we have the following.

Lemma 3.2. For every1 < j,k<d -1,

8w, .0’ Im w,

-1
521,3—2"(0) = zW(O) = 1(’13 : VﬂA(‘ﬂ)|ﬂ=ﬂ.) es,j - HessgA(iB)|p=p, €5k (3.2)

2
Furthermore, the matriz HessImw,(0) = (M(O)) 18 positive definite,
020z 1<j,k<d—1
and there ezist p,p’ > 0 independent of s € S?! such that any eigenvalue ), of
HessIm w,(0) satisfies p <\, <p'.

Proof. We have only to note that the upper and lower estimates of the eigenvalues
follow from the positivity and the continuity of HessIm w,(0) in s € S4~1. O

In the following lemma we take a family of solutions to L(w,(2)n, + z - e,)u = 0
depending on parameters (s, 2).

Lemma 3.3. There ezists r > 0 such that u, ,(z) in (3.3), (s,2,2) € S¥ 1 x {z €
C* L |z] < r} x T, is a non-zero C?*-solution to L(w,(z)n, + z - e,)u = 0. Fur-
thermore, it is continuous in (s,2) € S~ x {2z € C?71; |z| < r} and holomorphic in
z € {z € C* Y |z| < r} for fized s € S as a C*-valued function. In particular,
it follows that for any multiindez v, ||07u, ;||ca¢rey < C, with a constant Cy>0
independent of s € S4~1.

The proof is ommited. Similarly, we can take a non-zero C?'*-solution v,z to
L(w,(2)ns + 2 €5)*v = 0 such that v, , is continuous in (s,z) € ST~ x {z € C¥71; 2| <
r} and v, is holomorphic in z for fixed s as a C®-valued function.

Proposition 3.4. There ezists r > 0 such that for each s € S4~! and each a € R4
with |a| < r the inverse L(wn, + a - e,)™! has a simple pole w,(a) as a function of w,
and has the following asymptotics at the pole

- Aa,a
Llwma e e ~ @

where .
'('a va,a)ua,a

As a = -
(17, [2a(V + i(ws(a)ns + a-e,)) +V-a+ b]u,,a,v,,a)

?
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In particular, for a = 0 we have

A _ l(, vs,O)us,O
3,0 — . .
Ns - VﬂA(lﬁ)|ﬂ=ﬂs (us,O, v»",o)

Proof. We write L(wns + « - €)™ = (1 — K(w))"'L(0)~! with a Shatten-von
Neumann class holomorphic operator

(3.4)

K(w) = L(0)~*(L(0) — L(wns + - e,)).

Here the existence of L(0)™! follows from the assumption A(0) > 0 and Proposition 2.1.
Put wo = w,(a). By the Fredholm theory (cf. Theorem VI.14 in [RS]), we can assume
that (1 — K(w))~! has the following form

(1- K@) = =2 ) (3.5)

with some n > 1, finite rank operator A;, 1 < j < n, and holomorphic r(w). From a
relation

Ap A,
m+"'+‘m+r(w)],

1= (1= Kw)(1 - K(w))™! = (1 - K(w))|
we have (w — wo)"™ = (1 — K(w))An + O((w — wo)), hence
(1 — K(wo))A, =0. (3.6)
Similarly, A,,(1 — K(wp)) = 0. These imply that
 L(woms +a-e)An =0, L(won, +a- e,)*(L(0)*) 1A% =0.

From these, since the kernels of L(won;+a-e,;) and L(won,+a-e,)* are one dimensional,
A, must be of the form: '

Ap =c(, L(0)*vs,0) s, - (3.7)
with some constant c. Here note that L(0)*v, o # 0. Furthermore, we have by (3.6)

Ap+ (1= K(w)) Y (K(w) — K(wo))Ap, =0
and by the definition of K (w)
K(w) — K(wo) = (w — wo)L(0)™?

X i(ns'“(V“a‘es)+(V+ia'6s)-ana+b-m)—(W+wo)ns-ans]'

From these and (3.5), it follows that

A, L(0) Yin, - [2a(V + i(wons + a-€,)) + V-a+bJA, =0, n>2, (3.8)
An+ A L(0) in, - [2a(V +i(wons + - €,)) +V-a+blAd, =0, n=1.
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First consider the case n > 2. By (3.7),
(-, L(0)* v, o) (1, - [2a(V + i(won, + o - €s)) +V-a+blu,qa,v,4)usq=0.

