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1 Introduction.

We shall consider the singular rank one perturbations of the positive self-
adjoint operator. First we shall recall the notation of singular rank one
perturbation. Let H be a Hilbert space, A a (positive) selfadjoint operator
and H, := {u; ||(1 + |A|)*?u|| < oo}. Assume that ¢ € H_,, \ H_,11. We
shall put ’

Au=Atale)e (1)

We call (-, )¢ “(resp. super)singular rank one perturbation” of A forn = 1,2
(resp. n > 3). The main purpose is to construct a operator A corresponding
to A,. We shall give a method of the construction of a Hilbert space H and
an operator A in H for n = 3. (section 2). For n = 1,2 the operator A,
is recognized as a selfadjoint operator by using “restriction and extension
theory”. (See §2).

Next we shall consider the supersingular rank one perturbation for the
selfadjoint operator. There are two approaches for the problem:

1. Using Pontryagin space (Krein space):
A. Dijksma, H. Langer, Yu. Shondin and C. Zeinstra [9], J.F.van Diejen
and A.Tip

2.

3. Using Hilbert space:

I. Andronov ([3]), P. Kurasov and K. Watanabe ([16], [17]), P. Kurasov
([15)).

1. In general the norm of the Pontryagin space P is not positive definite, but
they can construct selfadjoint operator A in P corresponding A,.
2. We can consider the operator A corresponding to A, in the new Hilbert

space, but A is not selfadjoint except for n = 3.
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Example 1 In [3] he considered the operator
A=-Ain *RxRy)
(Neumann oond.ifion) and
@ = Og,0(z1,T2).

The author can not give completely the articles related to the singular per-
tubation theory. Many references can be seen in [2].

2 H_;- and H_;-perturbation.

In this section we shall review the singular rank one perturbation. (H_;, H_»-
pertuabations). Let ¢ € H_, \ H_n41 (n = 1,2) and A° the restriction of A

to the space
D(A%) ={ue D(A); (u,p) =0},
A% = Au, u € D(A°).
Then we shall consider the relation between the operator A, and the (von
Neumann)extension A(f) of Ag. Using “restriction and extension theory” we
recognize A, as a selfadjoint operator.
Two extension methods:

(I) Direct extension:

A
D(Aa)9U=U+U1AT+-—T(p, ueHz,‘u]EC,

. 0) =~ + (gD 2)

AU := Au— uy (3)

1
Az ¢ I‘P;
where, if ¢ € H_5 \ H_;, then we put

A

(Az—_l_l'% ) =c€R,
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(II) von Neumann extension: for § € [0,7),

D(A(8)) 5 U = i + 3, 2 ?Af . ‘1:"5%, GeDAY 4 eC, (4)
. _ —cosfA—sinf o
A(O)U = A% + @, Y . (5)

Theorem 1 Let ¢ € H_; \ H. Then there ezists a bijection between A, and
A(8), i.e., if the relation of a and 0, 0 € [0,7), is |

1 1 A )
<A2—+1<'0’ ) cosf — (-&- + (mcp, p)) siné = 0, (6)

then Ao = A(6). For n =2 we put c € R in (6) instead of (55, ¥)-
Proof. (i) for A(f). (von Neumann’s method. cf. [21]) Using the defi-

ciency elements hi; = 4, We put
U=+ %(h,- —e?h_;), 4 e D(A®), i, €C,
and define ;
AO)U = A% + i%l-(h,- ) )

Then A(6) is the selfadjoint extension of A%. In particular, A(0) = A.
(ii) for Aq. (cf. [2]). The domain of A, is (AU € H )

U=u+ulz{‘—1<p,u€D(A), u; € C |
i A (8)
(u, 0) = —(5 + (o, 57PN

This means that there is a linear relation in D(A) ® {a57¢}.
(iii) Rewriting the element of D(A(f)) and substituting it to (8), we
obtain Theorem. |

3 H_s-perturbation

We assume
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We shall consider the case of

¢€H_3\H_,
and construct the operator corresponding to the operator

Au=A+oa(,p)p

in the extended Hilbert space in

H=H,+C.
Remark 1 If we restrict A to

D(A°) = {u € Hs; (u,p) =0},

then A is essentially selfadjoint in H. So any selfadjoint extension of A° is
A.

