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1 Introduction

In his celebrated paper, Nelson proposed a simplified model of nonrelativisitic
quantum electrodynamics in which interaction between a matter and the
field is given as a linear function of the field operator. Thus, to describe an
atom interacting with a (scalar) radiation field, he proposed to study the
Hamiltonian given by

Hyetson = —30: + V(z) + / w(k)al(k)a(k)dk + ®(z)
R3

which acts on the state space defined by Hyeson = L*(R3) ® F. Here

oo
F =P ;LA (RY)

n=0

is the boson Fock space, ®” being the n-fold symmetric tensor product with
®IL*(R3) = C; —1A. + V(z), in L*(R}) is the electron Hamiltonian, where
V is the decaying real potential describing the interaction between the elec-
tron and the nucleus; a(k) and a'(k) are, respectively, the the annihilation
and the creation operator; w(k) = |k| is the dispersion relation and

/ w(k)at (k)a(k)dk
R3

is the photon energy operator; and the interaction between the field and the
electron is given by

&(z) = / X() {e"k”a*(k)+e"“a(k)}dk

where > 0 is the coupling constant and x(k) is the ultraviolet cut-off
function which we assume to satisfy the following assumption, where we use
the standard notation (k) = (1 + k?)¥/2.



Assumption 1.1. The function x(k) is positive, smooth, O(3)-invariant
and monotonically decreasing as |k| — oo. Moreover, |x(k)] < C(k)™V
for a sufficiently large N.

In this paper, we study the restriction of this model to the subspace with
less than two photons: Let P denote the projection onto the subspace of
HNelson given by

H=Ho®H),, Ho= LZ(R?:)’ Hy = L2(R§:) ® L2(R2),

which consists of states with less than two photons. Then we consider the
Hamiltonian H = P HpyesonP on this space. With respect to the direct sum
decomposition H = Hy & H; this Hamiltonian has the following matrix
representation

o (C3A+V mel
wlg) —%A-I—V-i—w(k) '

Here we have defined the operators |g): Ho — H; and {g|: H; — Hy by

(I9)uo)(z, k) = g(z, k)uo(z),  ({glua)(z) = /r;  9(z, k)i (z, k)dk,

where the function g(z, k) is given by

. _ X(k)e—ixk
g( ak) \/(:)_(—E)‘ .

We write go(k) = |g(z, k)| = x(k)/+/w(k). It is obvious that |g) is bounded
from Hy to H;, and that (g| is its adjoint. We assume that V is —A-compact
so that H is a selfadjoint operator with the domain

(1.1)

D(H)= H*(R®) & (H*(R?) ® L*(R®*) N L*(R®) ® L}(RY)) .
Here L2(R?) denotes the usual weighted L?-space, given by
LY(R®) = L*(R?, (k)?dk),

and H?(R?3) is the Sobolev space of order 2. We denote by H, the operator
H with V = 0. Hj is the Hamiltonian for free electron-photon system and
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is translation invariant. Our goal is to describe the dynamics of this model.
To state main results obtained, we need introduce the function

12| go(K)|*dk
-k +wk)—A

Fe N =36 -x- [ (12)

defined on '™ = {(£, ) : A < A(é) = ,:2.}{13 %(E — k)2 + w(k)}. F(&, ) is real

analytic on I'". We shall show in Section 2 that there exists a threshold
momentum p, > 1 such that the equation F(£,A) = 0 for A has a unique
solution A,(£) € R when |£|] < p. and no zeros when |£| > p.. A.(§) is
O(3)-invariant, real analytic, strictly increasing with respect to p = |¢| and
Mopp(p) > 0 for p < p.. In what follows 4 stands for the Fourier transform of
u with respect to the x variables.

