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1. Introduction.

We consider blow-up problems of the solutions of the Cauchy-Neumann problem

us = DAu + uP in Qx(0,T),

| —u =

(P) 9\ 0 on 90 x(0,T),
u(z,0) = p(z) >0 in Q,

where D > 0,p> 1,0 < T < o0, Q is a bounded domain in RN and v is the outer unit

normal vector to 9N). Throughout this paper we assume that
1y peC(Q), @#0, o()=20 in Q,

for simplicity. (For physical background of this problem, see [BE].) In this paper we study
the location of the blow-up set of the solutions up for the Cauchy-Neumann problem
(P) with large diffusion D. Furthermore we give an estimate of the blow-up time of the
solutions up.

We denote by Tp the supremum of all o such that the solution up of (P) exists
uniquely for all t < 0. If Tp < 0o, we have

tlqurg}) I;lea% up(z,t) = oo.

Then we say that up blows up at the time Tp, and call T the blow-up time of the solution

up. We define the blow-up set Bp () of the solution up by

Bp(p) = {x € Q|there exist x — = and t; T Tp such that klim up(Zk, tk) = 00}.
: —00
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F. B. Weissler [W] first proved that some solutions blow up only at a single point
for the case N = 1. A. Friedman and B. McLeod [FM] proved similar results for more
general domains under the Dirichlet boundary condition or the Robin boundary condition.
Subsequently, the blow-up sets of the blow-up solutions have been studied by various
peoples. Among others, for the case N = 1, X. Y. Chen and H. Matano [CM] proved that
the blow-up solution blows up at most at finite points in 2 under the Dirichlet boundary
condition or the Neumann boundary condition. Furthermore, for the case N = 1, F. Merle
[16] proved that, for any given finite points x;,...,zx C Q, there exists a solution whose
blow-up set is exactly {z1,...,zx}. For the case N > 2 and @ = RV, Y. Giga and R.
V. Kohn [GK] proved that the blow-up set is bounded if the initial data decays at space
infinity. Furthermore, J. J. L. Veldzquez [24] proved that the (n— 1)-dimensional Hausdorff
measure of the blow-up set of nontrivial blow-up solution is bounded in compacts sets of
RN. (For further results on the blow-up set, see [C], [DL], [L], [Mz], [MY1,2,3], [P] and
references given there.) However, for the case N > 2, it seems to be difficult to study the
arrangement of the blow-up set without somewhat strong conditions on the initial data,
even for the case that € is a cylindrical domain.

Our main interest is to investigate the location of the blow-up set Bp(p) of the
solutions of the Cauchy-Neumann problem (P) with large diffusion D. Furthermore, as a
by-product, we give an estimate of the blow-up time for sufficiently large D.

We first give an estimate of the blow-up time of the solution up for sufficiently large
D.

Theorem A. (See [I]). Consider the Cauchy-Neumann problem (P) under the condition
(1.1). Then Tp < oco. Furthermore there ezxist constants C and Dy such that

lTD - (-1 (“15‘:'(;)?—1

for all D > Dy. Here Dy depends only onn, Q, p, and ||p||p~(q). Here |Q| is the Lebesgue

measure of .

log D 1 /
<C ’ Pip=— dz,

Next, for the case that  is a cylindrical domain, we give a result of the location of

the blow-up set Bp(¢p) the solution up for sufficiently large D.
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Theorem B. (See [I]). Let Q = Q' x (0, L), where  is a bounded domain in RN=! with
smooth boundary 6Y and L > 0. Consider the Cauchy-Neumann problem (P) under the

condition (1.1). Assume that

(1.2) I(p) = /Q wcos(%wN>dm £0.

Then there exists a positive constant Dy such that, for any D > Dy, the blow-up set Bp(p)
of the solution up of (P) satisfies that

Bp(p) c¥ x {0} i I(p)>0

and that

Bi(p) ¥ x{L}  if I(p)<0.

Here Dy depends only on n, Q, p, I(p), and llol| Loo (2) -

We remark that the condition (1.2) holds for almost all initial data ¢ physically. We may
find the similar condition to (1.2) in the Rauch observation, which means that the hot
spots of the solutions of the heat equation under the zero Neumann boundary condition
move to the boundary, as t — oo (see [BB], [K], and [R]).

Next we give a general result of the location of the blow-up set Bp(yp) of the solution

up for sufficiently large D. This is a joint work with Noriko Mizoguchi.