Let a, be a positive constant and put
1

- A + ay
To construct the extended Hilbert space H (suitable for A,) we put

L)} -

Hpre = Dom(A%)+C 3 U = (u,u). - (9)
Note that Hpe C H3+C. We define the following natural embedding p of
the space Hypre into the space H_;:

p : Hpe— H, (10)
(w,u1) = v+ u191.

Then the scalar product in the space H,re can be introduced using the fol-
lowing formal calculations where b is a certain positive constant:

<UV> = (U, pV)+ b{pU, ApV)
= (u+wg,v+vig) + b{u+ug, A(v +vig1))
= (u,v) + b{u, Av) + @v (|| g1 I +5(g1, Ag1))
+1; ({g1,v) + b{Ag1,v)) +v1 ({4, 1) + b{u, Agh)) .



The last two terms can be simplified taking into account that

Agy = —ayg1 + ¢

and the fact of u,v € H3 N D(A®). Then the scalar product is given by the
expression

KU V> = (u,v)+blu, Av) + Gv; (|| g1 ||* +b{g1, Ag1))
+(1 — bay) (u1(g1,v) +v1(u, 1)),

which can be considered only formally, since the scalar product (g, Ag;) and
the norm || g; ||? are not defined (since ¢ is an element from H_3 \ H_;). To
define the scalar product we extend ¢ as a bounded linear functional using

the equalities

(91,91) = Cy, (gl,Agl) = C2, (11)

where c¢; and cy are arbitrary positive real constants. In what follows we are

going to use the notation
d= (6] + bC2 € R+. (12)

The scalar product determined by the following expression will also be con-

sidered:

LUV > = (u,v)+blu, Av) + dtgvy + (1 — bay) {81(g1,v) + vi{u,q1)} .
(13)

This formula defines a sesquilinear form on the domain Dom(A%)+C. This
form defines a scalar product only if it is positive definite.

Let us denote by || U ||2=< U,U > the norm associated with the previ-
ously introduced scalar product. The space H with this norm is not compléte,
and the following lemma describes its completion with respect to this norm.

Theorem 2 Let o € H_g\ H_y, a; >0, g1 := (A +a,)"Yp, and
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ForU = (u,u1),V = (v,v1) € H we define

< U,V >= (u,v) + b{Au,v) + du,t,
(14)

+(1 — bay) {ua{g1,v) + 01 (u, g1)}

where b > 0,d > 0.
If we assume that

d > |1 — bay|*{(1 + bA) g1, 41), (15)

then < -,- > 13 a scalar product on H and the norm induced from < -,- >
is equivalent to the standard norm of H, ® C, i.e.,

LU U ((1+ Ay, u) + d'|uy |

We omit the proof.
Next we define an operator A in H. Let a3 > 0,

e2=(A+a)"'n
and define

Dom(A) 5 U = (ur + uage, w1), (16)
AU = (Au, — a1u192,u2 — G1uy) (17)
where u, € Hs and uy € C.
Theorem 3 For 0 < 0 < 7 we define the linear subspace D(0) of Dom(A)

as follows:
D(0) 3 U = (ur + uzg2, )

if and only if
bsin6{p, u,) — (asind + ccos @)u; + bcosbuz = 0, (18)

where a,c are constants determined by a;,az,b,d, p. Let A(0) be the restric-
tion of A to D(0). Then A(0) is a selfadjoint operator with Dom(A(9)) =



Remark 2 Using the natural embedding map p we have
pAU = Au, — axuzgs + (ug — a1u1)gr  (mod o)

for
D(A) U = (u, + uag2,u1).

