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Local smoothing property and Strichartz inequality
for Schrodinger equations
with potentials superquadratic at infinity

Kenji Yajima! and Guoping Zhang?
Department of Mathematical Sciences, University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

1 Introduction

In this paper we study the local smoothing property and Strichartz inequality for n-
dimensional Schriodinger equations with potentials which grow super-quadratically at in-

finity:

z%:i = —(1/2)Au+V(z)u, z€R? teR; u(0,z)=up(x), =€ R™ (1.1)
Assumption 1.1. V(z) is real valued and is of C*°-class. There exist m > 2 and R > 0
such that:

(1) For |z| > R, Dy(z)™ < V(z) < Da{x)™, where D, < D, are positive constants.

(2) For any a, |02V (2)| < Calz)™ 1.

Under the assumption, the operator L : u — —(1/2)Au + V(z)u defined on C$°(R™)
is essentially selfadjoint in LZ(R™) and the solution in L?(R™) of the initial value problem
(1.1) is given by u(t,-) = U(t)up via the unitary group U(t) = e #H
unique selfadjoint extension H of L. We shall show that the solution u(t, -), nonetheless,
is much smoother than ug and 1/m times differentiable at almost all time t # 0. More
precisely, we prove the following theorem. We write (A4) = (1 + |A|2)% for a self-adjoint
operator A and D = (Dy,...,D,), Dj = —i0/0z;. || - || is the norm of Lebesgue space
LP(R") and || - || = || - |l2, 1 < p < oo.
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Theorem 1.2. Let V satisfy Assumption 1.1 and ¥ € C§°(R"). Then, for any T > 0,
there erists a constant C > 0 such that

(f TT @)D e uolP)” < Cluol, 0 € LR, (1.2

Theorem 1.2 is an extension of the one dimensional result by [YZ] to multi-dimensional
cases and it is sharp in the sense that the exponent 1/m in (1.2) cannot in general be re-
placed by any larger number. This can be seen by taking the potential V (z) = (z1)™+---+
(zn)™ and the initial state ug(z) = e;,(z1) - - - €, (Tn), where e;(x) is the j-th eigenfunction
of the one dimensional Schrodinger operator —(1/2)(d?/dz?) + ()™, and by using the well
known result on the asymptotic behavior as j — oo of e;(z) for z in a compact s?t (see e.g.

T ) 3
[YZ]). However, a slightly stronger result sup ( / |\I!(:z:)(D)#e_“H uo(z)lzdt) < Clluwl|
z€R! -T

is known in one dimension (see [YZ]).

On the way to the proof of Theorem 1.2 we prove the following Strichartz type in-
equality with “derivative loss”.
Theorem 1.3. Let V satisfy Assumption 1.1. Let2 < p,0 < oo be such that-:- =n (% — %)

1/1

andp # oo if n = 2. Then, for any T > 0 and v > ] (5 - %) there ezxists a constant
C > 0 such that

1

T ]
( /. ue-“”uonzdt) < CIKHY woll, w0 € LA(R™). (1.3)

Note that ||(H) ug]| < oo requires ug also to decay at inifity: (z)™"up € L2(R"). In
Otmp)e=itH yy ()|l Lo..,2(—1,1)) < Cliuoll is known for
a certain 8(m, p) which is positive for any 2 < p < oo if m < 4 and for % > 4—(",:.;_415 ifm>4
(see [YZ]). This suggests that Theorem 1.3 is far from best possible. For Schrédinger
equations on compact Riemannian manifolds, Strichartz’ inequality with sharp derivative
loss 7 = g5 has recently been obtained by [Bu]. See also [Bol], [Bo2] for related results.
Applications of Theorem 1.2 and Theorem 1.3 to the initial value problem for nonlinear

one dimension a related result ||(H)

Schrodinger equations will be discussed elsewhere.

The estimates of the forms (1.2) and (1.3) have been long known for the free Schrodinger
equation in the following stronger forms (see e.g. [Sj], [KY] for (1.4) and [St], [GV], [Y1]
for (1.5); the “end-point” case of (1.5), however, has been proved by [KT] only recently)
and they have been widely applied, in particular, to nonlinear Schrodinger equations ([K3],



[KPV]) or to the convergence problem ([V]). We write Hy for —(1/2)A with the domain
D(Hy) = H%(R"), where H?(R™) is Sobolov space of order o.

(1) Local smoothing property: For any T' > 0 and ¥ € C§°(R"), there exists C > 0 such
that

. 1
T . 2
( / ||\11(x)(D)%e—“H°uo||2dt) < Clluoll, uo € L*(R"), (1.4)
0 ;

where T can be set T'= o0 if n > 3.

(2) Strichartz inequality: Let 2 < p,6 < oo be such that g=" (5 - 5) and p # oo if

n = 2. Then, there exists C > 0 such that

1
o0 . 9
([T 1emoular)” < Cluale, wez2®). )

For generalizations of these inequalities to the case with decaying potentials, see e.g. [CS],
[BAD] and [Y1].

Before proceeding further, we present here the outlines of the proofs of (1.4) (for
T < oo0) and (1.5) which explain their “physical contents” because they will guide our
proofs of Theorem 1.2 and Theorem 1.3 and “physically explain” why 1/m in (1.2) is
sharp. We consider along with the equation (1.1) corresponding Newton’s equations:

§(t) =p(t), B(t) = —V,V(q), R

q(0) =y, p(0)=k,
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and denote their solutions by (q(t,y,k),p(t,y,k)). If V = 0, q(t,y,k) = y + tk and

p(t,y, k) =k.
For proving (1.4) for T < co, we use the formula e*foge~i#Ho — z +tD and write

T ”\I’(z)(D)l/2e—itHou”%dt — /T((D)lmeitm"llz(:c)e_“H"(D)l/zu‘,u)dt
0 T 0 . .
_ /2 . T . 1/2 .
= ((D)1 {/O V(g + tD)dt} (D)2, u)

T T
Here we have 162‘65/ v (z + t{)dt. < Copl€) ™! for any a, 3 and / U2(z +tD)dt is a
0 0
pseudo-differential operator (2DO for short) of order —1. Hence, the right hand side of
(1.7) is bounded by C/jul|? and (1.4) follows. Notice that the identity e*HoW?(z)eHo =
¥2(z + tD) is nothing but the so called Egorov formula which “quantizes” the map y —

(1.7)

T
y + tk and the relation / U2(z 4 t€)dt ~ |¢|7! is a result of the obvious fact that the
0

free particles y + tk with velocity k stay in a compact set for the time < C|k|~!. Thus, we
may consider that the local smoothing inequality (1.4) is nothing but the “quantization”

of this obvious fact.