Let us show the factor (5, -[2a(V +i(won, +a-e,)) +V-a+blu, o, v, ) is non-vanishing
for a small. When a = 0, since wo = w,(0) = i|3,|, we have

(s - [2a(V + i(wons + a-€,)) + V- a + blu, a,s.4)
=1,- ([Za(V —Bs) + V- a+ blu,, v,,o)
=75 - VgA(iB)|p=p, (ts,0,v5,0) # 0.

Here, in the second equality, we have used Theorem 5(ii) in [Pins1]. Hence because of
the continuity in « of the quantity, the conclusion holds. Thus the constant ¢ in (3.7)
must be zero if n > 2, so we have n =1 in (3.5). By (3.7) and (3.9) it follows that

-1
c= i(n, -[2a(V + i(won, +a-€,)) + V-a+ blus v,,a) .

Hence we have by (3.7)

As,a = A]L(O)_l = l(" vs,a)ua,a -

Thus we have shown the proposition. O
We describe a saddle point method which we shall use in proving Theorem 1.2.

Proposition 3.5. Let U be an open neighborhood of the origin in R® satisfying B, C
U with ¢ > 0, here B, is the ball {|z| < c}. Let p(z) and a(z) be C®-functions
on a neighborhood of U satisfying lellcsuy < by and |lallcsquy < b;. Assume that
Hess ¢(0) = Hess Re p(0) and it is positive definite and satisfies that there ezists p > 0
such that p|z|* < z - Hess p(0)z for z € R? and Re(p(z) — ¢(0)) > plz|2/4 for z € U.
Then the asymptotics

d/2 —p(0)
—Xolz 2m e~ ¥ -
/Ue "ale)de = (T) (et THess (o)) 172 U0 + OTY)) as X = 00

holds, where the term O(A™1) satisfies |O(A™1)| < CA™1, XA > 1, with a positive constant
C dependent only on c, by, by, p and d.
The proof is omitted.

4. PROOF OF THEOREM 1.2

By Proposition 2.3, the resolvent L~! exists. It remains to show (1.1) under the
assumption A(0) > 0. Put Fy(L) = {k € C% L(k)u = 0, for some non-zero u €
H?*(T?)} which is called the Fermi variety. For s € S¥~! and § > 0 let U, s be an
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open neighborhood of the origin given by U, 5 = {@ € R4™!; Imw,(a) < |B,| + §}. We
can take § > 0 so small that Fo(L) N {(—m,m)¢ + {in,t; 0 < t < |B,| + 28}} consists
only of {wy(a)n, + a - e,; @ € Us25}. In fact, suppose that for each integer n > 1
there exist a, € R%™! s, € S ! and w, € C such that Wnl)s, + @n - €5, € Fo(L) N
{(=m,m)4 +{in,,t; 0 <t < |B,,|+1/n}} and w, # w,, (ay). Then by Proposition 2.1,
we can take a subsequence of (ay, $,,w,) such that (ay,, s,,w,) = (a, so,z + |3;]|) for
some (a,sg,z) € R4 x S4=1 x R. Note that Fo(L) is closed. Hence it follows that
(z +1|Bs|)ns + @ - es € Fo(L). So by Proposition 2.2, £ = 0 and a = 0 hold. But this
contradicts to that w = w,(z) is the unique solution to A(wn, + 2z - e;) = 0 near s = 3,
z = 0 and w = i|3,,|. Furthermore, using Lemma 3.2, if necessary choose § > 0 so
small that there exists ¢ > 0 independent of s € S~! such that B.CcU s,6, where B, is
the ball B, = {|a| < ¢}, and Im (ws(a) — w,(0)) > p|a|? on U, s with some p > 0.

