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Eigenvalues of elliptic operators and singular perturbations

ALHERFERFEERLHAER /Mg BE (Satoshi Kosugi)
Department of Mathematics, Graduate School of Science,
‘ Hokkaido University

1 INTRODUCTION

This is a joint work with Professor Shuichi Jimbo of Hokkaido University.
We deal with the following eigenvalue problem:

aidiv (acV®)+p®=0inQ, & =0o0ndN, (1.1)
¢

where (2 is a bounded domain of R" with a smooth boundary 6. Here q,
is a real valued step function of the form

1 forze,
= 1.2
a(2) {C for z € Q,, (1.2)

where ( > 0 is a perturbation parameter and Q, is a subdomain Q, € Q
with a smooth boundary and ©; = 2\ Q,. The boundary of € is denoted by
I'y and the one of £, is denoted by I'; (see Figure 1). The coefficient ac is
discontinuous through I';, we naturally consider (1.1) in a generalized sense,
namely, p € C is an eigenvalue of (1.1) if there exists ® € H}(R) such that
® # 0 and

/ (VOVyp —p®p)acdz =0 for any ¢ € Hi(R). (1.3)
0

From a standard argument of self-adjoint operators, the eigenvalues of (1.3)
are positive real numbers and the set of all eigenvalues is discrete and the
system of all eigenfunctions spans L?(Q). The purpose of this paper is to
characterize the limit of the eigenvalue u,,(¢) of (1.3) as ¢ — 0 and to find an
approximation formula of u,,(¢) at {( = 0. We will show that u,(¢) converges
to an eigenvalue of the Laplacian on Q; or Q, (cf. Theorem 1.6) and the
second coefficient of the asymptotic expansion of u,(¢) is an eigenvalue of a
certain matrix (cf. Theorems 1.12, 1.13 and 1.16). '

The problems of the form (1.1) are simplified eigenvalue problems of —A
on a thin domain of RV*! with a variable thickness. The coefficient a¢ means



Figure 1: Q =, U Q,

a non-uniform thickness of the thin domain with the bottom 2. We consider
that an analysis of these operators give an understanding of characteristics
of thin domains. The above type of elliptic differential operators also arise
in some problems of the material science of non-uniform media. We mention
some related works on perturbation of eigenvalues. Panasenko [11] studied

the operator
N
52 (a2
8:1:,- 3 6.’L‘j

1,j=1

where the discontinuous coefficients a,(g-) remain bounded in some subdomain
and approach oo in the complement. He proved the set of eigenvalues con-
verges to that of zeros of a certain equation with precise characterization.
Our situation is similar to the above in a sence of that the coefficients of the
operator are discontinuous and perturbed singularly. However, there are im-
portant differences in results. In our case, roughly speaking, eigenvalues are
divided into two classes and we give an analysis on not only the asymptotics
of each class but also the interaction between two classes.

Beale [1] and Jimbo [7, 8] characterize eigenvalues of the Laplacian subject
to the Neumann boundary condition on domains which have a very thin
channel and the channel degenerates into a line. They showed that the
influence of the channel upon the eigenvalues dose not vanish in spite of the
degeneration of the volume of the channel. Similar phenomena will occur in
our situation.

Hereafter we prepare some notation to state our main results.

Notation 1.1 Let p,(¢) (n =1,2,...) be the eigenvalues of (1.3) arranged
in increasing order with counting multiplicity.
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As it is mentioned above, the eigenvalues u,(¢) are real numbers. Without
loss of generality the eigenfunctions can be taken to be real valued. Hereafter
all functions appearing in this paper are also real valued. From a standard
mini-max principle, the n-th eigenvalue p,(() is given by

= sup  inf R.(® 1.4
W)= s inf R(@) (14)
dimY<n-1 @KLY

where ®_1¢Y means

/<I>\Ila(dx=0 forany ¥ €Y
Q

and R¢(®) denotes the Rayleigh quotient of &, i.e.,

R/(®) = /n |V<I>|2a(dx/ /9 B2 a du.

Notation 1.2 Let {®,(}32, be a complete system of orthonormalized eigen-
functions of (1.3), that is, B, € H}(Q) (n=1,2,...) satisfy

/ (V@r Vo — pn() Pncp) acdz =0 foranype H(}(Q)’ (1.5)
Q
./‘; Qn,( @m,( a( dr = (Snm (16)

where 8,,, means Kronecker’s delta symbol.

We relate the elaborate asymptotics of p,(¢) to the following eigenvalue
problems given respectively on 2; and Q,.