Theorem C. (See [IM1,2]). Let Q be a bounded domain in RN with C** boundary 89
(0 < @ < 1). Consider the Cauchy-Neumann problem (P) under the condition (1.1) and
(N —2)p < N+2. Assume that Pyp # 0 in Q, where Py is the projection from L2 (Q) onto

the second Neumann eigenspace. Put
M={zeQ: (Py)(z) = max(Pye) ()}
Yy
Then, for any vy > 0, there exists a positive constant D., such that

Bp(p) C M, ={z € Q: dist(x, M) < v}
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for all D> D,.

According to the Rauch observation, Kawohl [K] conjected that M C 89 for all
convex domains 2. It is known that this conjecture holds for parallelepipeds, balls, annuli
(see [K]), and two dimensional, thin convex polygonal domain with certain symmetry (see

[BB]). Furthermore, Burdzy and Werner [BW] gives an example of non-convex domain
such that M C Q.

The remainder of paper is organized as follows. In Section 2 we give the outline of

the proof of Theorems A and B. In Section 3 we give the outline of the proof of Theorem
C.

2. Outliné of the proof of Theorems A and B.

Proof of Theorem A. Let G be the Green function of

(2.1) d

—u=0 on 90 x (0,00).

{ut=Au in Q x (0,00)
Ov

Let {¢;}52, be a complete orthonormal system of Neumann eigenfunctions for the domain
Q. Let Aj, j =1,2,... be the eigenvalue coresponding to ¢jsuchthat 0 =3 < A2 < A3 <
-+-. For any f € L?(Q), we put |

J
Q;f(z) = Z(f, oK) dk(z), J=12,....
k=1

Here we remark that Q; = P;. Let D be a sufficiently large and put tp = log D/\;D.
Then the solution up of (P) satisfies

(22)  up(zt) = /Q G(z,y, Dt)p(y)dy + /0 t /n G(z,y, D(t — 8))u(y, s)Pdyds
= Ji(z,t) + Jo(z, t), ‘

for all (z,t) € @ x (0,Tp).

On the other hand, by the comparison principle, we have

(2.3) lup (-, )| Lo () < z(2),
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where = z(t) is the solution of the ordinary differential equation
(2.4) g’ =2F,  2(0) = ¢llrm(0)

By (2.2), (2.3), and limp_,o tp = 0, we have

(2.5) Ja(z,tp) = O (IO%D ) as D — 0.

Furthermore, since J; is a solution of the heat equation, we have

(2.6) Ji(z,tp) = Pyp + O(e~22Dto)
=P190+O<10%D> as D — oo.

By (2.5) and (2.6), we have

(2.7) up(z,tp) = Pip+ O (logDD) as D — oo.

By (2.7), we compare the solution up with the solution z = z(t) of the ordinary differential

equaion ' = P, and may complete the proof of Theorem A. O

Next we give thr outline of the proof of Theorem B. We approximate the solution up-

by the functions {Q;up}$2,, and obtain the following propositions.

Proposition 2.1. Let up be a solution of (P) under the condition (1.1). Let jeNu{o}
and 0 < XA < Ajy1. Then there exist positive constants Dy and C = C(N,Q) such that, if

DZDOy

1
lun (1) — Qun (- oy < c(e—mt + ) <t<

_ 5
D1/2 2

2
D
Here S is the blow-up time of the solution of (2.4).

Proposition 2.2. Let up be a solution of (P) under the condition (1.1). Then there erist

constants C and Dy such that, if D > Dy,

1

" : 3
Jun.8) = Quup@lzeiey < (7 + 17 ),

S
—_— <t < =
D‘t—2’

D3/2
where A = )\ /4.

By Proposition 2.2 and the comparison pinciple, we have the following result.
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Proposition 2.3. Let up be a solution of (P) under the condition (1.1). Then there exist
constants C and Dy such that, if D > Dy,

lim minup(x,t) > CD32(-1),
t1Tp £

By Proposition 2.1, we may prove the monotonicity of the solution up in the variable

zn for some time.