Let P be a projection along n, onto the plane spanned by {e,},i.e. P:tn,+a-e, —
a-e,, and let Q@ = P[—m,n]¢. For each a € Q put t1(a) = min{t;tn, +a-e, € [—7,7]%}
and t;(a) = max{t;tn, + a - e, € [-m,7]?}. We can write [, 7]? as [-m,7]¢ =
{ths + a-e5; 0 € Q,t1(a) < ¢t < tz(a)}. Let M, and M, be (d — 1)-dimensional
cubes given by M; = {(k1,...,kj_1, 7, kjq1,...,ka); —7 < k; < 7w, ¢ # j} and M =
{(kl,...,k_,-_l,—7r,kj+1,...,kd); - < k; < 7r,i # j} for 1 < j < d. Take Nj €
{M,-,Mj}, 1 < j <d, such that U?=1Nj = {ti(a)ns+a-es;;a € Q}and Q = P(U;’=1NJ-).
Then putting N (M; U M]) \ N;, we have U‘i:l]\?j = {t2(a)n; + a - e5;a € Q} and
Q = P(U{_, ;).

Recalhng the integral expression (2. 4) we have by Lemma 2:4 that for any z € T¢
and I € Z¢,

(LY f)(z — 1) = (2m)~¢ / F(k) dk

.[_’T”T]d

with F(k) in (2.5). We change the integral variables from k to (t,a) € R x R4~1 such
that k = tn, + a - e,. By Fubini’s theorem, we have

t2(a)

(L7 f)(= - dtF(tn, +a -e,), | (4.1)

tl(a)

where D, = det(ns,esl, -+ ,esd—1). For each a € Q let C = C; UCy U C3 Uy and
¢ = C,uC,uCs U C, be closed contours in C given by

Cl ={t:t1(a) = t2(a)}, Co = {t2(a) +it; t: 0 — |B,| + 26},
= {t +i(18s] + 26); t : ta(a) = ta(a)}, Ca = {ts(@) +it; ¢ : |8, + 26 — 0},
Cy = {tz2(a) +it; t: 0 = |Bs| +6/2}, Cs = {t +i(|8s] + 8/2);t : t2(a) = t1(a)},
Cy = {t1(a) +it;t : |B,| + /2 — O}

By the argument above, for a € U, 5 the integrand in (4.1) has only a simple pole w,(a)
near and inside C, and for a € Q \ U, s the integrand in (4.1) is holomorphic near and
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inside C. Hence, it follows from the residue theorem that

(L7 f)z =) = Lf + L,
mt|Dyg .
Lf= % 0., daexpli(z — 1) - (ws(a)ns + a - e,)]

i(Zm f(. — m)e_i('—m)‘(w:(a)"c+a'eo), v’,a)ua’a(x)

(7’3 : [2a(v + i(wa (a)na +a- es)) +V-a+ b]ua,a, va,a)

Lf = MJ(/ da/ dw+/ da/ dw)'F(wn,+a.e,).
(27(') U,,J CoUC3UCy Q\U.,a égUéaUC.'4

By Fubini’s theorem, the integral kernel I (z —l,y), y € R4, of I, is

X

)

I1($ - l) y) =
DM [ g expli(z = 1= p) - (wi(e)n, +a - e)ora(@)usa(z)
d—1
(2) Usss (n, -[2a(V + i(ws(a)n, + a - e,)) + V - a + blus,,a, v,,a)

’

where v, o(y) is regarded as a Z?-periodic function in C**(R¢). Take s = (z — I —
y)/|z—1—y|. Note that (z—I—y)-n, > 0and (r—1—y)-(a-e,) = 0. In view of Lemma
3.2, we apply the saddle point method (Proposition 3.5) to obtain that I (z — I, y) has
the asymptotics

11(27 - l, y) = : )
@)1 \(z ~1~y)-n, (det Hess Imw, (0))1/2
“s,O(z)va,O(y) I
g (n, VsA(iB) (a0 meg) T OUETI=YIT)
_ 1D (=75 - VpA(iB,))4~2)/2 e~ (==1=9)Bey, 5(2)v4,0(v)
- (2m)(d-1)/2 (det(—e,,; - Hessg A(i8,)eqs k)12 ((z — 1 — y) - n,)(d‘l)/z(u,,o,v,,o)
x (L+0(Jz —1—y|™)),

where the term O(|z — I — y|™!) satisfies |O(|]z — 1 — y|™1)] < Clz — I — y|~! with a
constant C > 0 independent of z € T4, y € R? and | € Z¢. We have used (3.2) in
the second equality. Noting that z —I —y and —V3A(i8,) have the same direction and
|Ds| = —n, - VgA(iB5)/|VsA(:8s)|, we have

e —Ly)= " VA (iB,)|(4~)/2 up, (z)vg, (y)
LY = @alz — 1= y)@ D72 det(—e,, - Hessp A(iBs)es k)2 (up,,vp,)
X (14+0(Jz —1—y|™)). (4.2)