We now turn to the proof of (1.5). For 1 < p < oo, p’ denotes its dual exponent:
1/p+1/p’ = 1. Because Up(t) = e *Ho is unitary and because the integral kernel of Up(t)

I—n/2

is bounded in modulus by a constant times |t , we have

|Uo(t)ullz = llullz, and Us(t)ulloo < Clt|™2|lulls. (1.8)

(1.5) then follows by applying the the following result of Keel and Tao [KT]: Let (X, dx)
be a measure space and {U(t) : t € R} a one parameter family of operators acting on
complex-value functions on X. Suppose that {U(t)} satisfies

U@ fll2 < Cliflla,  NU®U(8)* fllo < Clt = 5|7 fll1- (1.9)

Then, for 2 < p,0 < oo such that 2/6 = o(1/2—1/p) and (p, 0, 0) # (00,2, 1), there exists
a constant C > 0 such that (/ ||U(t)f||zdt) < C|Ifll2 for any f € L3(X). Thus, (1.5) is
R

a result of the unitarity and the disspative property (1.8) of e~*Ho.

If V(z) grows at most quadratically at infinity in the sense
|02V (2)| < Ca, 2<la|l <2(n+2), (1.10)

it is shown (cf. [F]) that the fundamental solution (FDS for short) E(t,z,y) for (1.1), viz.
the integral kernel of e~ can be written for short 0 < |t| < § in the form

E(t,z,y) = eSt=¥q(t, 1, y), (1.11)

(2mit)n/2
where S(t,z,y) is real smooth and a(t,z,y) is smooth and bounded. It follows that
U(t) = exp(—itH) satisfies (1.8) for |t| < § and, hence, (1.3) with finite T > 0 (note
that the time global estimates do not hold in general because eigenfunctions exist for H).
Moreover, etH¥(z)2e~*H is a ®DO with principal symbol ¥(q(t, z, k))? and, if k is large
and y € supp ¥, q(t,y, k) € supp ¥ for the time [t| < C|k|™? (see [Y2]). Thus, the local
smoothing property (1.2) holds with m = 2 as in the case V = 0.

When V is superquadratic at infinity, g(t,y, k) as well as E(t,z,y) behave very dif-
ferently from the case that V grows at most quadrartically at infinity. To see this, we
consider V(z) = (z)™ in one dimension, m > 0. Then, classical particles are subject to
periodic motion and, when energy ~ k? is very large, the periods are given by

(k2/2)1/m
T(k) ~ 2 / dz = Crpk~1¥Ym, (1.12)

—(k2/2/m +f(K2/2) — |z|™

Note that, as k — oo, T'(k) = 00 if 0 < m < 2 and T'(k) — 0 if m > 2. Thus, if m > 2,
for given t > 0,z and y, the equation z = g(t,y, k) for k has infinite number of solutions
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with arbitrary large |k| and, reflecting this, E(t, z,y) is nowhere C! and is not in general
bounded at infinity (see [Y4], [MY]). Thus, we cannot expect that (1.4) and (1.5) for
the case m < 2 remain to hold for m > 2. Actually, the motivation for this work was
to understand how this change of properties of E(t,z,y) reflects on the local smoothing
property and Strichartz inequality. We expect, nonethless, 1/m times differentiability
improving (1.2) because of the very relation (1.12) and the “physical” argument given for
the free Schrédinger equation: If K is a compact set and the velocity of the particle in K
is ~ k, it stays in K for < C/k during one period and its period is ~ Ck~1+2/™ for the
energy is ~ k?. Hence, it stays in K for < CTk~2/™ during the time [0, T] and we expect
differentiabity improving by 1/m.

The rest of the paper is devoted to the proof of Theorem 1.2 and Theorem 1.3. We
display the plan of the paper here outlining the proofs. We observe that we can find
the fraction k~%/™ mentioned above by looking at the motion of the particle only for
one period which is ~ k~1+2/m ~ A~(3-%) if the energy is A ~ k2. Hinted by this, we
decompose the solution u(t) = 3°22, e~ Hyp; in such a way that uo; is spectrally localized
around A\; = 27 with respect to H. It actually is easy to see that for proving (1.2) and
(1.3), it is sufficient to show respectively

eh; . _
/0 @ (@)e Hug;|2dt < O 2 fug; 12, (1.13)

1
eh; ] . :
([ e ruaigat)” < Cluosl (119
; - — " (G-%)
for some € > 0 and C > 0 independent of j, where h; = A, .
of the particle with energy A;.

