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1 Introduction and main result
We study the following two-point free boundary problem :

U=, —6i() <z < &lt), £>0
ug(—£1(t),2) = tan(8 — B1), u(—&i(t),t) = &1(¢) tanfy, (L.1)
uz(§2(t),t) = tan(Be — 62), u(&a(t),t) = &(¢) tan By, '
u(z,0) = ug(x), £1(0) = &o, £2(0) = &2,

where ; and 0; are given constants satisfying 5; € [0,7/2) and 6; € (0,5; + 7/2),
i = 1,2, &1 and &2 are positive constants, ug € C%[—&o1, &] satisfying the compatibility
conditions, and up > 0 in (—£o1,402). In this problem (u, &, ;) are unknown functions
to be found. '

This type of free boundary problem arises in the combustion theory to describe flame
propagation. It is motivated by mathematical modeling of combustion in [1, 5]. Note that
the prescribed angle condition at each free boundary makes the problem (1.1) different
from the Stefan problem. For a detailed overview of more general or different models we
refer the reader to the work of Vazquez [5].

The purpose in this talk is to prove the existence of self-similar solutions for the
problem (1.1), which is classified by angle conditions, and also to analyze the stability
of them.

The problem (1.1) has fundamental properties as follows. Set

I'(®t) == {(z,u(z,1)) | —&(t) <z <&(F)} CR?,
o :={(z,2) | z= —(tan )z, £ <0}, O :={(z,2) | z = (tan B)z, z > 0}.
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Figure 1: The situation of (1.1)

Let D(t) be the domain enclosed by I'(t), 9, and 9. By a simple calculation, we
have ‘

ZHD®) = ual6), ) — v(~6:(0), 1) = tan(B; ) — tan(dy — B)
where p(D) is the area of D. This implies that

d >0 if 6,460, < B+ B
d—t”(D(t)) =0 if 6,46 =p1+ o, - - (1)
<0 if 6,4+ 65> By + Bo. : '

It is natural to expect that if 6, + 62 < f; + f(a, then I'(t) expands with time t; }if
61 + 62 = B + B2, then I'(t), whose area is preserved in time £, tends to a fixed line as
t — oc; if 8, + 60, > By + B2, then I'(t) shrinks with time ¢ and vanishes in a finite time

T= T(uO) €01) 502)
To analyze the asymptotic behavior of I'(t), we define the following.

Definition 1.1 (Self-similar) Let p > 0 and set

v?(z,t) := p~lu(p(z — o) + o, p2(t — to) + to). |
We say that u is self-similar with the center (zo,to) if v*(z,t) = u(z,t) for any p > 0.

Note that the problem (1.1) is invariant for the rescaling u — uw”. If u is self-similar
and is also a solution of (1.1) for some ug, £y, and &g, then we call such u a self-similar
solution of (1.1).

There are several references studying self-similar solutions for this type of free bound-
.ary problem. For the case 8; = 0 and 3, = 7/2, which is one-point free boundary
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Figure 2: §, = 0 and 3, = 7/2 (see [3, 4])

problem, we refer to [3, 4]. In [4] the author proved the existence and uniqueness of
a self-similar solution for a quasilinear parabolic equation u; = (a(u;)). in the case
61+ 6; < 7/2, where a € C*(R) and the first derivative of a is positive. The asymptotic
stability of this self-similar solution was also obtained. In [3] they considered a focusing
problem with 6; = 7/4 and 6, = w/2. It was proved that a self-similar solution, which
vanishes in finite time, exists uniquely and that all solutions are asymptotically equal to
this self-similar solution. For the case ; = 8, = 0, we refer to [2]. In [2] they studied in
several space dimension and established a theory of existence, uniqueness and regularity
for radial symmetric solutions having bounded support. They also investigated the fo-
cusing behavior, which is shown to be self-similar, for solutions whose support expands
in finite time to fill a hole. We remark that the one-dimensional problem in their model
is a special case of our problem.

In order to investigate the existence of self-similar solutions of (1.1), we consider the
following problems. Now we set a; := 6; — 8; and a3 := B — 0,.

Case o) < ap: Analyze forward self-similar solutions. That is, for
u(z,t) = V2tu(z/V2), &(t)=V2p, &(t)= V2,

we study

v'(—p) =tanay, v(—p)=ptanp, (1.3)
v'(g) = tanay, v(g) =qtanp,.
In the problem (1.3), v, p, ¢ are unknown function and constants to be found.