Because of
Agi =gt =p—ayg,
Ag: = g1 — 20

Proof of Theorem 3.
Step 1: A is symmetric on D(8).
We can calculate the boundary form as follows:

KUAV > - < AU,V >=

0 —c b < Upyp > < Up,p >
< c ‘ 0 —a u ) %1 >
-b a O U2 ' V2

We assume that the boundary form is written as
- afu,, ) + Puz +yup = 0.
Combining above two cbnditions, we have

(19) = 0 (A symmetric) <=, 3,YER, aa+ b+~ =0

<a,B,7€R, (a,b,c) L (o, 8,7)-

Hence we can represent (a, 3,~) by one parameter 6: i.e.,
(o, 8,7) = (bsinf, —asin @ — ccos b, bcosb).

Therefore A(f) is symmetric on D(8).
Step 2: \A(6) is self-adjoint on D(8).

(19)

(20)

(21)

(22)
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For A < 0 we prove
R(A@)— ) =H,

i.e. that for any V = (v,v;) € H there exits an element U = (u, +uzg3,u;) €
Dom(.A(#)) such that
(A@G) — U =V.

The last equation can be written as
(A=, — (82 + Nuzge = v;

U — (0.1 + )\)ul = 1.

The first of these equations can be rewritten as

1 1
U — (a2 + '\)“zmgz =1

which implies
1 1
(r, @) = (2 + A (=592, 0)u2 = (7—v0)-

U = (ur + uzg2,u) should satisfy the boundary condition (18). Hence
((ur, @), u1,u2) € C® solves the system of linear equations

1 0 —(a2+ M@ \ ([ (ur, ) (250, ®)
0 —-(al + A) 1 u = m1
bsinf —asinf — ccosf bcosé Us 0

(23)
where we put &, = (41592, ). The determinant of this system is: -
—(ay + A)bcosd — bsinf(a; + A)(az + A)®, + asinf + ccosb. (24)

(i) 6 = 0: Since b # 0, 3\ such that —a,b+ ¢ — bA # 0.
(ii) @ # 0: We can prove

Allbgloo IAQAI =

because ¢ € H_3. Hence the 2-nd term of (24) is dominant of the determi-
nant. Therefore Theorem has been proved.
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Remark 3 From the proof of Theorem we know:
(i) A(6) is semibounded from below.
(i) For 8 =0: The solution of the linear system (23) is given by

(c — b(ay + X)) (25, ) + (a2 + N){(zi592, p)evr

) = e = Har + ) + (a— b(ar + Naa + 0 (kg )
bv, ) '
“= c—b(a; + A)’
— cu1
BT T r )

T hén the resolvent can be calculated as

m(v,vl)v:(A_l_)\an ('A_l_/\gl}) uz,ul),

(iii) V = (v,0) € H; +C:

PapRlmy = 25v +

bsin@x

toost (c—b(a1 + A)) +sin 8 (a — b(ay + A)(az + A) {592, 9)) *

(o) ()

SRS SN
A— AP T Py =X

(iV) 0= 0,‘01 =0.

Hence
Dom(A) € Dom(.A(0))

and the action coincides
A(0)|pom(a) = A.

(25)

(26)

(27)

Therefore the operator .A(0) should be considered as an unperturbed op-
erator, since this is the unique operator possessing the properties described
above. All of the other operators .A(@) corresponding to 8 # 0 are perturba-

tions of A(0).
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4 H_,-perturbation (n > 4).