In section 2 we prove some preparatory results such as approximation of ¢(H) by a
psuedo-differential operator (#DO for short). In section 3, we show that e #Hy.(H),
where ¢;(H) is the spectral localization around H ~ ); is well approximated, at least
for |t| < eh;, by e *7ip;(H) generated by H; = —(1/2)A + x(x/Clz\Jl./m)V(:z:). Here
X € C§°(R™) is a cut-off function such that x(z) = 1 when |z| < 1 and x(z) = 0 if |z| > 2,
and C) is large enough so that |z| > C;A/™ implies V(z) > 5\ whenever A > 10'°. The
reason behind this is that classical particles of energy A cannot enter the domain where
V(z) > A. For proving this and also for obtaining the expression of e™Hi W2 (z)e~itH;
as a ®DO in section 5, we change the scale of time and convert the equations into the
semi-classical form: If s = t/h and H; = hJ2~Hj, then e~itHi — g=isHj/h, The point here
is that V;(x) = h?-x(:z:/Cl)\;/m)V(x) satisfies the estimate |02V;(z)| < C,q for |a| > 2
with C, independent of j. It then follows that e~ has the integral kernel E;(t, z,y) of
the form (1.11) for |t| < €h;, € independent of j, and, its phase and amplitude functions

is virtually the period
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are estimated uniformly with respect to j. In particular, |E;(t,z,y)| < C|t|~™/? with
j-independent C and this implies (1.14). We give a more precise argument in section 4.
In section 5, we use h-®DO calculus and express eitHi/h; \Ilz(x)e""ﬁi/ hi as a h-®DO and
prove (1.13) by following the argument for the free Schrodinger equation given above.

Incidentally the fact that the study of e~ ¢;(H) for one period of the bicharacteristics
|t| < eh; is suffcicient for concluding the sharp local smoothing property is reminiscent of
the similar fact for the sharp remainder estimate for the distribution of eigenvalues (see e.g.
[Ta]) or the local decay property of the spectral projection operator at high energy ([Y5])
for H. See also [Bu] where similar argument is used for proving Strichatz inequalities for
Schrodinger equations on compact manifolds.

2 Preliminaries

We write S(m,g) for Hérmander’s symbol class with slowly varying metrics g and g-
continuous weight functions m(z,£) (cf. [Ho], Chapter 18) and define the ®DO p(z, D) =
Op(p) with symbol p € S(m,g) (we write o(P) = p(z, ) for the symbol of P = p(z, D))
by
1 i(z—
(s, Dyu(z) = Op(p)u(a) = oo [ MWz, uly)dyes
(21!’) JR™ xR™®

We use S(m, go) and S(m, g1) where go = dz®dz + df ®d¢ and g1 = dz®dz/(z)’ +d¢ ®
d¢/(€)%. We recall a positive function m is g;-continuous if it satisfies |6;'3? m(z,€)| <
Cap(z) 1" (€)™ Pim(z,£) and p € S(m, 1) if and only if

1020, p(x,£)| < Caplz)™?(€)Pim(z, ¢).

We denote by plig the symbols of Op(p)Op(q). If p € S(m1,91), ¢ € S(m2,g1), we have

i—lal
pla— > —-0fp(,8) - 824(x,€) € S((@) V(&) Nmuma, ), N=12,..., (21)
laj<N )
.
o(p(z, D))~ Y ’a' 8282p(z,€) € S((z) N () Vmy,q1), N=1,2,.... (2.2
lajl<N :

Similar relations hold for S(m, go). The symbol class S(m, g) is Fréchet space with natural
seminorms and p — p(z, D) is continuous from S(1, go) or S(1,g;) to the Banach space of
bounded operators in L2(R").

We begin with the following lemma. We write a(z,£) = (1/2)¢2 + V(). We may and
do assume in what follows that V(z) > 1 without losing the generality.
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Lemma 2.1. Let § > v > 0 and ¢,y € C§°([0,00)) be such that
supp ¥(t) C [0,7), ¢(t) =1 for t € [0,4].
Define ®x(z, &) = ¢p(a(z,&)/A) for A > 1. Then for any N, there exists Cn such that
IHY (1~ @x(z, D))p(H/NH" || g2y < CnATY, (2.3)
where the constant Cy is independent of A>1. "

Proof. Write &, (z,€) = 1= ®,(z,£). Take an almost analytic extension 9(2) of 9(t) such
that v(z) is supported by a compact subset of |z| < v and set ¥x(z) = ¥(2/)). We have

1 61/1,\

A, DIH/N) = 5= | FT2EE(@D)H - o) dandz (24)

We construct a parametrix of & (x, D)(H — z)~! for |z| < yA. On the support of ®,(z,¢)

we have

X1620%a(z,€)| < Cagmin(A=mnlel/248ImY (g =lal(zy-18l)  (95)

with constants Cyp independent of A > 1, and {®x(z, ), ®r(x, {) :A>1}is bounded in
S(1,g9). We write b(z, ¢, 2) = a(z,&) — z and define qo, g1, ... inductively by
- ) c , —j—lel o . o S
0=2x/b @1=i0g0-0:V/b, g=( D = — 0w EV)/b, j22. (26)
laj+k=jjal>1 :

1

It is obvious that g; are of the forms

a]k T €)
Z “ (a(=,€) — 2)F

and aji(z,€) = 0 when a(z,£) < 6X. When a(z,£) > ) and |2] < ¥\, we have |b(z, &, 2)| >
(6 —v)A and |a£agb—1| < Copla + A)~Yz) 1P (€)71*! with constants Cap independent of
|z]| <A and A > 1. Thus, for j =0,1,..., '

{la+Ngj : |z <A, A>1}C S((x)‘j(ﬁ)_j,g) is bounded. (2.7)
Denote Q; = Op(g;), j =0, 1, .... We have

-1 31/),\ .
% QJdZ/\dZ—O ]—-0,1,...,, . (28)

because integration by parts shows

1 [0 _a(z8) , .o 1 Fpr  ai(z,§)
2ni Jo 0z (a(x, &) — 2) 2mi(3 — 1)! Jo 020271 a(z,&) —

zdz Ndz  (2.9)
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and, as ¥~1(z) is a almost analytic extension of ¥U~1(z), (2.9) is equal to

-(-1) a(z,§)

