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Asymptotic behavior of solutions
to a model of spiral crystal growth
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1 Introduction

We consider the following semilinear parabolic equation on a bounded
domain 2 C R™ with smooth boundary 69:

%t'li =div(A(z)Vu) + f(z,u), €N, t>0,

(1.1)
a_“=0, T€IN,t>0. '
Ov

Here, v is the outer normal unit vector of 8%, A(z) is a smooth positive
function on Q and f(z,u) is a smooth function that is 27-periodic in u.

Problem (1.1) is related to a model of spiral crystal growth. Spiral ledges
have been observed on the surface of many kinds of crystals such as silicon
carbide (SiC), calcogen, paraffin and polyethylene ([18]). Frank [4] originally
proposed the screw dislocation mechanism for crystal growth. Screw disloca-
tion is a kind of lattice defect and produces a line step on the crystal surface.
The step provides a preferred site for atoms to bond and moves normal to
itself as the atoms attach to it. Since the velocity of the line step is assumed
to be the same at any point, the angular velocity at the center is larger than
that at the edge. Thus, the dislocation proceeds in a spiral shape.

Kobayashi (8] has proposed the following reaction-diffusion equation as a
model of the motion of screw dislocations: '

r?ﬂ =e’Au—sin(u—6(z))+v, z€Q,t>0,
2 (1.2)

6_1/-0’ z €N, t>0,
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where 7,& > 0 are small parameters, and -y is a constant. Here the domain
Q) C R? is defined by

N
Q= 5\ U Drj(gj))
j=1

where Q is a simply connected bounded domain in R? and D, (&) C Qisa
closed disk with radius r; centered at §; for j = 1,..., N. The function ©(z)
is defined by '

N .
O(z) = Z m;0;(z),

where m; € Z and 6;(z) is the angle between r — {; and the z; axis.
Equation (1.2) has a gradient structure

with the “free energy” functional H defined by

H = /ﬂ {%Wuf —cos(u — O(z)) — 'yu} dz.

Here the unknown function u(z,t) represents the local height of the crystal
surface and is normalized in order that 27 denotes the size of a unit md‘lecule.
In this model, we assume that there are N dislocations on the surface with
fixed core regions D,,(;) (j = 1,...,N) and that the initial height is given
approximately by ©(z). Actually, spiral growth with a hollow core at the
center can be observed on the surface of SiC crystal ([18}).

Our main interest is the long-time behavior of solutions of (1.1) (or (1.2))
which grow up as ¢ — +00. Some numerical experiments imply that equation
(1.2) has a growing solution with time-periodic profile. The purpose of this
paper is to show the existence, monotonicity and stability of such a solution.
More precisely, as we will see later, equation (1.1) or (1.2) has a solution
which satisfies SIS

Uz, t+T)=U(z,t)+2m, z€Q,t>0, (1.3)

for some T > 0.
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2 Main results

Throughout this paper, we assume that A(z) and f(z,u) are smooth
functions satisfying the following conditions:

(Al) A(x) >0forallz €,
(A2) f(z,u) is 2m-periodic in u.

It is known that, for any uy € C(), a solution u(z,t) of (1.1) with initial
data u(-,0) = uo exists globally in time, since f is a bounded function (see
6], [12]). For u1, uz € C(Q) we write

uy < ug if u1(z) < ua(z) for all z € Q,
up < up if ui(z) < ux(z) for all z € Q and u, # uy, (2.1)
Uy <K Us if uy(z) < ug(x) for all z € Q.

Let {S(t)}es0 be the semiflow on C(Q) generated by (1.1). In other words,
the map S(t) on C(Q) is defined by S(t)up = u(-,¢) for each t > 0, where
u(z,t) is the solution of (1.1) with initial data u(-,0) = uo. The strong
maximum principle ([17]) shows that S(t) is strongly order-preserving ([10]),
that is, u; < ug implies S(t)u; < S(t)us, for each t > 0. Further the standard
parabolic estimate ([12]) shows that S(t) is a compact map on C(Q) for each
t > 0. Since f is 2m-periodic in u, the semiflow {S(t)}:>0 also satisfies

S(8)(uo + 2k7) = S(t)uo + 2km, £3>0 (2.2)

for all up € C(Q) and k € Z.
In what follows, ((z,t) denotes the solution of (1.1) with initial data
¢(-,0) =0 and

¢* = limsupmax((z,t),
t—+oo z€eQ :
¢ = lminf min ¢(z,1).