Proposition 2.4. Let up be a solution of (P) under the condition (1.1). Assume I(p) >
0(< 0). Then there ezist positive constants T and Dy such that, for all D > Dy,

0 T

Proof. Let {¢1,;}52, and {¢3,;}32, be complete orthonormal systems of Neumann eigen-
functions for the domain (¥’ and the interval (0, 1), respectively. Let ) ; be the eigenvalue
corresponding to @ ; such that 0 = A\g; < Ag2 < A3 <--- < Akj < -+, k=1,2. In this
notation we repeat the eigenvalues if needed to take account their multipliéity. Then, by
[BB], the family of functions {1 i$2, i}e5=1 is a complete orthonormal system of Neumann

eigenfunctions for D, and the eigenvalue of ¢y ;¢2 ; is A1,; + A2, j. Furthermore we have

1 1 [2 L ,
¢1,1=W, ¢2,1=f{7§, ¢2,j($N)= ECOS(%-’L'N), J=12,....

Let jo € N such that A\j, = A\y; = (r/L)?. Then \; < (r/L)? for j = 1,...,50 — 1 and
Aj > (m/L)? for j = jo + 1,.... Furthermore we have

ak up(-,t a¢ , ¢ , 2 ak
(2.9) %QJ’OUD(%” = ( )Iﬂ,llf/: Vie@) ax,quSZ,l(iDN); k=1,2.

Put A = ((r/L)% + Ajo+1)/2. By Proposition 2.1, there exists a constant C; such that the

solution up satisfies

DS

(210)  |lup(-,7) — Qjoun(-, T)llc2(e) 2

scl(e—”+—1——), 2<t<

1'=t/D D1/2

On the other hand, the function a(t) = (up(-,t), ¢1,002,1)12(n) satisfies

2 .
%a(t) = —D(%) a(t) + /D(uD(m,t))”qSl,oqbg,ldm, 0<t<Tp.
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By (3.15), there exists a constant Cy such that

t/D '
e |o(5)- (B a(0) = 2 [ / ePE’* (up (3, 5)P|g1,00,1]dads
t/d 1/2 L2
< e—(%)gt/ eP ( lup(z, s)lz”dx> ds < %271_2
0

for all 0 < ¢t < DS/2. By (2.9)-(2.11) and a(0) > 0, we have

0 t t 1 o ‘ . 1
(212) ax"“NUD (111, _D_> < G(B) Wﬁ;Qﬁz,l(.ﬁ) =+ Cl< + D1/2>
V2r _,, Cs )
= L3212 ( “a(0) - ) Sm(vr:vzv) +Cy( e+ 5iE

forallz € Qand 2 < t < DS/2. By (2.12), a(0) > 0, and A > (w/L)?, there exists
a constant T; such that, for any T' > T, there exists a constant Dz, such that, for all
D > Dr,, )

1% R

orN
Furthérmore, by (2.9)—(2.11),

6 t 2 t a 1
az3, P (””’.5)45 —ﬁ“(—> ¢2,1(z) + 01( My D1/2)
\/_7!' —x2t Cy Y 1
== el ( *a(0) ~ Er—z) cos(rzn) + C1 (e + 5173

for all z = (z',zn) € Q with 0 < zy < 1/4 and T < t < DS/2. Similarly in (2.13), there

exists a constant T such that, for any T > T3, there exists a constant D7 5 such that, for
all D > Dr,,

(2.13) ——(‘)—uD (x, %) <0, z=(z,zy) €Q with min{zy,1— a:N} >

(2.14) azu xT <0 = (¢/,zN) € Q with 0<:1:><-1—
. 6(3%,1) ,D ) rT=(T,TN N__4'

Similarly, there exists a constant T3 such that, for any T > T3, there exists a constant Dr3
such that, for all D > Dr 3,

62

(2.15) 52 uD( Ij;) >0, z=(z,zy)€Q with I <zy<]1,

> w

for all 0 < X < 4. By (2.13)—(2.15), there exist constants T and D such that

0 T\
— Q
6:17NuD( D) <0, TE
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for all D > D, and the proof of Proposition 2.4 is complete. [

We are ready to complete the proof of Theorem B. We prove Theorem A By applying
the arguments of [C] and [FM] together with Propositions 2.2 and 2.4.