Theorem 1.2. For any f € H, there uniquely exist f; = (‘;1’0) € H and
1,1

f21,+ € Hy such that, as t — oo,

oitHog _ e" (D) f o _ 0
e—ikze—it,\o(D,) fl 1 eitA/2-itw(k) f2 14

Here £, and fa1 4+ satisfy the following properties:
(1) fr0(6) is supported by B(pc) = {€ : |€] < pc}-

2) fru(&k) = 1go(k) f1,0(6)/ (3(6 — k)? + w(k) — Xo(£))-

‘—%0.

(3) The map f — ( fro ) is one to one and onto L?(B(p.)) ® L%(RS).
2,14

(4) IEN% = MEuli3, + 1 f2£ 0172 (rs)-

This result shows, in particular, electron with large momentum |£| > p.
in the vacuum state does not survive. One might associate this phenomenon
to Cherenkov radiation, in the sense that the electron of high speed always
carries one photon. However, it is not clear how relevant this description is.
Usually Cherenkov radiation is described differently, in a classical electrody-
namic context, see for example [2].
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Theorem 1.3. Let V € L?(R3). Then, the wave operators

Wos = s-lim etH g=itHo (1.3)

exist on H.

In the following theorem we can even allow V to be a typical N-body
potential. Note that while eigenfunctions usually decay exponentially, those
embedded at thresholds may decay only polynomially.

Theorem 1.4. Assume that V is bounded relative to Hy with bound less
than one. Assume that E is an eigenvalue of —1A + V with normalized
eigenfunction Q. Assume there exist C > 0 and § > 5/2, such that |Q(z)| <
C(z)~? for z € R3. Then for f € L*(R}) the following limits exist.

EQe _ 1 itH ‘ 0
W:t f = tlghnooe (e—itE—it(w(k)Q(m)f(k)) . (1.4)

Concerning the literature on this problem, then there seems to be no
papers describing the asymptotics of our Hamiltonian in the manner done
here. There is a large number of papers studying the Nelson model, when
the atom is modelled by either —3A + V with compact resolvent (confining
potential), or when the atom in modelled by a finite level system (spin-Boson
Hamiltonians). The Nelson model was introduced in [4]. A detailed study
of the case of atomic (or matter) Hamiltonians with compact resolvent and
photons with m > 0 is given in [1].

Finally, let us outline the contents of this paper. In §2 we study in detail
the properties of the function F'(&, z). In §3 where we determine the spectrum
of Hy by separating the center of mass motion. In §4 we study the operator
e~*Ho and prove Theorem 1.3. In §5 we prove Theorem 1.4. In §6 we prove
Theorem 1.3.

Acknowledgements AlJ is associated with MaPhySto (Centre for Mathe-
matical Physics, funded by the Danish National Research Foundation). Part
of this work was carried out while AJ was visiting professor at the Graduate
School of Mathematical Sciences, University of Tokyo. The hospitality of the
department is gratefully acknowledged. KY thanks Michael Loss for helpful
discussions and encouragement at an early stage of this work and Herbert
Spohn who insisted that we should separate the center of mass motion first.
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2 Properties of the function F(¢, 2)

As a first step we study the following function F'(£, z), defined for (&, 2) €
R? x (C\ [m, 00)) by

_ 142 #|90(k)|*dk
F(¢,2) = L _z_/%(g—k)2+w(k)—z' (2.1)

It plays a crucial role, since it enters into the resolvent of Hj given in §3
and its zeros define the eigenvalues of reduced operators when the center of
mass motion is removed from H,. We study the properties of F(€, z) in this
section. The following Lemma is obvious.

Lemma 2.1. (1) For each z the function F(§, z) is O(3)-invariant.

(2) FIm F(&,2) > 0, when £Imz > 0.

(3) Let K C C\ [m,00) be a compact set. Then we have that |F (€, 2z)| — oo
as |€] — oo, uniformly with respect to z € K.

We will write F(p,z) = F(£,2), p = [£|, and F,(p,2) will denote the
derivative of F'(p, z) with respect to p. We will study the boundary values
of F(€,2) asz=Axic — A € R, for € | 0, and also other properties of this
function.