When both ¢* and (. are finite, the set {S(t)uo | t > 0} is bounded in C(Q2)
for any up € C(Q). Since equation (1.1) has a Lyapunov functional, by virtue
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of the results of Matano [9], the w-limit set of 4o is nonempty and is contained
in the set of equilibria of (1.1).

Concerning the asymptotic behavior of growing-up solutions of (1.1), we
obtain the following results:

Theorem A Suppose that (* = +o00.

(i) There exists a solution U(z,t) of (1.1) and a positive constant T' such
that

U(z,t+T)=U(z,t)+ 27, z€Q, t>0. - (2.3)

(i) The solution U is stable in the sense of Lyapunov and is strictly mono-
tone increasing in t, that is,

Ul(z,t) >0, €8, t>0. (2.4)

(iii) The solution U is exponentially stable up to time shift, that is, there
exists a positive constant u such that for any uo € C (Q) the solution
u(z,t) of (1.1) with initial value uo satisfies

“u(')t) - U("t + 7-O)HC('Q') < Moe—“t? (2'5)

for all t > 0, where 7o € R and M, > 0 are constants depending on uo.

Remark 2.1 It immediately follows from the above theorem that if (. =
—oo then there exists a solution U(z,t) of (1.1) satisfying '

U(z,t+T)=U(z,t)— 27, z€Q, t20

for some T' > 0.
Remark 2.2 By (2.3), we see that the solution U(z, t) is written in the form
2
Ulz,t) = $(z,t) + T, (2:6)

where ¢ is T-periodic in t. Namah and Roquejofire [13] have been studied
the existence and the stability of solutions of similar form to (2.6) (they call
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such solutions periodic fronts) for other parabolic equations. The methods to
prove the existence of such solutions in [13] are based on the Leray-Schauder
degree theory. In the present paper, we use the strongly order-preserving
property and compactness of the semiflow {S(t)}:>¢ instead.

3 Existence, Monotonicity and Stability

In this section, we show the existence, monotonicity and stability of a
growing-up solution with time-periodic profile.

The following lemma yields that the oscillation of ¢(-, t) in Q is uniformly
bounded in t.

Lemma 3.1 There exists a positive constant M independent of t such that
max ((z,t) — min((z,t) < M
€N zefl

for all t > 0.

Proof Define

a= sup |f(z,u)|
(z,u)eQxR

and

n(z,t) = ((z,t) - i?lzT /ﬂ (=, t)ds,

where || denotes the volume of . Then 7 satisfies

27’-=L77+h(:1:,t), €N t>0,

ot

5 (3.1)
21 _ o, z€0Q,t>0,

ov

where L is the restriction of div(A(z)V) on Xo = {u € C(Q) | [, u(z)dz = 0}
and h(z,t) is a bounded function defined by

h(z,t) = f(z,((z,1)) - |?lz‘| /n £(z, ¢(z,1))d.
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We note that L generates an analytic semigroup {e*‘};>0 on Xp and that

¢
n(-,t)=/ et=9Lh(., 5)ds.

0

Let A\; > 0 be the least positive eigenvalue of —div(A(z)V) in C(Q) with
homogeneous Neumann boundary conditions. Then there exist constants
M >0 and X € (0, )) such that ||e!ulloq < Me™||ulo, for all t > 0
and u € Xy. Therefore, we have

2Ma

t
(- )l o) 5/0 Me 2 =|h(., 8)|| omds < —

hence

' A4M
max ¢ (z, t) — min ¢(, t) = maxy(z, t) — min7(z, 1) < ——.
oY) z€Q) z€Q) z€Q A

The lemma is proved. OJ

Proof of Theorem A (i) When (* = +o0, there exists a sequence 0 <
t; <ty < --- — 400 such that

max ((z,t;) — +oo.
zeC()

By Lemma 3.1, we can take a positive integer m; such that
0 <{(z,t;) —2mjmn < M +2n, =€ Q
for all j € N. We fix a positive constant § and put
w; = S(6)(¢( t5) — 2mym) = ((, 85 + &) — 2mym.