This gives the main term of the asymptotics (1.1).
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Next we estimate the integral kernel of I;. We abbreviate 75 and e, to n and e. We

have
Igf:—l—D—s%(/da/ dw+/ da/ dw
(27‘-) Q C.'2U6.'4 U,,g CQ\CQUC;:;UC4\G4

+/Q\U,,.s da/é d@)F(wn+a'6)- (4.3)

Let us show that the first term vanishes. By Lemma 2.4 and N; = Nj mod 27Z¢, we
have

| Ds| / da /_ _dwF(wn+a-e)
Q CouC,
=|D3|(/ da/ dw+/ da/ dw)F(wn+a-e)
ué_, PN; C ui_,PN; Cs
d |Bs1+6/2 ‘
= t|Ds| Z (/ da/ dtF((tz(a) +it)n+a-e)
j=1 PN; 0

|B.|+6/2
_ / da / th((tl(a)+it)n+a-e))
PN; 0
: |Ba|+6/2 |Ba1+6/2
=i ¥ |n,~|( / dK’ / QtF(K + itn) — / dK’ / th(k’-{—itn))
N; 0 N_,' 0

1<;<d
|PN;T#0

=0,

where 7; is the j-th component of n and dk' = dky - - - dkj_1dkj41 - -- dkq if k' € N; UN;.
Denote the kernel of L(k)~! by Ex(z,y). Let @1, @2, 3 and ¢4 be functions from [0, 1]
to C, which parametrize contours C» \ Ca, Cs3, Cy \ C, and Cs, respectively. For n >0
integer, z,y € T4 and I,m € Z¢, put ‘

n

Ho() = expli(z — 1 —y +m) - k] >_ (’}) (i(z —y) - n) (1~ 8)" I B(z,v)-

j=0

By Fubini’s theorem, the integral kernel I, (z — 1,y — m) of I, is written as, for z,y €
Td | m e Z¢,

L(z—1ly—m)= (lz%)l—d ’ daZ/o dtoj(t)Ho(wj(t)n + a- e)
|D,|

1
@m)? Jovu.,s do /o dtpa(t)Ho(pa(tyn +a-e),  (44)

where ¢;(t) = a‘%(pj(t). Note (m — 1) -n # 0 for m — 1 sufficiently large. Using the
equality

im=D (o Onrace) . L

8,ei(m=D-(pj(t)ntae)
i(m—1)-1n te ’
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we integrate by parts for ¢ in each integral in (4.4) to obtain

/0 dt¢;(t)Holp;(t)n + a - e) =W[Ho(%(l)n +a-€) = Holp;(0)n + a - ¢)]
1 v
- m./o dt(pj(t)Hl ((pj(t)ﬂ +a- e).

By #1(1) = ¢2(0) and ¢5(1) = p3(0), we have

I2(x - lay- m)

“i(m _11) 0 (Iz?r;L [/U da[Ho(ps(1)n + a - €) — Ho(¢1(0)n + a - e)]

+ [ dolHo(pa(1)n-+a€) ~ Ho(pa(@)n +a- <)
Q\U,,s

—(/ da/ ) dw+/ da/ dw)Hl(wn+a-e)].
U,,s C2\C2UC3UC,\ Gy Q\U. s C, (4.5)

We claim that the sum of the first and the second term in [---] of (4.5) vanishes. In
order to show the claim, we need a lemma.