By virtue of the product formula (2.1), we have
(go+q1+---)fib

= qob—i0eqo- 8V + Y 0%V + z ogq-2V  +
|la|=2

+ @b - i0cqy - BV + 2 Croeq 920V +
|a|=2
+ qb - 10gq2 - V +

Hence (2.6) and (2.7) imply that, if we set Ry n(2,z,D) = ®»(z,D) — (Qo + Q1 +
-+ QN)(H — 2), N = 0,1,..., then {R\n(2,%,) : |2| < ¥A,A > 1} is bounded in
S((z)~ W)=+, g) and i ~

&r(z,D)(H - 2)' = (Qo+ Q1 + -+ Qn) — Ran(z,z, D)(H — 2)~* (2.10)
It follows by the continuity property of ®DOs that
l|H2N+lRX,(4N+1)m(zv z, D)H2N+1" < CNa Izl < 7A) A >1

and by inserting (2.10) into (2.4) and by using (2.8) that

&x(z Dyw(H/Y) = o [ 5 O ()R, a m(217, D) — DMaAdz  (21)
for any N =1,2,.... It then follows that
IH2N 41, (z, DY(H/NH2 || < CyA™ /n IS2Il(H — 2) " lldz A d2] < Ciy,
\
which implies the lemma because
IHN & (z, Dyp(H/NHN|| < OnA-N-1 H2N+18, (z, D)(H/\)HN+|.

by virtue of the support property of 1. B

Lemma 2.2. Let ¢ € C§°([0,00)) and ¥ € C§°(R™). Define, for A > 1, ®,(z,§) =
#(a(z,€)/N) and Kx(z,&) = ¥(z)%p(a(z,£)/N)2. Then, there erists a constant C > 0
such that for any A > 1

|18z, D) — @x(z, D)* g2y < CA~(3+=), (2.12)

12x(z, D)¥*(z)®x(=, D)* — Kx(z, D)llpus) < CA~%. (2.13)
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Proof. Tt follows from (2.2) and (2.5) that {o(®})—®, : A} is bounded in S(A=(1/2+1/m) g),
This implies (2.12). The proof for (2.13) is similar. §

We take 19,9 € C§°(R) such that 0 < 9p(z), ¥(z) <1, supp® C (271,2) and

Yo(z) + Y _P(z/2) =1 for z € [0,00) (2.14)
j=1
and set ¥;(z) = ¥(z/27), j =1,2,.... We let ¢ € C$((1/4,4)) be such that ¢(x) = 1 for
1/2 < z < 2 and define, slightly abusing notation, ®;(x, £) = ¢(a(z,£)/2?) for j = 0,1,. ...
Note that 1/2 < 3752, 4;(z)? < 1.

Lemma 2.3. Let ¥ € S(1,g). For any N > 0 there ezists a constant Cy > 0 such that

1% (2, D)ull® < 72(||¥ (2, D)go(H)ul®+ Y _ [ ¥(z, D)®;(z, D)yy; (H)ull*) + Cnl|(H) N ul)).
=1
’ (2.15)
Proof. Take another ¢ € C5°((1/2,2)) such that 1 (x)(z) = ¥(x) and set ‘Zj (t) = (t/29).
By virtue of Lemma 2.1, we have for any N,

IHY (1 — @;(z, D)) (H)HY || p(r2) < On277. (2.16)
Write uj = ¢;(H)u. We have u = 3" u; = 5_;(H)u; and by virtue of (2.16)

1% (2, Dyull® = || ) ¥(z, D); (H)u;*

=0

< 2| ) ¥(z, D)®;(z, D)u;|* + Cn Y 27N ||uy? (2.17)
j=0 =0 v,
<2 ) (®k(z,D)"¥(z, D)"¥(z,D)®;(x, D)uj, u) + COn||H"||%.
7,k=0
Since {®; : j = 1,2,...} is bounded in S(1, g) and the supports of ®; and ®;, are disjoint
from each other if |[j — k| > 5. Hence, we see that {®x(z, D)*{¥(z, D)*§¥(z, D)§®;(z, D) :
|7 — k| > 5} is bounded in S((z) "™ (€)™, g) for every N = 1,2,.... It follows that, for
any N, ‘ ,
| |(H)V ®4(z, D) ¥(, D)¥(z, D)*®;(z, D)(H)" |5z < Cn
with constant independent of |j — k| > 5. Thus ‘
' Z (2 ¥(z, D)"¥(z, D)q)j (z, D)uj’ k)|
li—k|=5
o . N (2.18)
<Oy D 27 NUB|uj|llul] < Onll(H) V.
k=0
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On the other hand Schwarz inequality implies

| )" (¥(z,D)%;(z, D)uj, ¥(z, D)®i(z, D)us)|
li—kl<4
<2 Y (I¥(z, D)®;(z, D)u;|I* + ||¥(z, D)®x(z, D)us||*)
li—k|<4
<36 [[¥(z, D)®;(z, D)ul®
i=0
The lemma follows by combinig (2.17), (2.18) and (2.19). &

(2.19)

3 Approximation of propagator

We let x € C§°(R™) be a cut-off function such that x(z) = 1 for |z] < 1 and x(z) = 0 for
|z| > 2. We define
1 .
Hy=—38+W(), Vi@ = V(@)x(z/CiA%),
Lemma 3.1. Let y € C§°((0,00)) be as in Lemma 2.1. Then, there ezit constants C; > 0
and € > 0 such that for any N,£=0,1,...

sup ||H (e *H — e7* 2 )y(H/A)|| < CneA™" (3.1)
[ti<eh ‘

for a positive constant Cpny independent of A > 1.

