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Backward global solutions characterizing
annihilation dynamics of travelling fronts
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Abstract We consider a reaction-diffusion equation u; = uzy+ f (u), where

f has exactly three zeros 0,  and 1 (0 < ¢ < 1), fu(0) < 0, fu(1) < 0 and"

Jy f(u)du > 0. Then, the equation has a travelling wave solution u(z,t) =
é(z — ct) with ¢(—oc0) = 0 and @(+oo0) = 1. Known results suggest that
for an initial state ug(z) with lim, ,,  uo(z) > « having two interfaces
at a large distance, u(z,t) approaches a pair of travelling wave solutions
d(z — p1(2)) + ¢(—z + pa(t)) for a long time, and then the travelling fronts
eventually disappear by colliding with each other. While our results establish
this process, they show that there is a (backward) global solution v(z,t) and
that the annihilation process is approzimated by a solution ¥(z — zo,t — o).
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1 Introduction

In this paper, we consider the scalar bistable reaction-diffusion equation

(1.1) {ut:u,,z+f(u), t>0, z€R,

u(0) = up € BU(R),

where BU(R) is the space of bounded uniformly continuous functions from
R to R with the supremum norm, and the reaction term f satisfies the
following conditions:

1 feC*R),

2 f has exactly three zeros 0,  and 1 (0 < @ < 1),
3 £.(0) <0, fu(1) <0,

4 Jy f(u)du > 0.

It is known (e.g. [4, Section 4.4]) that the reaction-diffusion equation
(1.1) has a unique (except for translation) travelling wave solution u(z,t) =
#(z — ct), where (¢,c) satisfies

(1.2) ¢"(2) +cf'(2) + f(4(2)) = 0

with ¢(—o0) = 0 and ¢(+00) = 1. Then ¢ < 0 holds from [y f(u)du > 0.
We normalize the definition of ¢ by requiring ¢(0) = 1/2.

This solution is linearly stable except for neutral translational perturba-
tions. Specifically, the following is known (e.g. {10, Section 5.4]).

Theorem A (1) The operator —(8%25+c%+fu(¢(z))) : BU(R) - BU(R)
15 a sectorial one with a simple eigenvalue 0. The remainder of the spectrum
has recl part greater than some positive constant.

(2) There exist 6, C and vy > 0 such that for any uo € BU(R) with
lluo(z) — ¢(z)||co < 6, there exists zo € R satisfying

lu(z,t) — ¢(z — 2o — ct)llco < Ce™||uo(z) ~ $(z)lico

for all t > 0.



Moreover, Fife and McLeod [6] showed the following theorem, which gives a
global stability result for the travelling wave solution ¢(z — ct).

Theorem B If lim,,_oouo(z) < @ and lim,_,, uo(z) > o hold, then
inf ||u(z,t) — ¢(z — zo)|jco 0 as t— +oo
zo€ER

holds.

Also, Fife and McLeod [6] showed the following, which means that the
pair of the travelling wave solutions going to £ = *oo has strong attractivity.

Theorem C  Suppose that ¢ <0, lim,_,+00u0(z) < &, uo(z) > 7 (|z| < L)
for some n > a and up(z) > ¢ (|z| < 00) for some { > —oo hold. If L is
large enough depending on n and (, then u(z,t) approaches (uniformly in
and exponentially in t) a pair of diverging travelling wave solutions

¢(x —xz; —ct) + ¢(—x — z2 — ct) — L.

On the other hand, when lim,_,,.uo(z) > @ holds, the following is known
(e.g. [5]).

Proposition D If lim, ,..ouo(z) > a holds, then limt_;+°° lu(z,t) —
1|co =0 holds.

For an initial state ug(z) with lim,_,4.uo(z) > a having two interfaces
at a large distance, Theorems A, B and C suggest that u(z,t) approaches a
pair of travelling wave solutions

$(z — p1(t)) + (—= +p2(t))

for a long time. Then, Proposition D suggests that the travelling fronts
eventually disappear by colliding with each other. While our main results
(Theorem 1.1 and Corollary 1.4) establish this process, they show that there
is a (backward) global solution (z,t) and that the annihilation process is
approzimated by a solution P(x — To,t — to)."