We start by investigating the denominator in the integral. Let G(&, k) =
3(€ — k)*> + w(k). Then elementary computations show that for each fixed £
the function £ — G(&, k) has a global minimum, which we denote by A.(§).
Due to the invariance it is only a function of p. We have

Mel(p) = {%”2 for0<p<l . (2.2)

p—3 forl<p.

Note that this function is only once continuously differentiable.
Denote by 7 the curve in the right half plane given by

v={(p,Me(p)): p =0} C{(p,A): p=0,—00 < X < 0} (2.3)

Denote by I't the regions below and above ~:

™ ={(p,A): p>0,X < A(p)}, It ={(p,N): p=>0,A> A(p)}-

We denote by the same symbols v and I't the surface, and the domains,
defined by

7={(€A(8): € R’} CR* xR,

128



129

I"={(N: €eR’ A< A ()}, TH={(N): £€R3A> ()}

Because of the O(3)-invariance of the functions used in the definitions, the
double use of these symbols should not cause any confusion.

2.1 Zeros of F(p,)) in I'”

It is obvious that, on I'", the function F(p, ) is real analytic with respect
to A.

Lemma 2.2. In T'~ the function F(p,\) is strictly decreasing with respect
to A and is strictly increasing with respect to p.

Proof. We show that the derivatives satisfy Fi(p,A) < 0, and F,(p,A) > 0
in I'". Direct computation shows

OF _ [ llglok)Pak
=1 gt e o <°

To prove F, > 0, it suffices to show that Fg, (£,A) > 0, when & > 0,&, =
& =0, as F' is O(3)-invariant. We compute

oF _ lgo(k)*(& —k)dk . [ plgo(§ + K)|*kudk
o€~ +/ DT OE / AR+ w(E+k) — N2

The last integral can be written in the form

2 * |90(&1 — k1, )|
ol (e

l90(€ + k)2 )
QR+ w(E+E) - A)2> kldkl} a*

where k' = (kq, k3) € R? and, for &, k; > 0,
|90(§1 - kl’ k,)|2 > Ig()(gl + kla k’)|27

V(&= k)2 + ()2 +m? < V(& + k)2 + (R)2 + m?.

Here the first inequality follows from Assumption 1.1. Thus the integral is
positive, and the lemma follows. O



Remark 2.3. Computation by using polar coordinates yields for (p,A) € '~
F(£7A) = %P2 - A
2y’ / * 2 ( 4pr ) |
- go(r)|°rlog | 1+ dr. (2.4)

0 s(r—p)2+w(r

Lemma 2.4. There ezist a constant p. > 0 and a function X,: [0,p;] — R
with the following properties:
(i) Ao(0) <0, Ao(pc) € 7, and

E={(pX(p)):0<p<p}CT U (2.5)

(i) F(p, Xo(p)) =0, p € [0, pc]-

(iii) Ao s real analytic.

(iv) Aop(p) > 0 and Aopp(p) > 0 for 0 < p < pe.

(v) There are no other zeros of F(p,A) inT'~, than those given by Z in (2.5).

Proof. We have (recall (2.2))

1#21g0(k)|*dk
k2 —€-k+ k|

<0

Flpp) = - [

for p < 1, and it is increasing for p > 1 and diverges to co as p — 00. Indeed,
we have

Flo ) = 3= 17 = T [ Piog (14 =2 Y ar

for p > 1 and it is evident that lim F(p, A.(p)) = co. By a change of variable,
p—00

Flp+1(p+1))