Notation 1.3 Letw, (p = 1,2,...) be the eigenvalues arranged in increasing
order (counting multiplicity) of the eigenvalue problem

Ap+wd =0 inQ, 32;:0 only, ¢=00nl, (1.7)
1
where v, is the unit outward normal vector on Yy = TI't UTy and let

{#p}2, be a complete system of corresponding orthonormalized eigenfunc-
tions, namely, the pair ¢, and w, satisfies (1.7) and

Ppdydr =bpp (p,p' >1).

M
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Notation 1.4 Let A, (¢ = 1,2,...) be the eigenvalues arranged in increasing
order (counting multiplicity) of the following eigenvalue problem:

AYy+Xp=0inQy, ¢Y=0o0nT,. (1.8)

and {1}32, a complete system of corresponding orthonormalized eigenfunc-
tions, namely, the pair 1, and )\, satisfies (1.8) and

0 Ve Vo dr = 6qq’ (g, ql > 1)'
2

Notation 1.5 We rearrange elements of {wp}32; U {A}g2, in increasing
order with counting multiplicity of w, or A\, and denote {un}a2;.
Using this notation, we state one of the main results in this paper.

Theorem 1.6 For eachn € N, }ir% pn(C) = tin.
_+

The above theorem will be proved in Section 2 by using the mini-max prin-
ciple. From now we will give more precise approximation formulae. To
formulate the approximation, we prepare the following notation.

Notation 1.7 The natural numbers p(k), q(k) and n(k) (k =1,2,...) are
defined inductively by

p(1) =1, p(k+1)=min{p € N:wp > wpw},

g(1) =1, gq(k+1)=min{g € N: ;> An},

n(1) =1, n(k+1)=min{n € N: pp > pinr)}-
Let the natural numbers P(k), Q(k) and N(k) (k=1,2,...) imply the mul-
tiplicities of wp(k), Aq(k) and pin(k) Tespectively. '
That is, P(k) = p(k + 1) — p(k), Q(k) = q(k + 1) — g(k) and N(k) =
n(k + 1) — n(k). It is clear that if png) = Wpk') = Agee) € {Wplpza N {Ag}e1
then N(k) = P(K) + QUK"). If pagy = wpey € {wp}21 \ ()21 then
N(k) = P(k') and so on. Next we introduce functions U, on €); for some wy
and V, on Q; for some A,.

Notation 1.8 For w, € {wp}2; \ {Ag}321, we define Up by the unique solu-
tion to the equation

AU, +wpUp =0 in Qp, Up =@, on Is.
For Ay € {2} \{wp}21, we define Vy by the unique solution to the equation

Ve 0Py _ _
3V1+6u2 =0o0nly, Vy=00nl,

where vy is the unit outward normal vector on 0, that is, v, = —11 on Is.

AV,,+/\,,V,, =0 1in Ql,
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Usmg these functions ¢,, 1,4, U, and V,, we define matrices A;, By, Ci and
Ck below to state main results

Notation 1.9 For pnx) = wprr) € {wp}p2; \{A}32,, the N(k) square matriz
A is defined by

Up(k')+i-1
A = ( / Uiiors iy CO2EIH1 5 ,
* T2 Pl 2 : 1<i,j<N(k)

Notation 1.10 For pinx) = Ay € {A}2; \ {wp}2,, the N (k) square
matriz By is defined by

av,
( / Vawy+in—2g 2 ‘dsz)

Notation 1.11 For Bn(k) = Wp(k') = Aq(kn) € {w,,}p_l N {Aq}q—l: the P(k') x
Q(k") matriz C. is defined by

C, = ( / boirss l%w—_lds)
= p i z
ry Ovy 1<i<P(K),1<i<Q(K")

1<i,j<N(k)

and the N (k) symmetric matriz Cy is defined by

~ O C
Ck:(‘C,, Ok)'

Using the above matrices, we state the main results in this paper.

Theorem 1.12 Assume pn & {wp}p2) N {A}32,, then there exists

tim #n(6) = #n

¢—0 ¢
This value is denoted by p,,. and these valmlzs are characterized as follows:
(l) zf”’ﬂ Bn(k) € {wp}p=1 \ {’\q}q._l} then ”‘S.()k)r 1”’5;()];4.1) y are the eigen-
values of the matriz Ax. (i) If pn = tnr) € {A}2; \ {wp}R,, then
us()k), . ufll()k +1)—1 GT€ the eigenvalues of the matriz By.
Theorem 1.13 Assume pi, € {wp}g2; N {A;}2,, then there erists

- in(C) —

P_If(l, C1/2 :
This value is denoted by pl’® and if p, = Pagk) € {wp}s2; N {3,,}:_‘;1 then

the limits u(l(f‘;), . u%:zl) , are the eigenvalues of the matriz C).