Case a) = ap: Analyze stationaly self-similar solutions. In this case, a family of the
straight lines, namely u(x) = (tana)z + d where o := a; = o, and d is any positive
constant, is stationary solutions of (1.1).

Case a; > ay: Analyze backward self-similar solutions. That is, for
u(z,t) = vV-2tv(z/V-2t), &(t)=v-2tp, &(t) =+v—21q,

{ v+ —v=0, —p<n<yg,
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v'(—p) =tana;, v(—p)=ptanp, (1.4)
v'(g) = tanay, v(g) = gqtanpfs.
In the problem (1.4), v, p, q are unknown function and constants to be found.

{ V' —m'+v=0, —p<n<yg,

We are ready to state our main results.
Theorem 1.1 The following hold:

(i) Assume that o) < az. Then there ezists a unique (up to the translation of time t )
forward self-similar solution for (1.1). Moreover, it is asymptotically stable.

(ii) Assume that oy = ay. Then there ezists a unique stationary self-similar solution
for (1.1) with a given Dy, which is the domain enclosed by To := {(z, uo(z))| 0 <
z < €02}, 0%, and 02,.

(iii) Assume that a; > ag. Then there is a constant G.(< —tan ) dependz’ng only on
oy and B, such that the following hold.

(iii-a) There erists at least one backward self-similar solution for (1.1 ) if =B <
oy <o < fo. ' ‘

(iti-b) There exist at least two backward self-similar solutions for (1.1) if tan"! G, <
az < =P <a; < b

(iii-c) There exists at least one backward self-similar solution for (1.1) if tan"1 G, <
ay < —,31 and B2 < ay.

(iii-d) There ezists at least one backward self-similar solution for (1.1) fa < ap <
tan—! G, for some & € (—7/2,a;) depending only on ay, By, and (a.

Remark 1.1 The exact existence for the case (iii) and the stability for the cases (ii),
(iii) are still open.
2 Case: a1 < ag

Give a1, 51, p,q, with By € [0,7/2), a3 € (=p1,7/2), p > 0, ¢ > 0. Let us consider the
initial valule problem: '

U”+'I'U"“U=0y 7I>—P, | ‘. ’ (2 1)
v'(-p) =tana;, v(—p)=ptanp. |

Let F(n) = nv'(n) — v(n). Then by (2.1) we have F'() = —nF(n). It follows that

V"(n) = —F(n) = pAe® "2, 1> —p, 2.2)
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where A, := tana; + tanf,. Note that 4, > 0, since oy > —f;. This implies that
v” > 0. By an integration of (2.2) from —p to 5 (> —p), we obtain

(1) = tanay + pAe” (I (p) + I-(n)] (2.3)

where
n
I"(n) = /0 e~ /2ds,

Set A
G(p,q) :=v(q) = taney + pA,e”/2[I-(p) + I (q)].

Moreover, by integrating (2.3) from —p to n (> —p), we obtain that

v(n) = ntanay + npAre? [~ (p) + I (n)] + pA,e®*—1/2,

Set
H(p,q) == 35132 = tanoy + pA,e” [ (p) + I~ (q)] + ;iAle‘P’—q’)/?.
It is easy to compute that
( %(p, 9) = pAs + (7 + DA I (p) + I~(g)] (> 0),
4 5 P9 =pA1e” D2 (> 0),

OH (o )= phy+ (P + DA (- + @1+ le—m} 50
aapr q

| By 9=~ (<0)

For given ay(> a;) and B, € [0,7/2), we want to solve the equations
G(p,q) =tana; and H(p,q) = tanpf,. (2.4)

for some p > 0 and ¢ > 0. If we can find the pair of (p, q) satisfying (2.4), (v,p, q) is the
solution of (1.3).

Remark 2.1 Clearly G(p,q) > tana;. This claims that if a; > ao, there are no. (p,9)
satisfying (2.4). That is, there are no forward self-similar solutions of (1.1) for &y > as.

Let consider the equation G(p,q) = tana; for a given ay(> a;). We first observe that
G(p, q) is monotone increasing in p and g. Note that the limit of I~ (g) as g 1 +o00 exists
and is also finite. Since G(0,+00) = tana; and G(400,+00) = +00, there is a unique
Poo > 0 such that

G(Poo, +00) = tan as.