_ - 2—(%7) / " Ix(r)?log (1 N ﬂ‘-’ii’) dr

(r —p)?
o, [ \ 4r(1+3) )
=F "5+ D ), Ix(or)| log(1+—(r_1)2)d

2 oo 4r(1+1
=plp— 2(7’:—15/0 Ix(or)|? log (1 + %) dr].
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This is manifestly increasing for p > 0. Thus, there exists a unique p. > 1
such that F(p, \c(p)) changes sign from — to + at p = p.. It follows, since
F(p, ) in '~ is decreasing with respect to A and F(§,A) — o0 as A — —o0
that the function A — F(p, \) has a unique zero A.(p) for 0 < p < p. and
Ao(0) < 0. By the implicit function theorem, X.(p) is real analytic, and
Aop(p) > 0 for p < p.. Using implicit differentiation to find the second
derivative, we get ‘

—Fx(p, Ao (P))’\Opp(p) = Fu(p, )\o(P))(/\op(P))2
+ 2F5,(0, 2o(0)) Xop(p) + Fpp(s Xo(p0))-

Using computations similar to those in the proof of Lemma 2.2, one can
show that Fy\(p,A) > 0, Fy,(p,A) = 0, and F,(p,A) > 0 for (p,A) € I'".
The details are omitted. Now using Fy(p,A\) < 0 in I'", the statement (iv)
follows. , O

As above, we will also consider )\, as a function of &, through p = |§|.
The Hessian of £ — A,(£) is given by

1-(®f)
e

It follows from Lemma 2.4(iv) that ViAo (p) is strictly positive.

Vg/\o (p) = ’\Opp(p)é b2 é + )‘Op(p)

3 Spectrum and resolvent of H

In this section we study the case when V = 0 and define

-3A gl )
Hy = 2 .
° (ulg) —3A +w(k)
3.1 Separation of the center of mass

It is easy to see that the operator Hy commutes with the spatial translations

‘ . UO(:IJ) UO(CU + se,-) .
7;(s) : (ul(a:,k)> - (e“’“iul(x+ se;,k) ) seR, =123
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Hence Hy and the generators P; = ( 0 —i0/0z; + k;

simultaneously be diagonalized. We let X = C @& L%(R?®) and define the
®

unitary operator U : H — L*(R}: K) = / Kdp by
R3

v (u°> - (a??p(ﬁ)c)) = (wg" i k)) '

With respect to this direct decomposition, we have

of 7;(s) can

v = [ Hohn, How) = (30 4, ALY 6

where (go| : L*(R®) 3 @; — (ii1,90)z2 € C and |go) : C 3 ¢ — cgo(k) €
L?*(R?) are operators of rank one. Thus,

B0)= (3 3 ue) * (g “B1) = Hxt)+7

is the rank two perturbation of Hoo(p). Ho(p) is essentially the operator
known as Friedrichs model. Thus, it is standard to compute its resolvent
and, if we write

-1 7 (P, z)1 £ _ f )
o) =27 = (2 ), = (M), e
we have’
(L go(k)Fu(k)dk
'U'O(p’z) = m (fO M %(p—k)2+w(k)—z) ’ (33)
Bn(p, k. 2) = fi(k) 1go(k)io(p, z) (3.4)

lp-k2+wk)—2z Ip-k2+wk) —z

3.2 Spectrum of the reduced operators

Theorem 3.1. (1) When |p| < p,, the spectrum o(Hy(p)) of Ho(p) consists
of simple eigenvalue \.(p) and the absolute continuous part [A.(p),0). The
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normalized eigenfunction associated with the eigenvalue A,(p) may be given

by
1
1
e(p) = oK) - 69
P —Fx(p, Ao(p)) (%(p—k)2+w(k) _/\°(p))

(2) When |p| > pe, 0(Ho(p)) = [Ace(p), 00) and is absolute continuous.

Proof. As was shown in Lemma 2.2, F(p,z) is an analytic function of z €
C\[Ac(p), 00), it has a simple zero at A,(p) when |p| < p. and has no zero when
Ip| > pe. It follows from (3.2) ~ (3.4) that C\[A.(p), 00) 3 z — (Ho(p)—2)?
is meromorphic with a simple pole A,(p) if |p| < p., and it is holomorphic if
lp| > p.. Hence: ‘

1. If |p| < pe, Ho(p) has an eigenvalue \,(p) and (—o0, Ac(p)) \ {Xe(p)} C
p(Ho(p)), p(Ho(p)) being the resolvent set of Hy(p).