Lemma 4.1. Suppose that Eyx(z,y) ezists for k € C1. Then Eiyax:(z,y) erists for
any z € Z%, and

exp(i(z—y+1)-k)(1-8k)" Ex(z,y) = exp(i(z—y+)-(k+272))(n-8)" Ex42r:(z, y), (4.6)
forany z,1 € 2%, € S¥! gnd n 2> 0 integer. In particular Hy,(k) = Hp(k + 272).

Proof. Note that (7 - Ok)"Ei(z,y) is of the form:

(7 O)"Ex =) CnEx #(n-8)"L(k)Ey *--- » (n - 8x)’™ L(k)Ey, (4.7)

m
where E x F(z,y) = [, E(z,2)F(z,y)dz for two functions E and F, and ) j, = n

s=1

and ji,...,5, = 1,2. Hence to see (4.6) we have only to notice that

ei21rz-zEk+2"z(z’ y) = Ek(z‘) y)ei21rz-y,

"% (5. 8y L(k + 2mz) = (n - () L(k)e? ™= ;=12 0O

(18] +8/2) and p4(1) = t;(a) + i(|8[ + 6/2). The sum of the first and the second term
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n[---]in (4.5) vanishes since we have by Lemma 4.1 and N; = N; mod 2nZ?

D.| ( /U da[Ho(pa(1)n + @ - €) — Holw1 (00 + - €)]
+ /Q\U.,s do[Ho(ps(1)n + a - €) — Ho(p4(0)n + o - 6)])

0 [, daa(ia(a) +i(81+5/2n +a o)

Ji=1 J

[ et + 081+ 512+ a0
ui_, P

d .
J=1 NJ

= % ([ R Ho g1+ a2~ [ K Holk i3]+ 3/2m)

1<j<d
|PN;T#0

=0,

where 7; is the j-th component of 7 and dk’ = dky - - - dkj—1dkjy - - - dka if k' € N; UJV]-.
We repeat this integration by parts for ¢, (d — 1)-times. By Lemma 4.1, we have in the
same way as above

D (i T
Bz = by =m) = Gni \Gn =D -7
X (/ da/ dw+/ da/ dw)Hd_l(wn+a-e).
U.s C2\C2UC3UCs\Cy Q\U,,s Cs (4.8)

Lemma 4.2. The absolute value of the integrand Hq_1 on the integral domain in (4.8)
is majorized by C exp[—(|Bs| +68/2)(z —1—y+m) .n] with a constant C > 0 independent
of z,y € T¢, I,m € Z%.

Proof. Note that if k belongs to the integral domain of the first or the second term

in (4.8), there exists a constant My > 0 independent of k in the integral domain such
that .

Bue, )]  My(a +Hlog =), =2, Bala,v)] < Male — o™, 423
10, Ex(z,y)| < Malz —y|'~%. (4.9)
By the definition of H4_1, it suffices to show that
o — y|* (- 8) Ex(e,9)| <C, 0<j<d-1, (4.10)
for k in the integral domain. By (4.7), this follows from

|z — y|* " | Ex * (n- 8k)* L(k)Ex + -+ - x (- 8)’m L(k)Ex| < C,
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where }~ j, = j and ji,... »Jm = 1,2. To see this, by (4.9) we have only to note that
s=1
ford=2

1
1+1 —y|7ldz, < C
Az( + og lz_zll)lxl yI r)1 S 0,
and for d > 3
/Td N ./I‘d lz - zllz_dlxl - z2lj1_d toT Izm - yljm_ddzl cordeg,

Clz — y|?ti—d 2+j5-d<0,

<y C(C'+lg)  24j-d=o,

C 2+j5—-d>0.

O

From this lemma, it follows that
\L(z — 1,y — m)| < Cll — m|'~ exp[~(18,] + §/2)(z — 1 — y + m) - ]

with a constant C > 0 independent of z,y € T I,m € Z4. This together with (4.2)
shows (1.1). :

5. PROOF OF THEOREM 1.3

By the same argument as in the proof of Theorem 1.1 at the end of §2, we may
assume that 8y in Theorem 1.3 is the origin, i.e. assume that supg A(i8) = A(0) = 0.
Then VA(0) = 0. By Proposition 2.2, L(k)~! exists if k € R?\ 27Z9. Put H =
Hess;A(0) = —HessgA(0).