For proving Lemma 3.1, we set h = A~(3-%) and convert the equation (1.1) into the
semi-classical form considering h as a semi-classical parameter. Thus, we define,

_h2 - _ 12
H" = h?H = T"A + h*V(z), H" =hn2H, = ThA + hV)\(z) (3.2)
and write V?*(z) = h2V)(z). Then, (3.1) is equivalent to
sup |[H“ (/" - e B My (H/A)| < CnedV. (3:3)
t|<e

It is important to notice here that

102V*(z)| < Ca, o] > 2, (3.4)
where C, is independent of A > 1. The following theorem is due to Fujiwara ([F]). We
write (¢*(t,y, k),p"(t,y, k)) for the solutions of Newton’s equations

i(t) =p(t), B(t)=-V,V*q),
! q€0)=yf) p(0)=7c, ! (3.5)

corresponding to the Hamiltonian Hh.
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Theorem 3.2. There exists ¢ > 0 independent of h > 1 such that the fqllowing statements
are satisfied.

(1) For every z,y € R™ and 0 < |t| < €, there exists a unique k = k(t,,y) such that
z = ¢"(t,y,k); s = ¢"(s) = ¢*(s,4,k"(t,z,y)) is a unigque solution of (3.5) such that
¢"(t) = = and ¢"(0) = y. |

(2) Define Sh(t,x,y) for 0 < |t| < € and z,y € R™ by

. : 4
Stay) = [{A/286 -V (39)
Then S*(t,z,y) is real C™® and satisfies |

_7 2
o208 (S"(t, z,y) — @—%L))‘ < Cagltl, la+8>2. (3.7)

(3) For 0 < |t| < ¢, the integral kernel E™(t,x,y) of e *H"/% can be written in the form

1 i h T
E*t,z,y) = Crith)i /2 S mn/hah(t, 7, y) (3-8)
and a"(t,z,vy) satisfies
0206 (a"(¢,2,y) — )| < Coglthl, la+ 8] 0. (3.9)

(4) For £=0,1,..., there exists a constant Cy such that
> el Ml <C Y [le0Rull (310)
lal+iBl<e ‘ lal-+|81<e | .

(8) The constants Cog and C; of (3.7), (3.9) and (3.10) do not depend on h > 1.

Recall that S”(t, z,vy) is a generating function of the flow determined by (3.5):

ash . osh h

—_— poed e t k == —k. .

5 b4 (v, k), y) =p(ty, k), oy (t,q"(t, ¥, k), 9) (3.11)
We need the following lemma.

Lemma 3.3. Let v = th and S*(t,z,y) = tS"(t,z,vy), where S* is defined by (3.6). Then,

there ezist C; > 0 and € > 0 such that the following estimates are satisfied for (t,z, z,y, §)
such that ‘

Br(2,6/v) £0, |z|>Cidm, yeR®, |t|<e: (3.12)

Gh

(1) l§§-(t,w,Z)+€ >i(lwl+01/\%)‘

- 10

0z
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oS

(2) h(tzz) <2 a(,;S":(t,:z:,z)—§-§.

6

h
B) |FyEmA+E+lz—yl2 1007 (|| + Jy] + |2| + C1A™).

Proof. Write k = £/t for t # 0. When ®x(z,£/v) # 0, we have [¢] < 6|v|VA = 6|t|)\#,
k] = |&/t] < 6Am and |z] < Colw for some constant Cy. Since |8,V (z)| < CAw, where
C = D,(4C;)™! depends only on Cj, we have

t
lg*(t, 2, k)| = |2 + th — /o (t — 5)0:Vi(q"(s, 2, k))ds| < CoAm + 6eAm + 362CAm.

We choose C; > (2D3/D;)™ such that 103Cy < C; and then 0 < € < 1 such that
103(6 + 3C)e < C;. We have

lg"(t, z, k)| < 100~ 1CyAm. (3.13)

Let £ = ¢*(t,2,k), k = £/t, so that (8S"/0z)(t,%,2) = —¢ (see (3.11)). Then, taking
€ > 0 smaller if necessary, we have from (3.7) and (3.13) that

8S" os"

ah
% O t,,2) — 9 (t,,7)

-5, BT 2) HE =

—|x — | > 87(Jz| + C1A™)

2Gh
='/ gg (t, 0z + (1 — 0)Z,2)dl - (z — £)| >

if |x| > CiA= and (1) follows. By virtue of (3.11) and the conservation law of energy, we

have . N
. (%S ) (t,,2)? + Va(z) = (63 ) (t,,2)? + Vh(2).
If |z| > Cl/\% and |z| < Co)\i, we have Vh(z) < Vh(x) Hence,
ash as* ash
(t z 2) E(t, z, Z) S _a';(trza Z) + 6 + l£|

Since €] < 6|t]A= < 100~1(|z| + C1Am) if € < 1073, statement (2) follows from (1). By
the choice of C;, we have |z| < CoAm < 10-3C;A= and 10~} |z| — || > 10~2(|z| + |2|). It
follows from (1) that the left hand side of (3) is bounded from below by

10-1(jz| + C1A=) + |z — y| > 107 (Jz| + C1A=) + |y] — |2]
1
> 1007 (|z] + |y] + |z] + C1Am).
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Proof of Lemma 3.1. By virtue of Lemma 2.1 and (3.10), it suffices to show

P | HE (e H" /h — e=#H M, (2, D)|| < Cned™ (3.14)
t|<e

Duhamel formula yields
N ¢ ] .
HY(e #H"/h _ o=tH"M\p, (1. D)u = —ih / Hle it=aH(y _ vy )e~isH" /g, (2. D)uds
0

and the operator H¢(V — V) can be written in the form Zlalsﬂ‘ca(z)ag where c,(z) are
supported by {z : |z| > C;A\}™} and are bounded by C(z)™**V) . Hence, it suffices for
proving the lemma to show that, for any M and |a| < ¢,

t -
/ IX|ejscont/m () 0% " /@ (z, D)ulldt < CrreA™ (3.15)

Introduce a new parameter v = th and write tS* = §*. Then,

e~itH"/h g, (2, D)u(z)
1 8 Cx A HEVO gh (1,3, 2) 05 (2, V) uly)dydedz. 1O

= (2miv)™/2(2nv)"

We differentiate the right hand side of (3.16) by 0 and multiply by (z)™. This will
produce several terms of the form

M ¢
() tmzne)/ ]
(2miv)™/2(2mv)" © .