2. I |p| 2 pe; (=00, Ac(p)) C p(Ho(p))-

By virtue of (3.2) ~ (3.4), we can compute the eigenprojection E, for Hop(p)
associated with the eigenvalue \,(p) as follows:

Bp=~ _lim (2= X(p))(Ho(p) = 2)7" = e(p) @ e().
Thus, A.(p) is simple and e(p) is a normalized eigenvector. If |p| = p,

Xo(p) = Ac(p) and G(p, k) = 3(p — k)* + w(k) — Ae(p) ~ Clk — k(p)|* near
k = k(p). It follows that (Ho(p) — Ao(p))f = 0 has no solution in K and A, (p)
is not an eigenvalue of Hy(p) if |p| = p.. That the half line [A;(p), 00) is the
absolute continuous spectrum of Hy(p) is a result of the following lemma by
virtue of Mourre’s theorem ({3]). : O

We define A by

A= (8 g), A=%((k+h(k)—p)-Z,—a%+%-(k+h(k)—p))

where h is a smooth function such that h(k) = k when |k| > ¢ and h(k) = 0
near 0. Since the vector filed £ — k + h(k) — p has bounded derivatives, it
generates a global flow ®(¢, k) on R3 and J(t)u(k) = +/det (¢, k)u(®(¢, k))
is a one parameter unitary group on L2(R3). We define A as the inifinitesimal
generator of J(t): J(t) = e*4. We let D = C°(R?).
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Lemma 3.2. For any E € (\(p), 00) \ {p?/2}, A is a conjugate operator of
Hy(p) at E in the sense of Mourre, viz.

(1) D is a core of both A and Hy(p).

(2) é4*D(H(p)) C D(Ho(p)) and supayes [ Ho(p)eeull < oo for u €
D(Ho(p))-
(3) The form i[Ho(p), A] on D is bounded from below and closable and the

associated selfadjoint operator i[Ho(p), A]° satisfies D(i[Ho(p), A]°) C
D(Ho(p))-

(4) The form defined on D(A)ND(Hoy(p)) by [[Ho(p), A]°, A] is bounded from
D(Ho(p)) to D(Hy(p))*.

(5) There ezists @ > 0 and & > 0 and a compact operator K such that
P(E, 6)i[Ho(p), A’P(E, é) > aP(E,§) + P(E, §) K P(E, 6)

where P(E, d) is the spectral projection of Hy(p) for the interval (E —
0, E +6).

Proof. (1) is obvious. Since D(Ho(p)) = C®L3(R3) and e~%|k| < |®(¢t, k)| <
e®|k| for some ¢ > 0, (2) is evident also. On D, we compute the commutator

. 0 0
A= (0 1 nty— ). (k4 b—p) =20 69

Since g is smooth, [A,T)] has a extension to a bounded rank two operator.
Thus, i[A, Ho(p)] is bounded from below, closable and the associated self-
adjoint operator has the same domain as Ho(p). This proves (3). (4) holds
because |k| has bounded derivatives. If I C (A\.(p), ) \ {p?/2} is a compact
interval, then 3(p — k)2 + |k| € I implies that |k| > ¢ and

(k+h(k)—p)-(k+k—p)=(k+k-p)?>a>0

as, otherwise, there exists a sequence {k;} such that k; + I::,- — p — 0 which
leads to the contradition that |p| > 1 and (p — k;)2 + |k;| — Ac(¥). Since
i[T, A] is of rank two, (5) follows from the following lemma. a

Lemma 3.3. Let ¢ € C3°(R). Then L(p){¢(Ho(p)) — ¢(Hoo(p))} is a com-
pact operator.
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Proof. Let ¢ be a compactly supported almost analytic extension of ¢. Then
writing Ro(p) = (Hoo(p) — 2)~! and R(p) = (Ho(p) — )7}, we have