Proposition 5.1. There ezists § > 0 such that forke R, 0 < |K| < 4, L(k)™! is of
the form
2(-,vo)uo A(w)

L) = H o) + T+ B+ Q(R), (5.1)

where uo and vy is a positive solution to L(0)uo = 0 and L(0)*v, = 0, respectively.
Furthermore, A(w) is a finite rank operator-valued function of w = k/|k| and the integral
kernel Au(z,y) of A(w) is C*= inw € S¥1 and continuous in (z,y). B(k) is a finite
rank operator-valued function of k and the integral kernel By(z,y) of B(k) is C*™ on
0 < |k| < & and continuous in (z,y) and all derivatives of Bx(z,y) in k are bounded on
{0 < |k| < 8} x T x T4. Q(k) is a real analytic function on |k| < § and the integral
kernel Qi (z,y) of Q(k) satisfies

for some constant C independent of k| < 8, n € S and z,y.

Proof. By the regular perturbation theory, since A(0) = 0 is nondegenerate, there
exist 4,8’ > 0 such that if |k| < & the eigenfunction A(k) of L(k) is the ony point of the
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spectrum in the disc {¢ € C; |¢| < &'}, We see that ug = P(k)uo is an analytic eigen-
function of L(k) corresponding to A(k): (L(k)— A(k))ur =0, where P(k) is the projec-
tion P(k) = (—2m1)~! f|C|=6,(L(k) — ¢)~'d¢. Similarly vk = P(k)*vo is an anti-analytic
(% is analytic) eigenfunction of L(k)* corresponding to A(k): (L(k)* — A(k))vk = 0.
Using these, we have P(k) = (ug,vk) (-, vi)uk. Since A(k) is nondegenerate, the
equality

1

L(k)™ = A(R) 7 P(k) + Q(k), where Q)= 5.2 ¢

¢THL(k) = ¢)TdC,

holds. Expressing the functions ug, vk and A(k) by the expansions ur = %o +uy - k+
O(k?), vk =vo+71-k+ O(k?) and A(k) = k- Hk/2+ 3 41=3 H,k* + O(k*) with some
uq, v; and H,, we obtain that the integral kernel of A(k)~1P(k) equals

duo(e)uoly) . (ua(e)vo(y) + uo(e)7T(w)) -k
k - Hk(uo,v0) k- Hk(uo,vo)
_ uo(2)vo(Y) X aj=3 Hok*(uo,v0) + k - Hk((u1,v0) + (uo, v1)) - k]
(k - Hk(uo, v0))?
_ 2up(() |, Adzy)
k- Hk(uo,vo) k|

+ Bk(x’ y)

+ Bk(z’ y)

The each term of the right hand of this has the property stated in the proposition except
for (5.2). The same argument as in the proof of Lemma 4.2 shows (4.10) with Ex(z,y)
replaced by the integral kernel of (L(k) — ¢)~!, which implies (5.2). O

Fore > O and R > 0let (L+¢)g be the Dirichlet realization of L+¢ in L?(Bg), where
Bp is the ball {|z| < R}. By Theorem 3.1 in [A1), since L+e¢ has a positive solution, the
resolvent (L + €)7' exists and the Green function Gg(z,y) is positive. By Theorem
2 in [Pinsl], the limit Rh'_r)%o GRre = G, €xists when d > 3. Since Gre < Gro <
GR',O < Goo,O, 0<e, 0<R < R,, and GR,E < Goo,s < Goo,e’ S Goo,07 0< e’ S 5; We
can see that the minimal Green function Goo o of L satisfies Goo,0 = lelﬂ)l Goo,.- Hence

by the integral expression for (L + )", € >0, we have with G = Goo,0

. dk
1 i(z—1l—y+m)-k e d d
G(z—l,y—m) —l:il()l [_"’"]de( Y ) Ek(z,y)W’ .’C,yET ,l,m,E yA y

where Ef(z,y) is the integral kernel of the resolvent (L(k) 4+ €)~1. Let Ex(z,y) be
the integral kernel of the resolvent L(k)™! for k € [—m,7]? \ 0. We can see that for
k € [-n,7]?\0and ¢ # y, E{(z,y) Ei(z,y) as € | 0. Furthermore, |Ef(z,y)] is
bounded by some integrable function of k € [—m,w]¢ for fixed z #y. In fact, choose €o
so small that |A(k) +¢| < &' for 0 < e < ep and |k| < §/2. Since we have