The above theorems will be proved in Section 3. We remark here that the
eigenvalues of the matrices Ay, By and C}, are well defined. It can be checked
in the following simple argument. When a set {&,};‘;1 is another system of
orthonormalized eigenfunctions of (1.4), let U, be the function defined in
Notation 1.8 by replacing ¢, with <f5p and A the symmetric matrix defined
in Notation 1.9 by replacing U, with ij. The functions U,, satisfy

p(k+1)-1
Up = Z (#p, i) L2(1)Us
. i=p(k)

for wpk)y = wp and the matrix

P = ((¢p(k)+i—1,¢p(k)+j—1)L2(Ql))ISi’jSP(k)
is an orthogonal matrix. Since PA,'P = A, the eigenvalues of ék are
equal to the eigenvalues of A;. Similarly, the eigenvalues of By and Cy are
well defined. _

We also note that the eigenvalues of Cy are 0,...,0,+kK;,...,+K, where
K; is an eigenvalue of the matrix *CC} or C'C) and r = l(k) is defined
below. If some eigenvalues of C; are 0, we have a more precise approximation
formula.

Notation 1.14 For pnx) = wpir) = Ay € {wp}py N {Aq}g‘;i, let A;(k)

(t=1,...,N(k)) be the eigenvalues arranged in increasing order (counting
multiplicity) of the matriz Cy and {(w;, v:)}o¥) the set of orthonormalized

eigenvectors where
u; = (uila ceey uiP(k’)), v = (’U,;l, cee 7viQ(lc”))-
That is, the vector (u;, v;) satisfies

() (19, OF) = M) (0. 19)

Let I(k) = rank(*CxCy}) = rank(C‘C}) and L(k) = N(k)—2l(k). IfL(k)VZ
1, we set for s=1,...,L(k)

P(K') , Q(K")

Bho = > Uij bpk)i-ts  Yhs = P VijYaeryaj—1, (6 =1(k) +5).
Jj=1 j=1

We define Uy s by a solution to
AUk + piak)yUk,s =0 in Qa,  Uks = @rs on 'y (1.10)
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and Vi s by a solution to

A‘/k,s + I‘n(k)‘/ka =01 Ql?
1.11
Ve a'/’k" =0only, Vi,=0onT,. (L1.11)
61/1 61/2 ’

We remark that the eigenvalues Ayy);,(k) = 0 (1 < s < L(k)) and the
remainders A;(k) # 0. Thus we have

[ hopetds.=0 ) Sp<pR+D-1)  (L12)

¢k,a”"' dS, =0 (g <q<qk"+1)-1)  (L13)

by (1.9) and hence equations (1.10) and (1.11) have some solutions.

Notation 1.15 For p,x) € {wp}p21N{A}52, and L(k) > 1, the L(k) square
matriz Dy, is defined by

D= ( / ("’U""Ulw Vk,.a"*»’) as ) |
r,\ 02 0 1<i,j<L(k)

It is easy to see that the matrix Dy is well-defined since (1.12) and (1.13)
hold. Using the above matrix we have the following.

Theorem 1.16 Assume pnx) € {wp}p2; N {A}2, and L(k) > 1. Then for
n=n(k)+1l(k)+j—1,7=1,...,L(k) there exist

. pn(C) — pn
fim === ¢

This limit is denoted by p,,. and these limits p( ) 1<j<L(k
n(k)+l(k)+i—1
are the eigenvalues of the matriz D;.

2 APPROXIMATION OF EIGENVALUES

We give a characterization of the asymptotics of the eigenvalues (justification
of Theorem 1.6). For that purpose we prepare several Lemmas. We begin
with estimations of the eigenvalues from above.

Lemma 2.1 For each n € N, there erist constants M,, > 0 and (* > 0 such
that
n(€) < pn + M2 (0<C < ().

114



Proof. We define certain approximate eigenfunctions <I>(0 € H}(Q) in the
following way. Case (i). If o = pag) = wpir) € {Wp}s C\{/\q}z‘;l, we set
p=p(k') + n — n(k) and

(I>(0) — ¢p> in ﬁl)
"\ U, in Q.

Case (ii). If pn = gy = Aqery € {Ag}521 \{wp}521, we set ¢ = q(k')+n—n(k)
and .
(I>(°) 0 in Ql,
¢V2y,  in Q.