In addition, since G(0,0) = tana; and G(+o00,0) = +00, there is a unique pp > 0 such
that
G(po,0) = tan as.
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Figure 3: (p, g)-line satisfying G(p,q) = tano,

From the monotonisity in p of G, it follows that p., < po. Then we have for p € (peo, Po)
G(p,0) < G(py,0) = tanay = G(peo, +0) < G(p, +00)

The monotonisity in q of G implies that for each P € (Poo, Po) there is a unique ¢ = g(p) >
0 such that G(p, g(p)) = tanas. Note that g(+00) = poo and g(0) = po. Differentiating
G(p, g(p)) = tan oy with respect to p, we obtain )

%;".(,,,g(,,)) + %%(p, o)) - ¢'(p) = 0.

Thus we are led to ¢'(p) < 0, since dG/dp > 0 and dG/dq > 0 (see Figure 3).

Let consider the equation H(p,q) = tan 3, for a given (3, € [0,7/2). We observe that
H(p,q) is monotone inscreasing in p for all ¢ > 0 and monotone decreasing in g for all
p > 0. Note that H(p,+00) = G(p,+00) and az < . Since H(poo,0") = +o0 and
H(poo, +00) = tan ay, there is a unique § > 0 such that

H(poo’ q-) = tanﬂ2.

In addition, since H(peo,+00) = tanay and H(+oo,+00) = +00, there is a unique
P+(> Poo) such that «
H(p,,+o00) = tan fs.

Then we have for p € (Poo, Ps) v A
- H(p,+00) < H(p,,+00) = tan fp = H(peo, ) < H(p,q)-

The monotonisity in g of H implies that for each p € (peo, p+) there is a unique ¢ = h(p) >
g such that H(p, h(p)) = tan B;. Note that h(ps) = § and h(p.) = +oo. Differentiating
H(p, h(p)) = tan B2 with respect to p, we derive

OH oH o
S B0 + 5o (0. h(p) - K () = O



100

q = h(p)
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Figure 4: (p, g)-line satisfying H(p,q) = tan 5,

Therefore we find »/(p) > 0, since 0H/8p > 0 and H/dq < 0 (see Figure 4).
We are ready to state and prove the folloing theorem.

Theorem 2.1 Assume that &y < az. Then for given B, 3; € [0,7/2), oy € (—f1,7/2),
and a; € (a1, B2) there is a unique solution (v,p,q) to the problem (1.3).

Proof. Combine Figure 3 and Figure 4. Then we see that there is a unique (p,q) with
P € (Peo, P), Where p := min{py,p.}, and ¢ > G such that g(p) = h(p) = q. This prove
the theorem. 0O

We state the following theorem withou the proof.

Theorem 2.2 (Stability of a forward self-similar solution) Assume that a; < ay. Also
assume that ug € C%[—y,&p2] satisfies the compatibility conditions and uy > 0 in
(—&o1,&02)- Let I'(t) be a smooth solution of (1.1) with the initial data Ty = {(z, uo(z)) |-
éor < = < &p2} and S(t) be a forward self-similar solution denoted as

S(@t) = {(2, V2v(2/vV2)) | - V2tp < & < V2iq}
where (v,p, q) is a solution of (1.8). Then S(t) is asymptotically stable in the sense :
au(D®), 5(8) < O, t>1,

for some 6 € (0,1/2) and a constant C(> 0), which depends on the initial data Ty. Here
dy denotes the Hausdor{f distance.

To prove this theorem, we construct a sub-solution and a super-solution, which converge
to S(t) asymptotically as ¢ — oo, and apply the strong maximum principle. :
3 Case: a1 =y

In this case, there is a family of stationary self-similar solutions of (1.1), that is,
u4(z,t) = u4(z) = (tana)r +d,
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where a := a; = a5 and d is any positive constant. The corresponding fixed end points
to ug are given by

_ d . d

" tano; +tanf;’ = tan f — tanay’

p

According to (1.2), the condition ; = o implies the area-preserving property. Let Do
be the domain enclosed by I'y := {(z,uo(z))| — o < = < o2}, O, and ONp. Set
A; :=tana; +tanB; and Ay := tan 32 — tanoy. Let '

24, A; "
d, = Dy).
@0,

Then a stationary self-similar solution of (1.1) is uniquely determined as u4, (z) = az+d.
for a given Dy.