Jj=1

i 8 St a
(—a" > ) A N

v Oz%
. (3.17)
where oy + -+ +a¢+ 3 = a and a; # 0, and

J(t,7,2,9,€) = §"(t,2,2) + (2 — y)¢.
When |z| > CiAm, ®(2,£/v) # 0 and |t| < €, we have by virtue of Lemma 3.3
oJ
D> Statronm, |3
Define
‘ -2 A 27N 2 2) 1 :
Lo = —1 _ai a_']_a_ L= —1 ?_'{ + a_J ?L]__?__l_a_']i ‘
0= dz) 0z0z" ' 9z o€ 920z OEOES

First order differential operators Ly and L, satisfy

l > 107%(ja] + [yl + |2 + CLAR).  (3.18)

VLoeiJ/v — VLleiJ/u — eiJ/u.



We apply to (3.17) ¢ times integration by parts by using Ly and then N times integration
parts by using L;. The factor ¢ in the integrand of (3.17) is cancelled by v! produced
by L§ and we obtain

n M )
(317) = —22,'::,@./2 / {LELY 9/ Ybh (2, 2, 2, € u(y)dydt dz
N ()M iJfv re\N(ra\tiph 4.19
- (—27riv)3"/2/ e (LN (L) b (¢, 7, 2, ) Yu(y)dydédz (3.19)
= G | <5 F e e

Here Ly and L] are the transporse of Ly and L;, respectively:

8 [(8J\"28J (8 87 o aJ) [[roa\? [8J\2)"
L°='52'(5z‘) a2’ Ll—’{a'a*L&'a—e}{(a—z) *(%)}

and b*(t,z, z,¢) and F(t,z, z,v) are defined by

¢ i §h h .
t(t,2,28) = [ (i—f) (/)
j=1
M N p
F(t.2,5,0) = S [N @ o Ohut)dvds (320)
Recall that @, is bounded in S(1,g), hence
V|(8208)x(2,£/v)| < Caplz)1N(e /v) 10V, " @321)

(3.7) implies that the second or higher derivatives of J with respect to (z, z,y,£) are
bounded uniformly with respect to 0 < |t| < . It then follows by the help of (1) and (2)
of Lemma 3.3 that
9502 (Lg) " (¢, 2, 2,8)| < Cap
and then, by virtue of (3.18),
ct(t, 2, 2,€) = (LN {(L5) V" (¢, 2, 2, €)

satisfies

vV (8208 (t, 2, 2,£)| < Capn(lz| + lyl + |2] + C1Am) N (3.22)
with constants C,g independent of (¢,z,z,£&) and A > 1. Since c*(t,z, z,£) is supported
by |¢] < CAY2p, we obtain, by replacing N by 4N, N > n, that,

M
Capn(z) (/)P (1] + [y] + |2] + CoA=) " Ju(y)|dyde

(27”/)” K'SCAI/%,
(€/v)Plag / () "N lu(y)|dy
Rn

< M-N, \—Ny-X
< Cn(z) ()77 A @) Jg<onnn

(N _nt|B|
< Cn(@yM N (2N A~ (55 .

0292 F (t, 2, 2,v)| <

196
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Thus, if we set G(t, z, 2,v) = F(t,z,2,v)(z)", we have for any N > max(M,n) that
0202G(t, 3,2, )| < CapA™™ =) |ulla, |, 18] < n (3.24)

Hence, applying the L? continuity property of oscillatory integral operators to

___1__ ig"(t,z,z)/u _ _____1___ iS"'(t,z,z)/u
o) /e F(t,z,z,v)dz = o)l e G(t,z, z,v) f(2)dz,
f(2) = (2) ™™, we see from (3.24) that

1317)]| < CNAC=R) ulla || ll2 < CRA) [u

This ends the proof of Lemma 3.1. 3

4 Proof of Strichartz inequality

We prove Theorem 1.3 in this section. We use the notation of the previous sections.
Thus {v;} is the partition of unity of (2.14), uo; = v¥;(H)uo so that g = 3°72 uo; and
®;(z,¢) = ¢(a(z,£)/27). When Aj = 27, we set the semi-classical parameter h; by

(i_1 11
h.’i:)‘j(g '") =2 3(2 m
and denote H; = H hi and H = H" where H"* and H" 'ére the operators defined by
(3.2).

2 11
Lemma 4.1. Let p € [2,00), 8 € (2,00] be such that 0 < i n\g - I_’) < 1. Then,
there exists a constant € > 0 and C > 0 independent of j = 0,1, ... such that

1/6

/ le~Hugs|0dt | < Clugl. (4.)
|t'|$ehj

Proof. By the elliptic estimate and the Sobolev embedding theorem, we have ||u||p .S
Cpl|H"u|2 for any 1 < p < oo and (4.1) holds for j = 0. We let j > 1. We have by
Minskowski inequality

1/6
( / lle™*H ug; ||gdt)
[t|<eh;

1/6 1/6 (4.2)
< ( / [l U0j||gdt) + ( / ll(e™*H — e~ *Hi)ug; || dt
[ti<eh; [t|<eh;



By virtue of Lemma 3.1, We have

SUPji<cn, (€7 — e i)ugjll, , (4.3)
< Csupjg<cn, |1H™(e7*H — e=*Hi)p;(H)uojllz < Cn277N ||ug;]2-