Since the map S(6) is compact, replacing {t;} by its subsequence if necessary,
we have lim;_,, w; = ¢ for some ¢ € C(2). We define

I(t) = inf{r > 0| ¢(-,t) + 2 < (-t +T)}

Since ¢* = 400, the function I(t) is well-defined for each ¢ > 0. By the
comparison theorem, I(t) is positive and is monotone decreasing in t. Put
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T = lim;— 400 I(t). Since ((-,t) + 27 < C(t+1U(t)) for t >0, lettingt =t ;446
and j — 0o, we obtain ¢ + 27 < S(T)p. This implies T" > 0.

Suppose that ¢ + 27 < S(T)p. Then for any fixed p > 0, we have
S(p)(¢ + 2m) = S(p)p + 21 < S(T + p)p. From this, for a sufficiently large
Jjo € N, it follows that

S(p)wjo + 27 < S(T + p)w,.
Therefore, there exists a small positive constant € € (0, T) such that
S(p)ws, + 21 < S(T — € + p)wy,,
and hence
((rtio+o+p)+2m <((tio+8+p+T —¢).

This implies I(t;, + 6 + p) < T — ¢, which contradicts the definition of T
Therefore ¢ + 2w = S(T')¢p holds and thus U(-,t) = S(t)y satisfies (2.3). O

Proof of Theorem A (ii) Fix ¢t > 0 and set
to=inf{r>0|U(,t) <U(,t+7)}<T.
Suppose that #o > 0. Then U(-,t) < U(-,t + to) implies
U(,t)+2m = S(T)U(-,t) K S(TYU(-,t + to) = U(, t + to) + 2m,

which contradicts the definition of ty. Therefore to = 0 and hence U:(-,t) >0
holds. Furthermore, by the strong maximum principle we have (2.4).

Next we show that U is stable in the sense of Lyapunov. For any € > 0,
take dp > 0 satisfying

sup |[U(-,t+80) ~U(-,t — do)llo@m) < €
tel0,T)

and set

| 0 = min {xgleig(U(z,(So) - U(z,0)), rilei_g(U(m,O) - U(z, -60))} .



By (2.4), the constant § is positive. For any solution u of (1.1) satisfying
lu(-,0) - U(';O)”C(ﬁ) < 4, we have

U(', -—60) < ’U(,O) < U(, 60)
Therefore, by the positivity of U; and the comparison theorem, we obtain
U(-,t - 50) < U(‘,t) < U(',t + 50),
U(',t ~ (50) < U(,t) < U(,t+ 50),

hence

lu(-,t) = UG, Dllog < NUCt+80) = U(t — do)llem) < e
for all t > 0. |

4 Asymptotic Stability

In this section we study the asymptotic stability of the growing-up solu-
tion U. For the proof, the monotonicity of U in t plays a crucial role.

The following lemma is a modified version of Property (B2) in [2], where
Xinfu Chen has studied, among other things, the asymptotic stability of
traveling waves in one space dimensional evolution equations with nonlocal
terms.

Lemma 4.1 There exists a positive constant d such that for any superso-
Iution w*(z,t) and any subsolution w™(z,t) of (1.1) satisfying w*(z,0) >
w™(z,0) for z € Q, we have

we) w2 d [ e - ek (@)
Q

for all z € Q.

This lemma follows from the positivity of the fundamental solution ([5], [7])
for the problem

%%‘ = div(A(z)Vu) in  x [0, +00),
Ou =0 on 99 x [0, +00).
ov '
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Remark 4.2 The constant d satisfies
0<d< e'ﬁ/|Q|,

where 8= sup |fu(z,u).
(z,u)efIxR

Let U(z,t) be the solution of (1.1) obtained in Theorem A (i). We define
positive constants M, m and §, by

: dm|Q|
M= max Uyz,t), m= min Uyfz,t), 6, = ——.
(z,t) QxR (@,?) (z,t)efIxR (z:?) 2M

By Remark 4.2, the constant 4, satisfies 0 < 6, < 1/2.
Lemma 4.3 Let u(z,t) be a solution of (1.1) such that
U(z,to + 10) < u(z,t0) < U(z,to+ 70+ ho), z€0
for some ty > 0, 79 € R and hg > 0. Then, for any t > to + 1 it holds that
Ulx,t+7) <u(z,t) <U(z,t+11+h), z€0, (4.2)
where 11 € {79, 7o + 6.ho} and hy = (1 — 6,)hy.