Case (iii). If pn = pak) = Wy = Aqr) € {wplsds N {Ag}32;, we set
i=1+n-n(k) and

P(k') _
) Ui Pp(k')+j—1 in €2,
<I>(0) _ ) i=l
n,( Qk") .
CMEY v Ygwnyri-1 + W, in Qo
i=1
where (u;,v;) = (4i1,...,Ui Pk, Vi1, .., ViQk)) is the i-th eigenvector of

the matrix C) and W is the unique solution to the following boundary value

problem
P(k")

AW =0inQ;, W = u;dp)sj—1 on s,

j=1
A simple calculation shows with Notations 1.3 to 1.5 and 1.8

/ 80 8 a¢dz = bum + O(C?), (2.1)
f VoOVED, 0 dz = iy bum + O(CH2). (2.2)

Let Y, be a subspace of H} () spanned by a set {<I>(0) . <I>(°2.} which be-
comes n-dimensional for small ¢ > 0 (cf. (2.1)). For any (n 1)-dimensional
subspace Y C H}(R), there exists an element ® € Y,, such that ® # 0 and

® LY. The element & is given by ® = 37, aj<I>§-0) with 3% ) o # 0. From
(2.1) and (2.2), we obtain R;(®) < u, + O(¢'/?). Applying the mini-max
principle (1.4), we obtain the estimation Lemma 2.1.

Notation 2.2 We set functions ¥, = (Y/2®,, forn > 1.
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By the aid of the upper estimate of u,(¢), we study the limit of the eigen-
functions ®,, ¢ in two cases (not necessary to disjoint).

Lemma 2.3 Suppose liminfc_o (*/2||®n¢|l120,) > 0. Let {(}2, be a pos-
itive sequence such that ¢ — 0 as | — oco. Then there erist a subsequence
{G}2y € {G}2), a constant fi, € R and ¥, € C°() N HL(Q) such that

¥, ; — ¥, weak in Hy(Q) as | — oo,

U,z — ¥n strong in L%(Q) asl — oo, (2.3)

() = Bin asl — oo,

AV, + i, ¥, =0in Qy, ¥, =0 in, (2.4)

[ ¥nll2 @) >0, it € {Ap}32;.

Proof. Let 6 = liminf,_o( ||<I>,.,<||i,(02). Without loss of generality, the
sequence {(;}{2, satisfies 0 < {; < 1 and ||\II,.,4,||22(01) > 4/2 for any I > 1.
Put M, = py + My. The functions ¥ and @, satisfy [|®ngll}siq,) +

”q,'h(l“%z(ﬂz) = 1 and ”VQnr(l”%2(nl) + ”V‘I’n,cllliz(ﬂg) = I‘I’"(C’) for (1'5) a'nd
(1.6). Then we have

IWnglliz@ <1, IV¥nglaq < M.,
6/2 < "\I’”a(l”%ﬁ(ﬂz) <1 "‘I’n,(,”iz(nl) < (l as l - 00

and 0 < p,(¢;) < M;, by Lemma 2.1. According to the Rellich theorem, there
exist a subsequence {(;}{2, C {(1}2, and ¥,, € H}(R) and /i, € R such that
(2.3) and || ¥, || L2(n,) > 0 and || ¥,]|L2q,) = 0. For ¢ € H}(2;), we have

/n 2 (V90 V0 = (@) W, g, 0) dz = 0

and consequently

(V¥ Vo — i, ¥, o) dz = 0.
Q2
Thus ¥,|q, € C%(Q) and AVY,, + ji, ¥, = 0 in Q.

Next we want to check the continuity of ¥, across I';. Let £(p) be a
neighborhood of T'; defined by X(p) = {z € R¥ : dist(z,I';) < p} for a small
p € (0,0). Here p' is a constant such that £(¢’) € Q and for any z € X(p)
there exists a unique point zo € I'; with dist(z,zo) = dist(z, ;). Applying
standard interior and boundary estimates we have ||¥,, ¢ ||L~(a,\z(p)) — 0 as
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| = oo and there exists a constant c; such that [|¥, ¢ ||Le(0,\5()) < €1 for
any [ > 1. Let h be a function on ¥(p) defined by

h(il}) _ diSt(.’E, F2) for x € ﬁl N 2([)),
| =dist(z,I3) for z € QN E(p).

From a simple calculation, we have A(poh)(z) = (¢"oh)(z)+Ah(z) (¢oh)(z)
(z € £(p)) where ¢ is a C? function and ¢ o h implies a composite function
¢(h(z)). Let 7 be a constant with n > (M3)'/%. Let a, 8 and p be constants
a=n—y/n* = M, B=n+/n? — M; and p = (B—0a) " log{(8+1)/(a+1)}
respectively. We take 7 such that 0 < p < p’ and 2 > sup{|Ah(z)| : z €
S(p)}. Let 61 ¢ and 6, ¢ be continuous functions on the interval [—p, p] defined
by

) = S22 (cpsts)
e (Zl(—if‘?ﬂ;p(u £ B0 — (1+a0)e?) (-p<t<0),
S T— (L +B)e —(1+a)e?) (0t <))
We set