Recall that e—Hi = e—i(t/h)Hi/h; and e~#Hi/hi has the integral kernel given by (3.8) with
h; in replace of h. Thus, e~* also has smooth integral kernel E'j (t, z,y) which satisfies

|E;j(t,z,y)] < CIt|™?2, |t] < eh;

with j-independent constant C. Thus, e *; satisfies (1.8) with constant independent of
j and the theorem of Keel-Tao mentioned in the introduction implies

1/6
( / lle™*iug; ||:dt) < Clluojl2- (4.4)
ltlsehj

Combining (4.2), (4.3) and (4.4), we obtain for (4.1). §

Proof of Theorem 1.3. Given T > 0, find L; = [T/eh;] +1 < C.27(3~%) number of points

O=to<t1<...<tLj=T

such that |ty — tx_1| < eh;j. Then, Lemma 4.1 implies

T ] 0 L,- i .
/0 e~ oz |0dt = S [ e uo; |2t
k=1 1

th—
Lj

B H, 0
=Z‘/ "e_‘t e'(‘k-tk—l) 1‘0]"pdt
k=170

LJ
fl_1 101 1
< S Clluoll§ < C27G=m) lug; 1§ < Cell(H)#Gm)ugy .
k=1

Minkowski’s inequlity and Schwatz’ inequality then imply

T ) 0 1/9 00 11 X
( /o ue—"”uou,dt) < O3 IHYG-H)ugy|l < CIKHY ol
=0

for any v > 5 (3 — ). This concludes the proof of Theorem 1.3.
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5 Proof of local smoothing property

In this section we prove Theorem 1.2. We use the notation of the previous section. In
particular, A; = 27, h; = 973(3-%) is the corresponding semi-classical parameter and
U;(t) = e~¢/h)Hi/h We fix a function ¥ € C§°(R™).

Lemma 5.1. Suppose that there exists a constant C independent of j=0,1,
ldots and uy € L?(R™) such that

ch; ) = .
/0 1%(2)®;(z, D)*e~Hiug;||%dt < CX; ™ ?||ug; 2. (5.1)

Then Theorem 1.2 follows.

Proof. We have from (5.1) and Lemma 3.1
ch; :
| 1@, Dy e ey et
B 0 1/2
< CX;2|ugjl|? + CnATY.

1_1
As in the proof of Theorem 1.3, we take L; < CEAJ(.z m) number of points 0 =t < t; <
... <tr; = T such that |ty — tg—1| < €h;. It then follows that.

T . Li  rte o
/0 1%(2)®; (2, D)*eHugs||2dt = 3 / 19(2)®;(z, D)*e~*Huq; |[2dt
1Ytk ‘ »
L ptp—trn o o
=3 [T @), (@, D H et g (52)
_ 0 .

L,
—1/2 -1
<3O lugslla < Cex; ™ luos 1
k=1

Summing up (5.2) with respect to j = 0,1, ... anf applying (2.15), we conclude that

T ) © T _
[ @ tulia <oy [ 19@;(z, D)o |at + Cnrll () Nual?
j=0

oo
S CAT ™ uosl1? + Cnrll(H) Nuol|? < CII(H) > ug|?,
j=0

which implies Theorem 1.2. §
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eh; . eh; . ) -
< / 10(2)®;(z, D) e~ Hing;|Pdt + fo 1% (2)®;(z, D) (=7 — e~*H5) ¥ ; (H)ug, |2dt
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We prove (5.1). Define Kj(z,£) = ¥(z)2®;(z,£)%. We have by virtue of (2.13) that
IK;(z, D) — ®;(z, D)¥(c)*®;(z, D)l pzz) < CN; /2.
Introducing the semiclassical parameter h; and the operator H; again, we rewrite (5.1)
Ehj ;
[ 9@, Dye*ugy P
0 (3 -
= h; / | (2)®;(z, D)* e~ Hs/Piuy;||2dt (5.3)
e . 7 . 3 —
< hj A (eltHj/thJ_(z, D)e—ttHj/hjuoj, qu)dt + Cthj 1/2.
We write K;(x, D) in the form of h-®DO by changing £ — £/h;:

) 2
K@, Dyu(a) = sz [ e wr@at (20 uypaa

- oy [ e (LD ) uaa

= ‘Rj(xv th)u(z))

m

3

. 2
where Kj(z,£) = ¥*(z)¢*((£2/2 + V*(z))/AT"). Notice that we have replaced h2V (z) by
Vhi(z) as they agree on the support of ¥. It is obvious that {f(j(z, £:7=12,...}isa
bounded set of S(1, go), where go = dx? + d¢2. We compute

Kj (ta z, hJD) = eaﬁj/hj KJ (z, D)e_itﬁj/hj

following the standard procedure in h-®DO (see e.g. [Ro]). We have

0= dit{e*“ﬁf/"a' K;(t,z, hjD)etHilk}

= ¢~itHilhs (—agj (t,z,h; D) — hij[ﬁ,-, K;(t,x, th)]) it/
We ansatz that K;(t,z,h;D) is an h-®DO and that it has an expansion

Kj(t,x,hiD) ~ > h}Kja(t,z, h;D).

n=0

Denote H;(z,£) = £€2/2 + V" (z). Then, the symbol of the h-®DO in the brackets on the
right is given by

OK; (t,2,¢) - OH; OK; 0H;0K; > plai-1 (=9l (3"‘1?:' O°K; _0°H; 3°Kj)
at "\’ j

o Oz dor O¢ 2 a! o Oz= dz> O~



We determine K, by inserting K;(t,z,€) => .2, h7 Kjn(t,z,€) into the right hand side,

collecting the terms with the same order in h and set them = 0. The result is
dK jo (o,6) 8H; 0K;o 9H; dK;o
o 77 0¢ O oz O¢

=0 (5.4)

and forn=1,2,...

i (1,2,6) -

0H; 0K, ~0H;dK;,
o6 or ' Oz O ) s
S (—z’)"”'“ (aaHj 0°K;x  0°H; aaK,-k) 0 - (5.5)

dt* oz o> 0t~ |

k+la|l=n+1,|a}>2

Solve (5.4) and (5.5) inductively with the initial condition

Kjo(0,2,6) = K;(2,6), Kjn(0,2,6)=0, n=1,2,....
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We denote the solutions of the initial value problem (3.5) with h = hj by (¢ (t,y, k), P (t,y, k)).