B(Ho(p)) — (Ho(p)) = / 8:3(2)Ro(p, 2)TR(p, 2)dz Ndz  (3.7)

Since Ry(p, 2) is a multiplication operator it commutes with L(p) and L(p)T
is a compact operator as T is rank two and Image T' C D(L(p)). Since (3.7)
is the norm limit of the Riemann sum, the lemma follows. a

3.3 Resolvent and spectrum of Hj

(From the equations (3.2), (3.3) and (3.4), we derive the formula for the

resolvent:

o (8)-(F) e

Lemma 3.4. Let z ¢ R. Then we have
- g0(k)f1(€ ~ K, k)

AER)  pgolk)Col€ +k,2)
T -z Etem-z o0

where F (€, z) is given by (2.1).

Gil&,k,2) =

Since \,(p) is strictly inceasing 3.1 implies the following theorem.

Theorem 3.5. The spectrum of Hy is absolutely continuous and is given by
0(Hp) = [Amin, 00), where Amin = Ao(0).

4 The behavior of e %o

4.1 Proof of Theorem 1.2

By virtue of Theorem 3.1, e~#H0() can be decomposed as

e itHo(®) — o—itho(p) E,+ o~ itHo(®) P,.(Ho(p)),
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where we set E, = 0 when |p| > p.. Here Hy(p) is a rank two perturbation

of Hoo(p), Hoo(p) has a simple eigenvalue 3p? and the absolutely continuous

spectrum [A.(p), 00) and the absolutely continuous subspace Ko:(Hoo(p)) =

{0} L%(R3). It follows by celebrated Kato-Birman’s theorem that the limits
lim etHoP)—itH®) p (H(p)) = Q(p)

t—zoo
exist and the wave operators Q3,(p) are partial isometries with initial set

Kac(Ho(p)) = Poc(Ho(p))K onto the final set {0} L?*(R?). Thus, ast — o0,
we have for any f €

. ~ . P 0 O £
e tHDIf _ ~ih(IE f (0 e‘it(%(P—k)2+W(k))) TWEE| <0 (4

K

and [|f||? = ||E,f||? + |9 (p)f||>. The equation (3.5) implies that E,Uf has
the form

1= ( Juo?)

fro(p)
fl,l (P, k))

= 190(k) f1,0(p)
30— k)% + w(k) — Ao(p)

with understanding that fi o(p) = f1.1(p, k) = 0 when |p| > p, and

® —i)o(D) '
. —itho(p) _{ €7 fio(2)
U (Ls e Epdp) Uf (e_tkze_u\o(Dz)fl,l(x’ k) . (4.2)

It is obvious that f, o runs over all L2(B(p.)) when f runs over all H and
= [l froll3q + 113 (4.3)

®
u* (/ E,,dp) Ut
R3 H

&
P.=U" (/ Qg:(p)dp) U, Puf= ( 0 )
R3 f2,l,:l:

®
then, P,. is unitary from U* (/ ICac(Ho(p))dp> onto {0} & L%(R®) and
R3

. ® (0 0 N 0
U </R3 0 e—it(%(p—k)2+w(k)) QO (p)dp Uf = e—it(—%A+w(k))f2-2,i

2 .

If we write
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&
We insert the relation (4.1) to the identity e~"fo = U* ( /
R

e““H"(”)dp) U
3
and use the identity (4.2) and (4.4). Theorem 1.2 follows.

4.2 Behavior in configuration space

1

As the operator e "~24+“() has been well studied, we concentrate on

e~?(D=)y(z). When © € C5°(B(p,)), we may apply the method of stationary
phase to

1 —ito (€)+izé 5
olt,%) = e [ e a(€)de
The points of stationary phase are determined by the equation
tVA(E) == (4.5)

which has a unique solution {(z/t) when £ € VA,(B(p.)) due to Lemma 2.2.
Thus v(¢, z) can be written in the form

1¢(tm) z——
V%) = Fr B T € ) + )+ ) (49)

where the phase function is defined by
ot z) =z - £(z/t) — tA.(§(z/1)), (4.7)

V1,2, ... are determined by standard formula and lu(t,z)| < Cnt~N(z)™"
for any N for large t.