4 Case: a; > oy

‘Give oy, B1,p, ¢, with 8 € [0,7/2), o1 € (—p1,7/2), P >0,q>0. Let us consider the
initial valule problem:

v —mq'+v=0, n>-p, <41)
v'(-p) =tanay, v(-p)=ptanpr. ‘

Then as before we have
vn(n) — _pAle—(Pz—ﬂz)/Z’ n> —p, (4.2)

where A; = tana; + tanB; > 0. Note that v” < 0. By an integration of (4.2) from —p
to n (> —p), we obtain

V'(n) = tanay — pA1e /It (p) + I (n)], 7> —p, (4.3)

where
+ = n 32/2 d

I(n) /0 e” /“ds.

Set X \
_ G(p,q) = '(q) = tanay — pA1e™" *[I* (p) + I*(q)]-
In addition, by integrating (4.3) again, we derive that
v(n) = ntanay — qpAre P /2 (p) + I* (n)] + pAre™ /2,

Also set |

A(p0) == %2 — tanay — pse AL () + 1)) + A0
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It is easy to compute that

BB = —pAu+ (0 ~ DAL p) + (g,

% ®0= P+ 0~ DA I1°0) 4 17(0) - 2],

OH (3
Frial e “%Al" ¢ (< 0).

\

For given oz(< a;) and B; € [0,7/2), we want to solve the equations |
G(p,q) =tana, and H(p,q) = tan B, (4.4)

for some p > 0 and ¢ > 0. If we can find the pair of (p, q) satisfying (4.4), (v, p, q) is the
solution of (1.4). _

Remark 4.1 Clearly G(p,q) < tanca;. This claims that if a; < ay, there are no (p,q)
satisfying (4.4). That is, there are no backward self-similar solutions of (1.1) for a; < as.

In order to solve (4.4), let study the fuctions G(p, ¢) and H(p,q). Now set
J(p) := pT’i_lev’ﬂ —I*(p) for p#1,
K(q):=I"(q) - %e"’/z for ¢ > 0.

We compute that

K'(q) = alieq,ﬁ >0 for ¢>0, (4.6)

and observe that |
J0)=0, J(17)=—o0o0, J(1%) =400, J(+00) = —o0, (4.7)
K(0%) = —00, K(+00) = +00. (4.8)

It follows from (4.6) and (4.8) that there is a unique ro > 0 such that

<0 if 0<g<my,
K(g)q =0 if g=m,,

>0 if g>rp
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First we study the function G(p,q). Note that

(p,q) <0 for pe(0,1],
(p,q) Ai(p® — D)e P21 (q) — J(p)] for p>1.

Since (I*)'(g) > 0, I*(0) = 0, and I (+00) = +0o0, there is a unique p.(g) > 1 such that
J(pc(q)) = I (q) for each ¢ > 0. We have p.(0") € (1,+00), p(+00) = 1, and p;(g) < 0.
These imply that for all ¢ > 0 _

=0 if p=pc(q); | (4.9)

A 0 if p<p(g);
¢ < D<p )

(p,q){
>0 if p>pe(q)

Then vwe find

G, = G(p:(0),0) = —tan By — (tana1 +tan ;) (< —tanfy). | (4.10)

2(0)
Next we study the function H(p,q). Note that

%g'@, DAL (P? — )PP [K(g) — J(@)] for p#1,

0H
5;(1#1) = -4, <0.

Consider the case 0 <p < 1. For ¢ > 19

%@,@=—pA1+A1(p2—1)e-P’/2[K(q>+I+<p>1<o. @)

On the other hand, by virtue of (4.5) and (4.7), we see that J(p) < 0forp e (0,1). This
implies that for each pe (0,1) there exists a unique g,(p) € (0, 7o) such that

K(g.(p)) = J(p)-
Note that ¢,(0") = 7o, ¢,(17) = 0, and ¢/,(p) < 0. Thus we derive for 0 < g <7

of >0 if 0<qg<aglp); ,
—-(P,q){ =0 if ¢=q\p); (4.12)
<0 if g>qsp)

Consider the case p > 1. It follows from (4.5)-(4.8) that there exists a unique g,(p) > 0

such that ‘
K(gu(p)) = J(p).
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Note that ¢,(1") = +00, gu(+00) = 0, and ¢/,(p) < 0. Therefore we are led to

<0 if 0<q<aqup);

%g(p,q){ =0 i q=q0); (4.13)
>0 if ¢> qu(p).