Proof of Theorem B. We first assume I(p) > 0, and prove Theorem B. By Proposition 2.4,

there exist constants T and D; such that, v = Jup/8zy satisfies

= DAv 4+ pu% v in Qx (T/D,Tp),
v(z,t) =0 on Iy x (T/D,Tp),
2uv(z,t)=0 on Ty x (T/D,Tp),
v(z,T/D)<0 in Q,

for all D > Dy, whereT'; = Q' x {0,L} and I'; = 89’ x (0, L). By the maximum principle,
0 .
(2.16) g-up(m, t)=v(z,t) <0 in Qx(0,T) and Iy x (0,T).
N

Assume that a = (a’,an) € Bp(p) N (@ x (0,1)). Let T, be a constant to be chosen later
such that T/D < T, < Tp. Put Q = Q' x (b,¢) x (T, Tp), where b, ¢ € (0, L) such that
b<any <candc—b> L/2. Put

J(&', zN,t) = gg;up(x,t) + e((zn)(up(z, 1)), ((s) = Sln(w(s bb))’

where 1 < g < p and € > 0 is a positive constant to be chosen later. Then we have
(217) J; — DAJ —r(z,t)J = —e(K (z,t) — eq(q — 1)u% ?|Vup|? < —e¢K(z,t) in Q,

where
(2.18)

r(z,t) = —2qu(’u‘},_l +pu’[’,_1, K(z,t)=(p— q)’u’,’j’"’_1 + D¢ ¢, — 2Dge¢’up] 2¢-1

—1p1 __ T 2> 2\
o) (5

By Proposition 2.3, there exist constants T3 € (T/D, Tp) and Dy > D; such that

On the other hand,

219) Byt 1>D( )<up(m ), (2,t) € Q x (T3, Tp)
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for all D > D,. Furthermore we take a sufficiently small € so that

(2.20) £ > L (up(e,t))P*17! > 2Dgel¢'u?™! (1) € Q x (T3, Tp).

Taking T, = Ty and D > D,, by (2.17)—(2.20), we have

J: < DAJ + r(z,t)J in Q, :
J(z,t) <0 on ' x{b,c} x (T, TD),
2 J(z,t)=0 on 8 x (b,c) x (Tw, Tp).

By (2.16), taking a sufficiently small ¢ if necessary, we have J(z,T.) < 0, z € Q' x (b,c).

By the maximum principle, we have
(2.21) J(z,t) <0  for (z,t) € ¥ x (b,c) x (Tu, TD).
By a = (a’,an) € Bp(p) and ay € (b, c), there exist a sequence {(aj, axn,tx)}5=, and a
positive constant é such that

lim (a},akn,tk) = (¢/,an,Tp), lim u(ak,axn,tk) = 0o,

k—oo k—o0

{(ak, akn +8)}52, C O x (b,¢).
By (2.16),

lim up(a),ary + 8, tk) = 00,
k—o0

up(aj,axn+6;tk) ds agN+6
/ — < -6/ ¢(s)ds.
u a

q
p(a},ak N tk) d EN

By ¢ > 1, we take the limit as k — oo to have

and by (2.21),

an+6
« OS—E/ ¢(s)ds < 0.
a .

N

This contradiction shows a & Bp (). Therefore we have (' x (0,1)) N Bp(¢) = @ for all .
D > D,. Furthermore, if a € (€ x {L}) N Bp(y), by (2.16), (¥ x (0,1)) N Bp(p) # 0.
Therefore we have (' x {L}) N Bp (p) =0 for all D > Dz; and the proof of Theorem B
for the case I(y) > 0 is complete. By the similar argument as in the proof of Theorem B

for the case I(p) > 0, we may prove Theorem B for the case I(¢) < 0. So the proof of

Theorem B is complete. []

Remark. Without‘i the condition (1.2), Theorem B does not necessarily hold. In fact, if
Q = (0,1) and ¢(z) = 1 — cos(27z), the solution blows-up only at {1/2} for all D > 0.
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3. Outline of the proof of Theorem C.
In this section we follow the argument of [IM1,2], and give the outline of the proof of
Theorem C. Following the argument of [GK], for b € O, we put

w(ya 3) = (TD - t)ll(p_l)uD(xa t)) y= (TD - t)_llz(x - b)1 s = —log(TD - t)'

Then w satisfies

( wa=DAw—%-Vw—#w+w” in U (2(s) x {s}),
p-1 8T, <8<00
(3.1) 4 B_w(y,s) =0 on | J (89%(s) x {s}),
ov 81y, <8<00
T
( w(y,s7,) =TE ' $(TAy+b) >0 in Qp(srp),

where s7;, = —logTp and Qy(s) = e¥(Q —b) = (Tp — t)~3(Q2 - b). Define the energy
Ejy[w] correspondind to (3.1) by

mile) = [ {5908 + 1)} sds, 52 om,

b(8)

where

S e r>0 p(y)=——l—exp _P .
2(p—1) p+1 = (4rD)N/2 4D

Then we have

f(r)