Proof We may assume ty = 0 without loss of generality. By the comparison
theorem,

U(z,t+710) <u(z,t) <U(z,t+710+ hy), €, t>0. (4.3)
Since
[0+ ho) - U, )by > mi,
either of the following holds:
O [ {u(,0) - U, )y > miafho/2,

(i) / (U, 70+ ho) — u(y, 0)}dy > m|Qho/2.



Here we consider only the case (i), since the other is treated similarly. By
Lemma 4.1,

u(e,1) = Ula,1+7) 2 d [ uly,0) = Uy, )} > dmilh/2
[
for z € Q. Since U(z,1 + 7o + duho) — U(z, 1 + 10) < Mé,ho = dm|Q|ho/2,
we have u(z,1) > U(z, 1 + 7o + 8.ho) for € Q, hence
u(z,t) > U(z,t + 70 + 0xho), T € Q, t>1. (4.4)

Combining (4.3) and (4.4), we obtain the inequality (4.2) with 71 = 70+ d.ho
and hl =79+ ho —T1 = (1 _ 5*)’10. O

Proof of Theorem A (iii) Let uo € C(Q) and u(z,t) be the solution of
(1.1) with initial data uo. We take 7o € R and ho > 0 satisfying

U(z,70) < uo(x) < U(z, 70+ ho), €.

Tt follows from Lemma 4.3 and a mathematical induction that for any k € N,
telkk+1)and z € Q, '

Uz, t+ 1) <ulz,t) <U(z,t+ 7% + hi)
with 7 € {Tk—1, Tk—1 + Suhk—1}, b = (1 — 8.)hx—1. Therefore we obtain
Uz, t+7(t) < ulz,t) < Uz, t+7(t) +ht), z€Q, t>0,

where 7(t) = 7y, h(t) = hyy and [t] is the largest integer less than or equal
to t. By the definition of 7(¢) and h(t),

h(t) = (1 — 8,) ko,
0 < 7(t1) — 7(ta) < {(1 — 8.l — (1 = &)1},

for any t > 0 and t; > t2 > 0. Thus the limit lim¢—, 400 7(t) = To exists and
satisfies 0 < 7o — 7(t) < (1 — 8,)Mhg. Hence, letting p = —log(1 — &.) > 0,
we have :

llu(-,8) = U(,t + o) llo@y < Moe™, 120
with Mo = Mho/(1=6,). O
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5 Spiral Traveling Wave Solutions

In this section, we consider the special case where §2 is a 2-dimensional
annulus Q = {z € R? | a < |z| < b} and (1.2) is of the form

u=Au+ f(u—06), z€N t>0, 51
u, =0, .'Eeaﬂ,t>0. ()

Here o is a positive integer, (r,6) denotes the polar coordinates of z € Q.
We assume that f is a smooth 27-periodic function satisfying

2n

f (u)du > 0. (5.2)
0

Note that (5.1) is G-equivariant, where the action of the group G = {g, |
a € R} is defined by

(gau)(r,0) = u(r,0 — a) + oa.

By the condition (5.2), one can see that (* = 400, where (* is defined in
Section 2. Hence, the following corollary follows from Therorem A and the
G-equivariance of (5.1). See [15] and [16] for details.

Corollary B
(i) There exists a solution U(z,t) of (5.1) which is written in the form
U(z,t) =¢(r,0 —wt)+owt, z€Q, t>0

for some ¢ € C(Q) and w > 0. Moreover, ¢ = ¢(r,0) is 27 /o-periodic
iné..

(ii) The solution U is stable in the sense of Lyapunov and is strictly mono-

tone increasing in t. Furthermore, U is exponentially stable up to time
shift.
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