@ € H_, \ H_p41 (n > 4). For simplicity we confine n = 4. For general n
see [15]. We put

g =(A+1)1p, gg=(A+1)1g,
g =(A+1)"g,

and Hilbert space and the scalar product

H= H2 $C2 U= (U,UQ,‘UI),V = (‘U,vz,‘v]),
<KUYV >= ((A+1)u,u) + ustip + w19y

We define the maximal operator A in ‘H corrsponding to A, as follows:

Dom(A) ={U = (Ur + usgs, uz, 1) ;
U, € Hy,u3, u2,uy € C}

and
U, + u3gs AU, — u3gs
A u =| w-u |. (28)
u; U2 — Uy

Definition 1 Let T be a densely defined closed operator in a Hilbert space.
T is regqular <= D(T') = D(T™) (29)

Theorem 4 For 0 € [0, ) let A(f) be a restriction of A to
sin §(U,, ) + cos fuz — sinom =0. (30)

Then A(0) is regular. Conversely any regular restriction of A is given by
(30) for some 8 € [0, ).
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Remark 4 (i) The action of the operator A(8)* is given by

Vi +v3gs AV, — vsgs
A(0)* () = v3 + U — Vg . (31)
V1 -0

The real and imaginary parts of the operator A(09) are given by

A() = RA(9) + iA(6); (32)
Ur + usgs AU, — uzgs
(RA(0)) U2 = | uz—uz2+ %Uq )
(751 %'UQ - Uy
] 0 0 O
SA(0) = 3 0 0 =2
0 — 0

The imaginary part of A(0) is a bounded operator.
(ii) We can prove that the spectrum of the regular operator A(f) is pure
real even if the operator is not self-adjoint.

5 Further Results and Problems.

In section 3 we confine the case a1,as,b,d = 1. Then the Hilbert space H
and the scalar product are H = H; ®C and < U,V >= ((1 + A)u, v) +u17y,
respectively. And the condition of the element of A(@) is given by, for U =

(ur + u2g2,u1) € D(A(F))
sin #{u,, p) — sinBu,; + cosBuy =0, (33)
and the operator acts as o

AU = (Au, — u2g2, up — u1).



We consider the following selfadjoint operator in H(= #):
AU = (Au,—u,), u € H3, u; €C.

Then A is selfadjoint and A > —1. The space D(A)* of the dual space D(A)
with respect to < +,- > is D(A)* = H_; & C. We consider the rank one
perturbation for A.

A, =A+ak G > Gy, (34)

where G = (g1,-1) € H_, & C.
We can see that A, is selfadjoint if and only if ¢ € R is real parameter
and the following relation is satisfied

U=U+az£:G,,Ue D(A),

- 35
< U,G; »>=—(2 +¢)a, (35)

Ue DA,) = {

h
where A A 1

— Gy = (———qg. =
a1 = (g y)
We can rewrite the above relation as follows:

1
(,6) =1 =~ (5 +Ja. (36)
Theorem 5 There exists one to one correspondance between A, and A(6).

{Ac}aer = {A(0)}oco<r-

Proof. Since . s
s = (a7g - ﬁf)gl + g2

= azr’:)—'(lxqjgl + 92,

the elemnet of the domain of A(@) can be written as

U =((u+t+ a(—A,+—“1§(;+—l)gl) + agz,u; + 1a)
= (u" + agz,uy + 0/2)
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Substituting this to (33) we have

: A-1 : |
sin @(u + TR ®) — sin 0(u; + a/2) + cos fa = 0. (37)

By (36) we obtain
A1 . . |
sm0a(A2—+1g2, ) —sinf(1/a + c)a — sinfa/2 + cosfa = 0. (38)

Hence

{Ac}acr = {A(0)}oco<r
Problem. (1) In this section we began with
DA% = {u € Hy; (u,0) =0},
and
D(A®%) = {U = (u,u;) € D(A); < U, G, >= (u,) —u; =0}.  (39)

We would like to consider the relation of A% and Ao.: A is considered as
A: H, —» H,_,. Hence by '

- D(A®) = Hj(+condition) ® {0}
C H; ® C(+condition) = D(A?),

we can consider that (u;p) = 0 and (u,p) — cu; = 0 have some rela-
tion.(Because in the case u; = 0 we can identify.) But ¢ = 1? or not?

(2)Are A(f) in H the operators corresponding to the operators con-
structed by using the Pontryagin space?
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