82 .
(:2) Byfullon) < Bafullsn) + [ e [ f)pn)Ldods, sz, < 51 < 8 < oo
81 N (s) |y|
Furthermore we have

Proposition 3.1. Let Q be a bounded domain in RN with C2< boundary 02 (0 < a < 1)
andd > 0. Assume (N '——2)p < N+2. Then there ezxists a sequence {sy,} with limp_,o, 85, =

oo such that
Jim Byful(s.) = F(6)x(),
where k= (p—1)"V®D and k= (p— 1)~V ®-D, x(b) =1 (b€ Q), x(b) = 1/2 (b € 60).

On the other hand, we have
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Proposition 3.2. Let A\y/2 < A < Ag < p. Then there exists a positive constants D1 such
that

(i) ”qul)(-,t)“Loo(Q) < DN+5P1UD(t)6_)‘Dt

(ii I~ (Py + P))up(®)llzw(y < DN+ Prup(t)e™P"

for'allt € [T/4,T — D73] and D > D;. Here I is the identity map on L?(Q).

Proposition 3.3. Let Ay < a < 2X;. Let m = dim(P,L*(Q)) and {¢;}7%, be an orthnor-
mal basis of P,L?(Q)). There are positive constants K and D such that

aj(t)e 2D

A, — KD~ 3 e
7 (Pyup(t))?

<A;+KD %, 1<j<m,
for allt € [T/4,T — D3] and D > D,, where

[ (@ esaas,  1<i<m,
K |

By using Propositions 3.2 and 3.3, we have the following proposition.

Proposition 3.4. Let be a bounded domain in RN with C>© boundary 0N (0 <a<l).

Let b € Bp(p) \ M,. Assume that Pop # 0 in Q). Then there exist positive constants C
and D3 such that '

Ey[w](31og D) < f(k) /Q W)y = Ce#PT2=D7)

»(3log D

for all D > D3. Here u is the constant given in Proposition 3.2.
Let b € Bp(p) \ M.,. We first consider the case that D is convex. Then we have
(3.3)

*® 8/2 y-v *® 8/2 Ny v
f e / f(w)p(y)5—dods < f(x) € p(y)—dods
3log D 89 (s) ly| 3log D 8K (s) |yl

00 d “
= f(k — dy ¢ ds
f( ) 3log D ds Lb(s) P

=10 {x) - [ p(y)dy § .
Q4 (3log D)
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By (3.2), (3.3) and Propositions 3.1 and 3.4, we have
F(r)x(b) < f(r)x(b) - Ce-—p.D(TD_D—s)

for sufficiently large D. This is a contradiction, and we see that Bp(p) N M., = @ for
sufficiently large D. Next we consider the case that D is not convex. Let I'(z,y,t) be the

fundamental solution of the Cauchy problem for the heat equation U; = AU in RY x (0, ),
that is,

' 1 |z — y|?
F(fL’, y’ t) = (47l't)N/2 exp (_ 4t *

We define an energy of the solutions up of (P) as follows:

ED(b, Tp: t)

— (Tp - )5 / (Fivu

+ m(TD — t)p_'—T /nuDP(z, b, D(Tp — t))dz.

) I(z,b, D(T - t))dz

Then we have
Epw)(s) = Ep(b,Tp,1), s = —log(T —t).

Furthermore we modify the energy Ep(b,T : t), and give another energy F5(,Tp : t).

Let € > 0 and y € Q. Then we may define a continuous function h, (z,9,t) on Q x [0, 00),
satisfying

Othe = Azh in Q x (g 00),
Oh 0

o = —a—uzl‘(x,y :t)  on A0 X (e,00),
he(z,y,t) =0 in Qx[0,€].