Let consider the equation G(p,q) = tana; for a given az(< a;). We separate into
three cases; (a) — B < az, (b)tan™! G, < @z < —fy, (c)az < tan~! G.. For the sake of
convenience, we analyze them in order of (c) = (b) = (a).

Case ap < tan"' G.: If @y = tan™' G(= tan~[G(pc(0),0)]), (p(0),0) is a solution of
G(p,q) = tana,. Thus we study the case a; < tan™'G.. Recalling (4.9), we have
tanay < G. = G(p:(0),0) < G(p,0) for all p > 0. We also find G(p, +00) = —o0. It
follows from 8G/8q < 0 that for each P > 0 there is a unique ¢ = g(p) > 0 such that
G(p,i(p)) = tanay. Note that for (f,§) on the line p = p.(g) we also have § = §(p) €
(0, +00) satifying G(p, §(§)) = tanay. Differentiating G(p,§(p)) = tanay with respect
to p, we obtain

B 000 + 5 (0,96) - 9(5) =0.
Recalling (4.9) again, this implies that

() <0 for 0<p<3p,
d(P)>0 for p>p.

In addition, using the reduction to absurdity, we see g(0*) = +oo and g9(+00) = +o0
(see Figure 5(c))
Case tan™! G, < a3 < —;: We observe that C:'(O, 0) = tana; (> tanay) and

G(p,0) = tanay — pA,e”P/2I+ (p)
— tana; — A; = —tan B, (> tanay) as p — +oo.

Then it follows from (4.9) that there exist p; € (0,p.(0)) and p; € (Pc(0),+00) such
that G(p1,0) = G(p,,0) = tana,. For p € (py, py), we obatin that C(p, 0) < tanay . In
view of 8G/dq < 0, we are led to G(p,q) < tana, for p € (p1,p2) and g > 0. Thus for
P € (p1,p2) thereis no solution of G(p,q) = tana,. For p € (0, p1)U(p2,+00), we observe
that G(p,0) > tana,. Since G(p, +00) = —o0 and dG/dq < 0 for all p > 0, there is
a unique ¢ = §(p) > 0 such that G(p, §(p)) = tana, for each p € (0,p;) U (p2,+00).
Appying the same argument as the case a; < tan—! G., we see ‘

J @) <0 for 0<p<p,,
d()>0 for p>p,.

We also have g(0*) = +o00 and g(+00) = +o0o. Moreover, by means of G(py,0) =
G(p2,0) = tan az, we derive §(p,) = §(p2) = 0 (see Figure 5(b)).
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p = pc(q) (c)

(@) - B <oy (b)tan™ G, <z < —f (c)oz <tan™' G

Figure 5: (p, ¢)-line satisfying G(p,q) = tanay

Case —fB; < ay: Let p; € (0, p.(0)) be defined as the above. Recalling G(p,0) = —tan B
as p — +oo with dG/dp > 0 for p > p.(0), we have G'(p, 0) < tanag for p > py. It
follows from 8G/dq < 0 that G(p,q) < tana, for p > p; and ¢ > 0. Thus for p > p
there is no solution of G(p,q) = tanay. For p € (0,p;), we derive that G(p,0) > tan ay.
Since G(p,+00) = —oo and 8G/dq < 0 for all p > 0, there is a unique ¢ = §(p) > 0
such that G(p, §(p)) = tana, for each p € (0,p1). Appying the same argument as the
previous case, we derive §’(p) < 0 for p € (0,p1), §(0") = +o0, and g(p1) = O (see Figure
5(a)). '

Let consider the equation H(p, g) = tan 3, for a given B; € [0,7/2). Since H(p,0") =
+o00 and H(p,+o00) = —oo for all p > 0, it follows from dH /8q < 0 that for each p > 0
there is a unique g = A(p) > 0 such that H(p, A(p)) = tan ;. Now we compute that

A ' 1
B(pqulp)) = —tanfpy — 5=

A,a(p) = —tanfy + = A1, for pe(0,1) (415)