Lemma 4.1. Assume fio € C(B(p.)). Then e~ f, (1) and Then
e~#2e(D=) f, | (x,k) has the following asymptotic ezpansion as t — +00 for
T € tAo(B(p.)):

e~ iAo (D) t—3/2i¢(t )~ 1,—-— t
frole) = de t(Vz,\ (¢ (_,E/t))ug(flo(f(:v/ ))

+tlgi(z/t) +---) (4.8)
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+-3/2 ei¢(t,z)—:‘§4£ ) )
det(Vng(g(l‘/t))l/Q (fl’l(g(x/t)a )
+H My (z/t, k) +---), (4.9)

C—it)‘O(D)fl,l(l', k) —

where @(t,z) is defined by (4.7), using the stationary phase point deter-
mined by (4.5) and g (z/t), g2(z/t),---, Myi(z/t, k), Ma(z/t,k),... are de-
fined by standard formulae involving the derivatives of fip and fi,. For
z € tAo(B(pc)), we have for any N,

Ie—itA°(D)f1,o($)| S CNt‘N(:z:)‘N, (410)

=) £, 1z, k)| < Ot ™M (@) N ()N (4.11)

Proof. The formula for e~**(D)f, 4(z) is an immediate corollary of (4.6).
4.9 can be proved similarly since k — f11(-, k) € C§°(B(p.)) is smooth and
rapidly decaying. O

Thus we may consider e~ **(P)f, |(z, k) as the part of the wave function,
which represents the motion of the electron under the dispersion relation
Xo(€), which is dragging the cloud of photons (however only one photon).

5 Proof of Theorem 1.4

Consider the case that the electron is interacting with the nucleus via the
potential V' so that the Hamiltonian of the total system is given by

H= _%A+V (gl
ulg) -—%A +V+wk))

We introduce the following assumption on the the potential.

Assumption 5.1. Let V' be multiplication by a realvalued function V(zx),
such that V' is bounded relative to —%A with relative bound less than one. Let
E be an eigenvalue of —3A + V with normalized eigenfunction Q. Assume
that there exists 3 > 5/2 such that

|z)| < Clz) P, zeR3. (5.1)
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We recall that by the Kato-Rellich theorem —1A + V is selfadjoint with
domain D(—1A + V) = D(—3A). In many cases we know that the eigen-
function actually has exponential decay, but eigenvalues at a threshold may
only decay polynomially.

Associated to each eigenvalue of —%A+V satisfying the above assumption
is a wave operator, as shown in the following result.

Theorem 5.2. Let V satisfy Assumption 5.1’. For every f € L*(R}), the
following limits exist in the strong topology of H:

L itH 0 Y X
Jm e <e““E‘““’(’°)Q(z) fiey) =W

Proof. We take p = 1 to simplify the notation. Since e and L?(R}) 3
f — e #E-iwk)() @ f € H are isometric operators, it suffices to show that
the limits exist for every f € C$°(R3 \ {0}). For such f the map

i 0
t s F, = ¢itH (e—itE—itw(k)Q(fL')f(k)>

is strongly differentiable, and we can easily compute to obtain

%Ft = (’3) fi = ie7*EQ(z) /R 3 giek—itw(®) g0 (k) £ (k)dk.

It suffices to show that ||f:| is integrable with respect to t, by the Cook-
Kuroda argument. We estimate the integral with respect to k: Since V(zk—
tw(k)) = z — tw(k) "'k, it follows by integration by parts that outside the set
{z: c|t| < |z| < 2|t|} with ¢ depending on the support of f, we have for any
positive N , ' ' SR

<Cylt|I™", |t|=>1.