Oc(t) = b1(C) O1,¢(t) +b2(C) O24(1) (-p<t<p)

where b1 (¢) = ¢ + [ ¥ncll=(a:\2(p)) and b2(¢) = 1 +[[¥ncllz=(@s\5(0))- Direct
calculation gives for ( < (2M})™*

0. € C([-p,p]),  0c(0) = (Br(C) + ¢ b2(C) €°™) (1 + @) €7,

0c(—p) > b(C),  0:()>0 (—p<t<p), bclp)=biS),

0,(t) < —1/2+bi(Q) M, (—p<t<0), G{)<0 (0<t<p),
lim (8 (t) — Um6;(6) =0, 04(t) —276,(¢) + M;,0c(t) =0 (¢#0)

We set _
O¢(z) = b¢(h(z)) for z € X(p).

Then (¥ — 6)/6; € H(Z(p)) N C*(Z(p) \ T2) N C(S(p)) and

sup Vo c(2) — O¢(2)

<0
€85 (p) O¢ (z)

and for ¢ € H(Z(p))

U — O, 2VO, _ (Une — O,
V( O¢ )V(p O¢ V( O¢ 4
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U, ¢ v,
=VV¥ ’(V(e() (e )2 V@(V(p V((e )2) Ve(<p
On the other hand

W, ¢
V( ) VO, pdzx
‘L(p)ﬁﬂl (e( ) ¥
Vg 90 o

2 (e()2 aul i Z(p)NN (e()2
and hence

\Il \Il
V( ) VO, ¢+ Ve Vodz
/z(,,m, (e<>2 AAETREAA

f (6 hm0’(t)<pdS

(Ae( v+ Veng)

/Z‘( )nQ (9()2 iz (20 + AB) (80 h)(z) — M, 8¢) p do.

Similarly

v, \Il
Vv )ve + VSV dx
[z(,,m ((em <Pt ozY Ve

lim 6;(t) ¢ dS.

ry (9 )2

- /E(p)nnz ©0)? 2
Consequently for ¢ € C}(Z(p)) with ¢ > 0

v..—06 2Ve -6
V(_'“(—() Vo - ¢ V( C) 17
/z(p) ( O O¢ O,

_(20+ AR) (B0 b) + (un () — M) O, (‘I’n,c - 94) s,,) ac dz

(27 + Ah) (8;0 h)(z) — M, 8,) pdz.

2 h h - n
_ [ CtANGen) O MO
Z(p) 6

According to Theorem 8.1 in [6] we have ¥, ((z) < O((z) for z € X(p).
Similarly —8¢(z) < ¥, ((z) for € (p). Therefore we obtain

h(() ze€\X(p),
[¥nc(2)| < Oc(z) z € Z(p),
ba(() z €\ X(p)

and hence ¥,, € C°(Q2) and ¥,(z) =0 (z € ;).
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Lemma 2.4 Suppose that liminfe_o | ®n|lL2,) > 0. Let {G}2, be a pos-
itive sequence such that ¢ — 0 as [ = o0o. Then there exist a subsequence
{G)2, C {G)2,, a constant fi, € R and ®, € Hg( U 0Qy) such that

@, :lo, = ®n weak in H}(Q UTy) asl — oo,
@, loy = @n strong in L?(y) as 1 — oo, (2.5)
pen(C) = fin as I = oo,

{Acp,, + fin®n =0 in Q, 08,/0v =0 onTy,

; (2.6)
¢, =0 on aQa ||<I)n||L2(Q1) >0, fpn€ {wp};ila

where H}(Q; UT,) denotes the closure of C°(Q UT,) in H().

Proof. Let § = lircn iglf |®m¢|lL20,) and a positive sequence {(;}{2, satisfy
- _

that ¢ < 1 and ||®ng||2(n,) > 6/2 for any [ > 1. From (1.5) and Lemma

2.1, we have ,
V®nalliz) < Mn, 0= a(Q) < M.

There exist a subsequence {}2; C {G}2;, fin € R and &, € H' () such
that (2.5) and ||®,]|z2(n,) > O by the Rellich theorem. From (1.5) and (1.6),
we have (||®mcll22(q,) <1 and {[|Vmcllizq,) < My and hence for { = G
and ¢ € H}(Q)

a V(I)n,(V(p - ,u'n(C) (I)n,( Y dz

C a V(I)n,(v‘p — Hn (C) q:>n,C Y dz
2

< C{IV®nllL2@n Vel 22y + B (Ol @ngllz@nllellL2a) }
< CVA(M)2 + MY ol as)-

Let [ — oo, we have
V3,V — fim & pdz =0 for p € Hy(Q).
1931 :

This implies (2.6) and we complete the proof of Lemma 2.4.