A; (<0) for p>1, (4.14)

It follows from (4.14), tan B, > 0, and 0H /0q < 0 that h(p) € (0,qu(p)) for p > 1. Then,
in view of OH /0q < 0 and (4.13), we have A'(p) < 0 for p > 1. Note that k(1) € (0, +-00)
and h(+o0) = 0, since g,(1*) = +o00 and g,(+00) = 0. Hereafter, we investigate h(p)
for p € (0,1). By (4.15), H(p, ¢5(p)) = tan (3, is equivalent to

2 tan 3 — tan oy

P’ = tan B, T tan /s € (0,1). (4.16)

We separate into three cases; (@)B2 < ai, (b)B2 = a1, (€)B2 > au.
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Case fB; < a1: Note that there isno p € (0, +o0) satisfying (4.16). Since tan 8, +tan B <
Al, we have

H(p,h(p)) =tenfr < —tanf+4,

1
-7
Recalling that A (p,q) is monotone decreasing in g, we -gee h(p) > g,(p) for all p € (0,1).
It follows from OH/0q < 0, (4.11), and (4.12) that A'(p) < Oforal p € (0,1). In
addition, we derive h(0") = +oo (see Figure 6). Indeed, if A(0*) < +o0, for any
¢ > max{2h(0%),ro} we have H(p,q.) — tanc, as p — 0*. Then (4.11) implies
that there is a p, € (0,1) such that H(p,q,) > tan;, = H(p,h(p)) for all p < p,. It
follows from 6H/0q < 0 that g, < h(p) for all p < p,. This is a contradiction. Hence
h(0") = +o0.

Case 2 = a;: Applying the same argument as the previous case, we have k(p) > a(p)
for all p € (0,1) and #'(p) < 0. Moreover, since H(p,ro) < tana, = tan B> = H(p, h(p))
and 9H/0q < 0 imply that h(p) € (gs(p), 7o) for all p € (0,1), we see h(0F) = ro (see
Figure 6).

Case 32 > a;: There is a unique p; € (0,1) satisfying (4.16). That is, I;[(pt,q,(pt)) =
tan 3,. Using (4.12) and 8H /0q < 0, it is easy to see that

h(p) < g(r) and R'(p) >0 for 0<p<py,
h(p) > g.(p) and R'(p) <0 for pr<p<l

< —tanf + A = f{(p, 2:(p)) for pe(0,1).

Note that 2(0%) € [0, 7o) (see Figure 6).

From now on, we assume 6,5 € [0,7/2), a; € (—B;,7/2), and oy € (~7/2, )N
(=7/2,B;). We are ready to state and prove the folloing theorems. '

Theorem 4.1 Assume that —f; < as < a; < B. Then there is at least one solution
to the problem (1.4). Assume that tan™' G, < a; < —f, < a; < Bo, Then there are at
least two solutions to the problem (1.4).

Theorem 4.2 Assume that tan ' G, < az < —f; and By < a;. Then there is at least
one solution to the problem (1.4).

Proof of Theorem 4.1 and 4.2. For the first half of Theorem 4.1, combine Figure
5(a) and Figure 6(b), (¢). For the second half of Theorem 4.1, combine Figure 5(b) and
Figure 6 (b), (¢). For Theorem 4.2, combine Figure 5(b) and Figure 6(a). O

Theorem 4.3 Assume that a; < tan™' G.. Then there ezists a, € (—7/2,a;) depend-
ing only on ay, B1, and B, such that the problem (1.4) has at least on solution tfas > a,.
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(©)B2 > a1

Figure 6: (p,q)-line satisfying H(p,q) = tan B

Proof. Recall that for (9,d) on the line p = p.(g) we have § = §(P) € (0,+00) satifying
G (P, §(P)) = tan . This is also written as G(pc(§), §) = tan a,. Since

A -~ 1
G(pc(4),q) = —tan By — p—%@—_—iAx

is monotone decreasing in §, the function § = §(c2) is monotone decreasing as a; in-
creases. Note that §(as) — +o0o as a; — —7/2 and §(az) — 0 as az — tan™' G..

Combining this fact and Figure 6, we see that there exists a. € (—7/2,a;) such that
the problem (1.4) has at least on solution if a; > a,. 0O
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