Since the map (z,¢) — (¢’(t, z,€),p’ (¢, ,£)) is a global differomorphism and the deriva-
tives of (¢?(t, x, &), p’ (¢, x, £)) with respect to (z, &) are bounded uniformly with respect to
[t <eand j=1,2,..., we find that

Kjo(t,l‘,5) = Rj(qj(t’x’g)vpj(tama 6)) (56)

solves the equation (5.4) and {Kjo : 7 = 0,1,...} is bounded in 5(1,g0). Evidently
Kjo(t,z,€) = 0 unless (¢/(t,7,£),p (¢, 7, €)) € supp Kj. ‘
The equation (5.5) for n = 1 can be written in the form

d

aKjl(t,qj(—t, m,{),pj(—t,x,f)) = Rj'l(t,qj(—t,bx,ﬁ),p"(—t,a:,g))~ :

_ Z i (aaI:I_, BQKJ‘O _ 8‘1];[_7 6avK0> (t’q](_t,x’g),ﬂ(__t’m,g))

a!

=2 ot> Oz~ oz® Ot~

and may be solved in the form

t
Kjl(t7qj(—t:m,g),pi(_taxvg)) :/0‘ le(s7qj(-saz7€)apj('—s7x7£))ds
or .
Kjl(t,xag) :A le(su q](t_ s, T, §)7p7(t - $1$7£))ds'

Again {Kj1(t,z,8) : 5 =1,2,..., |t| < €} is bounded in S(1, go) and Kj1(t, z,€) = 0 unless
(¢ (t,z,&),p’ (t,x,¢)) € supp K;. The latter can be seen from (5.6) and Kjo(s,¢’(t —
5,2,8),p(t — s,2,8)) = Kjo(t,z,&) which follows from the group property of the flow
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(y, k) = (¢ (t,9,k),p’ (t,y, k). We succesively solve the equation (5.5) for n = 2,3,...in
a similar fashion and find that solutions Kjo, Kj1, - .. satisfy

{Kin(t,z,€) : 5 =1,2,..., |t| <€} is bounded in S(1,90), n=0,1,..., (5.7)

Kjn(t,z,€) = 0 if (¢(¢,7,£),P(t,2,£)) & supp K;. (5.8)
We define N
K} (t,2,6) = ) hiKin(t,2,6).

n=0

Lemma 5.2. Let K JN (t,z,€) be defined as above. Then, there exists € > 0 such that the

following estimates are satisfied:
(1) For any N =1,2,..., there exists a constant Cn such that for j =1,2,...,

sup [|e*H5/h5 K;(z, D)e~Hs " — K} (t,z,h;jD)| g2 < CnRY*1. (5.9)
jti<e

(2) For any N =1,2,... and a, 3, there exists a constant Cogn such that for j =1,2,. ..

Proof. By construction and the symbol calculus for h-®DO ([Ro]), it is standard to see
that

€ -1
/0 KN(t,z, h,-D)dt" < CapNA; ™. (5.10)

KN i .
Wj(tr z, hJD) - h—j[Hj,K}v(t,I, hJD)] € Ops(h;’v-*’l’g())

uniformly with respect to j and |t| < €. Hence,
lle=/% KN (¢, 2, by D)e5/% — K j(z, hsD)| < CwhlY+

with j independent constant C. The statement (1) follows. For proving (5.10), it suffices

to show

€ -1
/0 gOPKY (t,z,8)dt| < Capn); ™. (5.11)

By virtue of (5.7) and (5.8), we know that |6g6£ K JN (t,z,€)| < Cn with Cy independent
of j, |t| < € and (z,£) € R™ x R™ and that K}Y(t,z,£) = 0 unless ¥(¢’(t,z,£)) # 0. Thus,
for proving (5.11), it clearly suffices to show by replacing € > 0 by a smaller constant if
necessary, that there exists a constant C > 0 independent of j such that

Ki(¢(0,x,£),p(0,z,£)) #0, then Kj(¢'(t,z,£),p’(t,2,£)) =0 for CA;* <[tl<e.



This, however, is almost evident. First, we remark that |9,V"(z)| < C(z) with j in-
dependent constant C > 0. It follows that 1 4 |¢7(t)| + [P (t)] < C(1 + |¢(2)| + |P’ (t)])
and

Islup(l +1d @1+ 1P (0)) < (1 + 12 (0)] + [P (0))e < CAT.

The last inequality holds because K;((¢’ (0) p7(0)) # 0 implies p? (0)2/2+V"i(¢? (0)) ~ )\"'
and ¢/(0) € supp ¥. Thus, |p?(0)| > CA“ nd

sup Ip(9) = (0} < /0 " 1047, (a(s))lds < CEAT < 10-3[p(0)|

if € > 0 is sufficiently small. Thus, p(t) changes its direction and the magnitude only by
a small fraction and we clearly have ¢’ (t) & supp ¥ if |t| > 100diam(supp ¥)/|p(0)] when
Itj<e. B

Completion of the proof of Theorem 1.2. By virtue of (5.9) and (5.10), we have

thJ/h,K (.’IJ D)e thJ/h.J,uoJ uO])dtI

< Okl + |(fi KN (t,2,h;D)t - toj, uo; ) dt| < CX7H™.

We apply this to the right of (5.3) and obtain
ch; 1/2 1 |
/0 19 (z)®;(z, D)* e "Hiuy;||>dt < Ch; A / =C\; /m | (5.12)

which implies Lemma 5.1, hence, Theorem 1.2. |
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