Note that either of the condition of Lemma 2.3 or Lemma 2.4 holds for
any n € N.



Lemma 2.5 Let {(:}{2, be a positive sequence such that ¢ — 0 as | — oo.
Then there exist a subsequence {(;}2, C {(i}2, and functions &, € L2(Q,),
¥, € L*(Q) and constants fi, (n =1,2,...) such that

Vogla, = Yo in L), @,l0, = @n in L2(Q), @)
“n(Cl) — iy as l— 00, ﬁ'ﬂ € {wp};g—-l U {’\q};ila

<I>,,<I>,,,dx+/ VU, ¥,,dx =0, forn,m>1. (2.8)
m (17 :

Moreover, if ji, € {wp}p2; \ {Ag}21, the limit ®, is an eigenfunction of
(1.7) and ¥, = 0 in Q; and if jin € {wp}s2; \ {A}2,, the limit ¥, is an
eigenfunction of (1.8) and &, = 0 in Q,.

Proof. The functions ®, and ¥, ; satisfy

1Pnclliz) <1, [¥nellrzm, <1,
IV®ncllza) < My, IV¥ncllizn, < M,

/ (P"’( q)m,( d.’l? + / \I’n’( ‘I’m,( dIB = (Snm. (29)
W Q9

From ||®1¢||12(,) > 0, the lower limit of ||®1¢||2(n,) as ¢ — 0 is 0 or
6 > 0. If liminfe_, ||®1¢||L2(0,) = O, by taking a subsequence, we have
llim I®1,¢llz20,) = 1. Hence we have ji; € {A;}2, from Lemma 2.3. If
—00

li1<n iglf |®1,¢llL2(2,) = 0, by taking a subsequence, we have fi, € {wp}p2, by
_-)

Lemma 2.4. From the Rellich theorem and the above arguments, there exists
a subsequence {{(1,1)}2, C {¢i}2, such that

\I,l,((l,l)lﬂz — ¥, in L2(92) asl — o0,

q’l,((l,l)lﬂl - q>1 in Lz(ﬂl) asl — 00,

m(C(L,0) > frasl— o0, i€ {wp}2; U{A}R,.
Inductively, by taking a subsequence {¢(n,!)}2, C {¢(n—1,1)}, for n > 2,
we have also

Vo cnbln; = Up in L2(Q,) as | — oo,

Qn,((n,l)lﬂl — &, in L2(Ql) asl — (o oR

#n(((na l)) - ﬁﬂ asl— 00, ﬁ'n € {wp};il U {)‘q}gil
and (2.8) for 1 < m < n by (2.9). We apply the diagonal argument to this

situation. Namely, by setting {; = ¢((I,l) (I = 1,2,...), we obtain (2.7) and
(2.8) for any n € N.
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It is obvious that ¥, = 0 in Q;, for fi, & {A;}2; and that &, = 0 in
for fin, & {wk}52,. Thus we complete the proof of Lemma 2.5.

Proof of Theorem 1.6. Using the mini-max principle and Lemma 2.5, we
have

ﬁ'n S ﬁn+1a l]'n S Hn, ﬂ'n € {P’n}zo=1 = {wp};o=l U {/\q}3°=1
Clearly ji; = p;. We assume that fi; = py, ..., filn = tn. Then we have
Hn S /]"n+1 S Hn+1-

If pn = Mny1, we have finy; = pny1 immediately. If p, < pny1, we have
fin+1 = Pn OF fint1 = pnt1- Let k be the number with ppxy = p,. Then
nk+1)=n+1 If pn = finy1 € {wp}s2; \ {Ng}g21, We have

/<I>,~<I>jdx=6ij for n(k) <i4,j <n(k+1)
M

by Lemma 2.5. This means that the dimension of the eigenspace of pun) is
greater than or equal to n(k + 1) — n(k) + 1. This is contrary to that the
multiplicity of gy is N(k) = n(k + 1) — n(k). Similarly, if pp, = fin41 €
{23521 \ {wp}s2,, we have a contradiction to the multiplicity of pn(k). If
tn = fint1 € {Ag}2; N {wp}p2,, we have

/ q)iq)jd.’li"r ‘I’i\I’jd$=6ij forn(k)gz,jgn(k+1)
[ Qs

by Lemma 2.5. Let k' and k" be the numbers with wpky = Agkr) = Un(k) = Hn
and we set

a; = (a,-l, v ,aip(k')), a;; = / q),' ¢p(k')+j—1 d.'l:, ] = 1, oo ,P(k'),
) | o,
bi = (bi1, ..., bigwn), bij = / U Ygury+j—1dz, j=1,...,Q(k").
Q2

We have

(ai, bi) - (@j,b;) = 6;; for n(k) <4,j < n(k+1).
This implies that {(a,-,bi)}:'z(':&:)) is an orthonormal basis of R¥®). This
contradicts that the dimension of R¥®) is N(k). Thus fin4+1 # #n and hence

fin+1 = Pn+1- Since the set {u,}32, is independent of a choice of sequences
{¢}2,, we obtain Theorem 1.6.
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3 A PRECISE APPROXIMATION OF EIGENVAL-
UES

We derive a precise characterization of asymptotics of the eigenvalues p, ()
for (. For that purpose, we will construct accurate approximate eigenfunc-
tions. For simple notation, we set

(6,9)1= | ¢vdzr and (¢,¢)= n(bwdx.