(L(k) + €)™ = (A(K) + &) "'P(k) + Q(K), |k|<§/2, 0<e<eo,

where P(k) and Q(k) is given in the proof of Proposition 5.1, |E{(z,y)| is bounded by
an integrable function :";I(:()u';",(v% + lA“](:l’y)l +|Bi(z, )| +|Qk(z,y)| by Proposition 5.1.
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If (k| > §/2 and 0 < ¢ < g, then we have |E%(2,y)| < Clz — y|*~? with some constant
C > 0 independent of k and ¢. Thus by the Lebesgue’s convergence theorem, the Green
function of L is expressed by

- dt
_ _ = (z—l—y+m)-k Enthdi
G(z—-1l,y—m) /[_m"]d e Ei(z,y) @n)

Let ho > 0 be the least eigenvalue of H. Take C*(0, oo)-function x(r) such that
x(r)=1o0n0<r < /hyé/3 and x(r) = 0 on 2v/ho6/3 < r. By Proposition 5.1, divide
the Green function into four parts G = E;=1 I}, where each I; is given by

Lz—l,y—m)= / X(IVHE|)eie=1-y+m)-k 20(z)vo(y) _dk

[_,r,.,r]d k- Hk(‘uo, vo) (21!')'“
i(z—1— +Au(z,y) dk
L(z-lLy—m =/ x(|VHE|)et(z—1-y+m)-k ,
2( ) —_ (I l) 'k' (2”)11
. dk
_ _ — H(z—l-y+m)-k o
Ii(z -1,y —m) /{meld x(|VHE|)e By (z,y) 2n)’

I4(3 - l’y— m)

- /[_ LT (VM) Qx(=,3) + (1~ X(VER)) Ex(z, )] % |

for z,y € T, I.m € Z4.
Lemma 5.2. The Jollowing asymptotics holds

I(452) (det H)~1/2 uo(z)vo(y)

— - fnd —_— -1
Li(z-l,y m) 2rd/2 IH—1/2(x_I__y+m)|d—2 (uo, vo) (1+0(|z—1 y+m|™7)),

where O(|z — 1 — y + m|™1) satisfies O(lz =l —y+m|™)| < Cle—1-y+ m|™! with a
positive constant C independent ofz,ye T4 I,m e 29,

This gives the main term in (1.2) with G, = 0.

Proof. 1t suffices to show that for 2 € R¢

etz k (2w)d/22v—lr(v)
= 14+0(z|?
/l;,d X(I\/I—{kl)k . Hk dk (det H)llle_l/‘_)zld_g( + (Izl )) as lzl - oo,
here v = (d — 2)/2. By a change of variables k' = v/HEk, the left hand side of this is
equal to ;
nyexp(iz- H™! 2k,) ’
/R, X(F D=4t mage
Use the polar coordinates k' = rw, T >0, w € S 1, to obtain that this equals

d t;{l/2 / X(r)rd_sd"/exP(iZ - H 1 250)dw
€ 0

_ 1 * d~3 (0 vd/2 Ju(r|H1/22|)
= /0 X en st iE
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where J,(r) is the Bessel function of order v. Put A = |H~1/22|. We have only to show
that

* d-sJu(’\T) r = A2 (p)2¥ 1 -1
/0 Xt B dr = MIT)2 7 (14 o),

equivalently, we show that
/ x(r/ N1, (r)dr =T(¥)2* " + O(A7Y), v =(d-2)/2. (5.3)
0

Let us prove this by induction on ». When v = 1/2, by J; 2(r) = \/? %sﬂ, it is easy to
see that

‘/000 X(r/N)r=120 1y (r) dr = /ooo x(r/2) 2sinr \/§+ o)

By —-%-(r=**1J,_,(r)) = r~*J,(r), integration by parts yields
| X0y de = x5 e
0
+ (2v — 2)/ x(r/A)r* 2 J, 1 (r) dr + / A7 (r /N T, 1 (r) dr.
0 . 0 - (54)

For the moment, suppose that the following estimate holds: for any integer N > 1 there
exists a constant Cn , > 0 such that

I/OOO A7 (r /X)) T, (r) dr| < Cn ATV, (5.5)

The proof of (5.5) is given at the end of the proof of the lemma. When v = 1, since
Jo(0) = 1, (5.3) follows from (5.4) and (5.5). Suppose that (5.3) holds for 1/2 < v < .
From (5. 4) for v = v + 1, we have (5.3) for v = v + 1 by the induction hypothesis and
(5.5).