Theorem 1.1 There ezists a solution ¥ € C(R, BU(R)) of us = uge + f(u)
satisfying limg_, 400 |9 (t) — 1| comy = 0, ¥(—2,t) = ¥(z, 1) and the following.

1 For mathematical studies on motion and collapse of fronts in (1.1) from other aspects,
we can refer to, e.g., [1], [2], [3], [7), (8], [9], [11] and [12].
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(1) There ezists p € C'(R) such that
p(-00) = +00, p(~00) = ¢

and
dim 1%(z,2) — (8(z — p(0)) + (2 — p(®)))llcogmy = 0

hold.

(2) There ezist § >0, C > 0 and v > 0 such that for any t; € R and
up € BU(R) satisfying ||luo — Y(to)llcowy < 8, there exist z, to € R and
a solution u € C([0,+00), BUR)) of us = gy + f(1) with u(0) = uo such
that ‘

llu(z,t) = $(z — 20, t - th)llcomy < Ce™luo(z) ~ ¥ (2, to) | cogry

holds for all t > 0.

Theorem 1.1 leads to the following. This is a uniqueness result for the
global solution (z, t).

Corollary 1.2 Forany T € [—o0,+00) and solution 1 € C((T, +o0), BU(R))
of we = ugs + f(u), if there exmist {pa},, {gn}, C R and {Th}2, C
(T, +00) such that

lim (pp, — ¢,) = +00

n—00

and

(1.3) nll)IEo ”'I,Z(:L', Tn) — (¢(z — pn) + ¢(—z + Qn))”C‘)(R) =0

hold, then T = —oo holds and there erist =, and t, € R satisfying
Y(z,t) = P(T + T0, t + o).

Proof. By Theorem 1.1 (1), there exists {t/ n=1 C R with lim,_, ¢! =
—oo such that

dim (2, 4,) = ($(z — P2o) + g(—z — 2220y gy = 0
holds. Hence, from (1.3),
+4n

. - Pn
Aim [lP(z + =

D) ’Tﬂ) - 1/)($)t:;)”CO(R) =0



holds. By Theorem 1.1 (2), if n € {1,2,---} is sufficiently large, then there
exist z, and t, € R such that

IIl/;(iIJ,t + Tn) - 1/)(53 — T, t+ T — tn)“CO(R)

R n +
< Ce||9(z + p_2&7Tn) — (=, ) lcomy

holds for all ¢ > 0. Therefore, we obtain

(1.4) Jim sup |B(E + Zn, t + ) — B(z, 1) || comy = O

Ty —tn

Hence, from (1.3),
,}l{rolo oz, Tn — tn) — (6(z = (Pn — 7)) + ¢("$7+ (gn — xn)))”C"(R) =0

holds. Because limy,_o ((pr — :vn) (qn—xn)) = 400 also holds, by Theorem
1.1 (1), we obtain lim, o0 (Ty — tp) = —

Now, we show that there exists %, e R such that lim, ot = &
holds. Assume that there exist {N,}32; and {M,}2, C {1,2,:--} such

that limy, 00 Ny = limy, 0o My, = 00 and infp=i..(tn, — ta,) > 0 hold.
Then, by (1.4),

lim ||l9(z,t) — (2 + TN, — T, t +En, = tas)llcomy =0

holds for all ¢ € R. This is contradiction w1th infpq0..(tn, — ta,) > 0.
Hence, lim, o tn = g € R holds.
Because lim,_,o (T, — t,) = —oc0 and limg,e0tn, = 2o € R hold, we
obtain T = lim,_,o Ty, = —00. Also, by (1.4),
lim  ||¥(z,t — %) — Y(z + Tpn — Tm,t — to)|lcor) =0

(n,;m)—(c0,00)

holds for all ¢ € R. Hence, we have lim(n m)—(co,00) [Tn — Tm| = 0. There
exists Zo € R such that limp—oo Zn = Zo holds. Therefore, by (1.4), we
obtain ¥(z + Zo,t + to) = Y(2,1). q.e.d.

Definition 1 For [ > 0, § € (0, min{e, 1 — a}) and L > 0, a closed subset
S5 of BUR) is defined by

Bisr ={ue€ BUR)|0<u(z) <a—6 (2] <i-1L),
0<u(@)<1(-L<l|g|<I+L), a+8<u(@)<1(+L<lz)}
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For >0, 4 € (0,min{a,1—a}) and L > 0, a closed subset ;51 of BU(R)
1s defined by

Oz =US51-
>

The following proposition is proved in Section 6.