Ls eizk—itw(k)go(k)f(k)dk

The integral is obviously uniformly bounded with respect to (¢, z). It follows
that

/|ft(x)|2d$ < CNltl—N/ 1Q(z)|%dzx
{z = |z|€(clt]2le])}

+C |Q(z)|?dx

{z: ct<|z|<2lt]}

< (™Y + (>,
Since B > 5/2 by Assumption 5.1, it follows that || f;|| is integrable. O
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6 Proof of Thorem 1.3

We now compare the evolution e *# to the free evolution e~*H° and prove
Theorem 1.3. By virtue of Theorem 1.2, we have only to prove the following
two theorems.

Theorem 6.1. Let V(z) = Vi(z) + Vao(z) with V; € L%(R3) and (z)?V; €
L*(R?®) for some B > 1. Then, for every f € L*(R? x R}), the following
limits exist in the strong topology of H:

: 0
: itH
e (e“%A-"w(k> f(z, k).) (6.1)

Theorem 6.2. Let V € L2(R3) Let fl,O € L2(B(pc)) and f1,1 € Hl be
defined as in Theorem 1.2, (2). Then, the following limits ezists:

—iXo(D.
lim etH e~ f) o
t—+o00 e“"*e“"°(D=)f11 )

6.1 Proof of Theorem 6.1

We take u = 1 to sxmphfy the notation. The set of functions of the form
Z =1 4i(z)v;(k), with 4; € Cg°(R \ {0}) and v; € CP(RE) is dense in
L2(R3 x R}). Thus it suffices to con31der f(z, k) = u(z)v(k) with u and v
as above. We write again

F, = e'tH (eit%A—iw(()k) f(a:, k)) :
We compute the strong derivative with respect to t.
dp_, ((gle“l Aj"w<'=>f) - ().
dt VeitzA-itw(k) gu(z, k)
We estimate gy:(z, k) first. We have

g1e(z, k) = iV (z)(e*2%u)(z)e™ wk)y(k),
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such that ||gie|ln, = [|Ve®*22ul|y|v||2. It follows by the well known estimate
for the existence of the wave operator for the two body short potentials (see
for example [5]) that ||gi¢||#, is integrable with respect to t. The function
got(z) can be written in the form

dor(@) = i / go(k)e== Ry (k) dk - &3 0u(z)

By Assumption 1.1 and v € Cg°, it follows that the function wy(k) =
go(k)v(k)e~**) belongs to L? with ||we|ls = co independent of ¢. Thus
we can estimate go; as follows, using the fact that the integral term is the
inverse Fourier transform of w; (up to a constant),
y i1l _ '
lgoella < (27)%2||abs]lalle” 2  ulloo < Ceolt]™/2||ull;.

Here we have used the estimate ||e®22||1gs)_roo(ms) < c|t|™3/2. This esti-
mate shows that ||go:||2 is integrable with respect to t such that the limits
exist. :

6.2 Proof of Theorem 6.2

Since C§°(B(p.)) is dense in L*(B(p.)), it is sufficient to prove the existence
of the limits when f,o € C§°(B(p.)). We use the Cook-Kuroda method.
Using the fact that A,(€) is the eigenvalue of Hy(€), it is easy to see that

d un ((€782P) fo . itH Ve #eD:) f, 4

(‘ﬁe (e—it/\o(Dx) f1,1) =1€ (Ve—ikze—it,\o(D:) f1,1.)
Thus, it suffices to show that both ||[Ve~®*(D2) fy|| and ||Ve~#*(D=) £ || are
intregrable functions of |t| > 1. But, we have seen in Lemma 4.1 that
le=12(P=) £ ()] < Ct~3/2 and |e~™eP=) £, (., k)| < Ct~3/2. Then, because
Ve L2, |[VemD=) fi|| < Ct3/2 and ||V go(k)e~(P=) f,|| < Ct~3/2 and this
completes the proof of the Theorem.
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