101
Proof of Theorem 1.12. First we deal with the case (i). For w, € {wp}2,\
{Ag}2,, we define U,(.l) by the unique solution to the boundary value problem
ausY  au,

—2=0o0nT,, UM=0onT,

M —0;
AU, 0in Q,, B0, 30,

and U,Sz) is defined by the unique solution to
AUP =0in Q,, UP =UY on Iy

We set
_ ¢p + CUISI) in ﬁl,
Poc = Up+CU?  in Q,.
Using matching conditions on Ty for ¢,, U, U,Sl) and U,Sz), we have ¢, €
Hy(Q). If pp = wp € {wp}2; \ {A},, we substitute @y for ¢ in (1.5) and
we have

""_(OC_‘& (@nc, $p)1 + ((Bng, Up)a)

= =#n(O)(@nts U1 + C (Vg VUP)2 = 1 (Q) (B, UP)) . (3.1)
From Theorem 1.6 and Lemma 2.5, the limit ®,, is expressed by

p(k'+1)-1
&= > (Tndphi¢p in

p=p(k')

for k' with p, = wpy. Hence

pn(C) = R
—C_ ((I)n,(’ <I’n)l + Z ((I)m ¢p)1 C (q)n,(, Up)2
p=p(k')



p(k'+1)-1
=—pn(C) Y. (Bn,bp)1 (Bug, UM
p=p(k’)
p(k'+1)—-1
+ Y (@n 0)1€ (Vg VU2 = pin(C) (P, UsD)2) -
p=p(k')

On the other hand, the eigenfunction @, satisfies

(Prc,Up)2 = 0(41/2)’
¢ (Vg VUD)2 = tn () (@, UP)2) = O(C?).

Put ¢ = Ez and take | — oo, we get

Bn(C) = n R

. n 1

l]_'gg C %, (Qn,¢p ﬂ)U}S ))1
p=p

We denote this value by ,un) It will be proved that ,u(l) dose not depend on
the choice of the original sequence {(;}2, (well-defined). We consider the

limit of [ — oo for { = (; in (3.1) and we have

)(q)n, ¢P)1 - _ﬂn(q)na U(I))l (Aq)n, U(l))l

aU,
= dS;
/r‘z 31/2

P(K')

oU. .
- m +i—1 Up( i— —_pdsz
E Dp(k)+i /F -G,

for n = n(k),...,n(k+1) -1 andp:p(k’),...,p(k'+1)—1. Hence

1) )
”St(k) o

P =PA;,
1)
o Hp(k+1)-1
for an orthogonal matrix P = ((<I>,,(k)+,f_1, ¢p(kr)+j_1)1)l <ig<N(k)" Thus we

have obtained that u{’ (n(k) < n < n(k + 1) — 1) are eigenvalues of the
matrix Ay.
Next we deal with the case (ii). For Ay € {A}2; \ {wp}p2;, we define

V;,(2) by the unique solution to the boundary value problem
AV;(I) =0 in Qy, Vq(l) =V, onI,.

123



oo = (V, in Q,
YT W+ VY in Q.

Using matching conditions on I'; for v, V, and VY, we have Yo € HL(Q).
If pn = Ag € {Ag}321 \ {wp}32,, we substitute ¢ for v in (1.5) and we have

_ﬂ%—_ﬂn ((\I’n,(, Vq)l + (‘I’n,C: ¢¢I)2)

= (V‘I’n,(a VVq(l))2 (9] (‘I’n,(: Vq(l))2- (3-2)
From Theorem 1.6 and Lemma 2.5, the limit ¥,, is expressed in £, by

q(k'+1)—1

Un= ) (¥n,%)2% in®

q=q(k')

for k' with p, = Ayu). Hence

pn(€) = pn [ -
== Z (\I’“’ ¢q)2 (‘II"’C’ Vq)l + (q’n,(a ‘I’n)2

¢ a=q(k')

q(k'+1)-1

= > (Tn¥e)2 (V¥ V)2 = (C) (Tng, VV)s)
9=q(k’)