Proposition 1.3 For any & € (0,min{e, 1 —a}), Ly > 0 and € > 0, there
exist Iy >0, L > 0 and T > 0 such that for any 1 > 1y and ug € El50.L0r
there etist 1, T2 € [l — L, + L] and a solution u € C([0,+00), BU(R)) of
Uy = Ugg + f(u) with u(0) = uy such that

lulz, T) — (¢(z — 21 — cT) + ¢(—z — 23 — cT))||comy < €
holds.
Theorem 1.1 and Proposition 1.3 lead to the following.

Corollary 1.4 For any & € (0,min{a,1—a}), Ly >0, To € R and e > 0,
there exists ly > 0 such that for any uo € Il 5, 1., there exist =, € R,
to > —Ty and a solution u € C([0,400), BU(R)) of us = uge + f(u) with
u(0) = up such that

sup |lu(z + zo,t + to) — ¥(z,t)||com) < €
£>To

holds.

Proof. We first show that there exist M > 0 and &' € (0,¢) such that
for any p,qand t € R, if
p+teg=>2M

and

(1.5)  |l¥(z,t) = (d(z — p) + (-2 — D)oy < (1 + %) ’

hold, then ¢ < Ty holds. Assume that there exist {p,}2,, {q,,}n_1 CR
and {tn}n_l C (Ty, +00) such that '

Jlim (pn + gn) = +o0



nll,ngo v (z,tn) = (#(z — pp) + $(—z — Qn))“C"(R) =0
hold. Then, from Corollary 1.2, Ty = —oo holds. This is contradiction for
T € R.

By Proposition 1.3, there exist L, T and Ij > 0 such that for any [ > I
and ug € 5,5, r,, there exist z; and z3 > 1 — (L — cT') such that

(16)  [u(@T) - (B(z - 1) + B~z — 2))lloomy <mm{§c'; g}

holds. Then, let Iy > 0 be sufficiently large. Because ﬂgﬂ > 0 is sufficiently
large, by Theorem 1.1 (1), there exists t; € R such that

.’L‘1+.’L‘2 .’131 +.’172

[¥(z, to) — ($(z -

)+ ¢(—z
N )
< min E,E

,T) — (2, t)lcomy < min{e’'/C; 6}

Nllcow)

holds. Therefore, we have

1 — T2

lu(z +
Hence, by Theorem 1.1 (2), there exist zo and t, € R such that
(1.7) sup |u(z,t) — P(z — 0, — to)llcom) < €’

holds. Hence, from (1.6), we have

lv(z, T — to) — (d(z — (z1 — z0)) + S(—2 — (22 + T0)))llcom)

1y,
(”%)

Because (z;— o)+ (z2+ o) is sufficiently large and (1.5) holds, T'—ty, < Tj
holds. Hence, from (1.7), supy>m, [|u(z + To, t +t0) — ¥(z,1)||lcory < € holds.
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In order to prove Theorem 1.1, we need to construct a global invariant
manifold with asymptotic stability. Here, the word of global means that the
invariant manifold includes a solution having two interfaces at any sufficiently
large distance. In Section 2, we construct a semilinear prabolic system. The
system concludes a part of the reaction-diffusion equation. This is the part
which consists of solutions near pairs of the travelling wave solutions at a
large distance. Further, such pairs are contained in a two-dimensional linear
subspace of the system. Hence, we can construct a global invariant manifold
near the subspace by a standard technique. While we do it in Section 5, we
state the result in the end of Section 2. In Section 3, we prove that there is
a solution in the invariant manifold of the system and the solution satisfies
Theorem 1.1 (1) in the reaction-diffusion equation, i.e., it becomes the pair
of the travelling wave solutions as ¢ — —co. This solution is denoted by
¥(z,t). In Section 4, we show that the set of solutions P(z — zo,t — 1)
by translation of #(z,t) coresponds the invariant manifold of the system.
This argument is rather troublesome. Then, we show Theorem 1.1 (2), i.e.,
the set has asymptotic stability in the reaction-diffusion equation. This is
also a little troblesome, as the topologies of the equation and the system are
different. Proposition 1.3 is proved in Section 6.
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