It remains to prove (5.5). Similarly as in (5.4), integration by parts yields

/°° A7 (r/X) 7Y T, (r) dr
/ A2 (r/A)P Ty (7) + (20 = DA~ (r/ N1 T,y () d.

Repeating this N-times for each term, we have

N oo N+1 . . .
LT ne = [T e O NN g, o) ar

=1

with some constants Cy ;. Since the support of x()(r/A) is in {cA < r < ¢/A} and
Ju—n(r) is bounded for r large, the absolute value of the right hand side of this is
estimated by CyA*~". Thus we have proved (5.5). O
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Lemma 5.3. The following estimates hold

|[I(z — L,y — m)| < Clz —1—y+m]~4, (5.6)
|[Is(z — l,y — m)| < C|.1:——I—y+m|1_d, (5.7
Ii(z —Ly—m)| < Clz —1—y+m|'~, (5.8)

with a positive constant C independent of z,y € T¢, I, m € Z4.

Theorem 1.3 follows from Lemmas 5.2 and 5.3.
Proof of (5.6). Put A = |z —l — y + m| and change the integral variable as k' = Ak
in the integral of I;. Then we have with s = (z =l —y+ m)/|z —l — y + m|

kK AAW(I, y) dk’
|k (2mw)dNd’

hie=Ly-m) = [ x(VAK|/Ne"
Rd
Hence we have only to show that

e = [ x(VEHMer 2ot gy

is a bounded function of A > 1 and s € S%~1. Since

209 =3 [ AKX (VAR AL a2 250,,

it suffices to show that J(),s) is bounded for A > 1 and s € S41. In fact,

J0 ) = Ad / WHK (VE. ;vc|)e'*a'=*‘“’|(,‘f| oY) g

and the integral is the Fourier transform of a C§°-function. Thus J(, s) decays rapidly
for A large.
Proof of (5.7). It suffices to estimate a quantity

/ x([VHE|)e** ¥ By (z,y) dk

R4

for X large and s € S?1. Divide this into two parts

[ VBRI kD * B,y -+ [ (VR = x (kD)™ Bz, ) d

here ¢ = 1 — 1/d. It is easy to see that the first term is majorized by CA1~¢ since
By (z,vy) is bounded. For the second, by using (iA)™'s - 9pe'*** = e*** it suffices to
repeat the integration by parts N times with N > d(d — 1) since derivatives of Bi(z,y)
are bounded.
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Proof of (5.8). Put n = (m—1)/|m—I|. By using —i|m—1I|~19-9e(m—D* = ¢ilm=0-k
and periodicity (4.6), the (d — 1)-times integration by parts yields

dk id—lei(x—l—y+m)-k (d _ 1)!
IZL‘—l,y—m :/ — in'x—y o
. )= e @R T 2 et 01 = Y)
a,B,v>0

9 [(n 80P Qu(2,9)(n - 8 x(IVETR]) + (n - 86)° Ex(z,y)(n - 8)7(1 - x(I\/ﬁkI))] -

It suffices to show that the each term of the summation in the integral is a bounded
function of (k, z,y). Consider the terms of the case 4 = 0 in the summation. By (4.10)
and (5.2), they are bounded. For the terms of the case v > 0 in the summation, i.e.

(in- (= — 9))*(n- )’ (Qx(z,9) — Ex(=,9))(n - %) "x(IVHEk]),

we can see that (1 - 8;)?(Qx(z,y) — Ex(z,y)) is a bounded function on the support of
(n- 8x)"x(|VHE|) by Proposition 5.1. Hence they are bounded. O
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