Put Ge(z,y,t) =T(z,y,t) + he(z,y,t). Then G, satisfies
0:Ge(z,y,t) = AzGe(z,y,t) in Q x (e 00),

o
a—VmGe(m, y,t) =0 on I x (€,00),
Ge(z,y,t) =T (z,y,t) “in Qx[0,€]

for all y € 0. By using the function G, we modify the energy of the solution up introduced
by [P], and define an energy F§(b, T : t) as follows:

B(b’ Tp: t)

— (Tp - 3% /(—lv ol -

+ (Tp — )52 /n W3,Gu(z,b: D(Tp — 1))ds.

uD) Ge(z,b: D(TD —t))dz

2(p 1)
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By Proposition 3.1, we see that there exists a positive sequence {e,} with lim, . €, =0

such that
lim Fge" (b,Tp : Tp — €) = f(x)x(b).

n—oo

Furthermore, by Propositions 3.2 and 3.3, we have the following estimate, instead of Propo-

sition 3.4,
(34) - FRe[w](b,Tp : Tp — D) < f() = Ce™#PTo=D™)

for some constant C. By the same argument as in the one of Poon [P], the energy

Fg »(b,Tp : t) is monotone in t € [Tp — D3, Tp — €,], and we have
F(r)x(b) = lim F2(b,Tp : Tp — €,) < lim FR(b,Tp : Tp — D73),
n-—00 ) n—oo
and by (3.4), we obtain

F(r)x(d) < f(/{,)x(b) — Ce—MP(Tp-D7?)

for sufficiently large D. This is a contradiction, and we see that Bp(p) N M, = @ for
sufficiently large D. This completes the proof of Theorem C.

REFERENCES

[BB] R. Baniielos and K. Burdzy, On the ”Hot Spot Conjecture” of J. Rauch, Jour. Func. Anal. 164
(1999), 1-33.

[BE] J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag,
New York, 1989.

[BW] K. Burdzy and W. Werner, A counterexample to the "hot spots” conjecture, Ann. of Math (2)
149 (1999), 309-317.

[C] Y. G. Chen, Blow-up solutions of a semilinear parabolic equations with the Neumann and Robin
boundary conditions, J. Fac. Sci. Univ. Tokyo 37 (1990), 537-574.

[CM] X. Y. Chen and H. Matano, Convergence, asymptotic periodicity, and finite point blow-up in
one-dimensional semilinear heat equations, Jour. Diff. Eqns 78 (1989), 160-190.

[DL] K. Deng and H. A. Levine, The role of critical exponents in blow-up theorems: the sequel, J.
Math. Anal. Appl. 243 (2000), 85-126.

[FM] A. Friedman and B. McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana
Univ. Math. Jour. 34 (1985), 425-447.

[GK] Y. Giga and R. V. Kohn, Nondegeneracy of blow-up for semilinear heat equations, Comm. Pure
Appl. Math. XLII (1989), 845-884.

4] K. Ishige, Blow-up time and blow-up set of the solutions for semilinear heat equations with large
diffusion, preprint.



[IM1]
[TM2]
K]

[L
[Me]

Mz]
[MY1)

[MY?2]
[MY3]
(P]

[R]

26

K. Ishige and N. Mizoguchi, Location of blow-up set for a semilinear parabolic equation with large
diffusion, preprint.

K. Ishige and N. Mizoguchi, Location of blow-up set for a semilinear parabolic equation with large
diffusion II, preprint.

B. Kawohl, Rearrangements and Convezity of Level Sets in PDE,, Springer Lecture Notes in
Math. 1150, 1985.

H. A. Levine, The role of critical exponents in blowup theorems, SIAM Rev. 32 (1990), 262-288.
F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm.
Pure Appl. Math. 45 (1992), 263-300.

N. Mizoguchi, Location of blowup points of solutions for a semilinear parabolic equation, preprint.
N. Mizoguchi and E. Yanagida, Blowup and life span of solutions for a semilinear parabolic
equation, SIAM J. Math. Anal. 29 (1998), 1434-1446.

N. Mizoguchi and E. Yanagida, Life span of solutions with large initial data in a semilinear
parabolic equation (to appear in Indiana Univ. Math. J.).

N. Mizoguchi and E. Yanagida, Life span of solutions for a semilinear parabolic problem with
small diffusion, preprint. .
C. C. Poon, Blow-up behavior for semilinear heat equations in nonconvexr domains, Diff. Integ.
Eqns. 13 (2000), 1111-1138.

J. Rauch, Five problems: An introduction to the qualitative theory of partial differential equa-
tions, in Partial Differential Equations and Related Topics, Springer Lecture Notes in Math. 446,
1975. ,

J. J. L. Veldzquez, Estimates on the (n — 1)-dimensional Hausdorff measure of the blow-up set
Jor a semilinear heat equation, Indiana Univ. Math. Jour. 42 (1993), 445-476.

F. B. Weissler, Single point blow-up for a general semilinear heat equation, Indiana Univ. Math.
Jour. 34 (1983), 881-913.