We see that the eigenfunction ¥, ¢ satisfies (¥, ¢, V;)1 = O(¢!/2) as ¢ — 0.
Put ( = {; and take | = 0o, we get

pn(Q) = pn _ 2
Jim 2R = N (W, 40)2 (V, VD)2 — i (T, VIV),) .
b € a=q(K’)

We denote this value by ,uﬁ.l). It will be proved below that us.l) are well-
defined. We consider I — oo for ¢ = (; in (3.2) and we have

s (Yn,%,)2 = (VE,, VV )y — pn (T, vy,
ov
= —2V,dS
s aV2 1 ’
q(K+1)-1
aV;
- ny ] V —1 -
> w,)zfrz > ds,

J=q(k’)
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for n = n(k),...,n(k+1) — 1 and ¢ = ¢(k'),...,q(k' + 1) — 1. Hence

1)
k) o
P ., = BkP
(1)
o Fon(k+1)-1

for an orthogonal matrix P = ((wq(k,)+,-_1, \I’n(k)+j_1)2) 1<i <N (k)" This means

that pl (n(k) < n < n(k+1) — 1) are the eigenvalues of the matrix Bj.
Since the eigenvalues of these matrices are independent of a choice of
sequences {(;}{2,, we obtain Theorem 1.12.

Proof of Theorem 1.13. The same manner to that of the construction of
approximate eigenfunctions used in the above proofs can not be applied to
the case where pn, € {wp}s2; N {Ag}32;, since Up and V, can not be defined
in Notation 1.8 if wp, = A,.

For w, € {wp}32; N {Ag}32;, we define U, by the unique solution to the
boundary value problem

AU, =0in Qy, U, = ¢, on I's.

We set

{¢p in ﬁl,

©Yp = )

Up in (.

If pn = wp € {wp}s2; N {A}32;, we substitute ¢, for ¢ in (1.5) and we have
n(C) — bn
o) I (@, ) = (P, VUl = () (B, Ul (33)

For A, € {wp}52,N{Ag}32; we define V; by the unique solution to the bound-
ary value problem

AV, =01in Qy, %}‘%+%=00an, Vg=0onT,

and Vq(l) is defined by the unique solution to the boundary value problem
AV® =0in Q;, VI =V in Ty
We set

e, @y
YT W+ VY on @y,
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If pn = Aq € {wp}p21 N{Ag} 32, we substitute W, for ¢ in (1.5) and we have
pa(C) — in
_C)l—ﬂ'— (‘I’n,(’ "/)q)2
= ~#n(Q) (Bn, Va1 + €2 (W, VVD)z = in(Q) (T, ViD)2) . (34)

If o = wprry) = Ageary € {wp}p21N{Ag}32;, the limits &, and ¥, are expressed
by

p(k' +1)-1 q(k”"+1)-1
q)" = Z (th ¢p)l ¢p in Ql) ‘I’n = Z (\I’n, ¢q)2 ¢q in QQ
p=p(¥') a=q(¥")

by Theorem 1.6 and Lemma 2.5. We have

Hn(C) — pm ((Png, ®n)1 + (Tng, Pn)2)

iz

p(k'+1)—1
= Z (2 ¢p)1 ((V‘I’n,(’ V)2 — 1a(€) (\I’n,(’ UP)2)
p=p(k')
q(k"+1)-1
= ka($) z (¥n, ¥q)2 (®ng, Vo
q=q(k")
q(k"+1)-1
+C2 N (W, h)2 (Vg VD)2 ~ pn(C) (T, VD)) .
q=q(k")

Put(=f;andtakel—>oo,weget

p(k'+1)-1

fim 8t TS Bt (0, 9y = i (80, Uy
p=p(k’)
q(k'"+1)—1
— Hn Z (‘I’n, ¢q)2 (Qn) ‘/q)l
a=q(k")

for n with p, = pnx). We denote this value by p,,(,l/ 2. It will be proved below

that ul’? are well-defined. We consider I — oo for ¢ = § in (3.3) and we
have

#&1/2)((1)"’ ¢p)l = (V‘I’n, VUP)2 — HUn ("I’n’ Up)2

_ ov, 4, dS.

) 3 61/2
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q(k"+1) 1

0
- (T, ¥1): / by 32 ‘”’ ds,

j= q(k”)

for n =n(k),...,n(k+1)—1landp= p(k'),...,p(k' +1) — 1. Similarly, we
consider I —= oo for { = (; in (3.4) and we have

“511/2)(\1,7” wq)2 = —Hn ((I)m V)

_ 9y
= / " 3L dS,
p(K'+1)-1
, 0
=Y @ubi [ tigids.
i=p(k') T2 2

for n = n(k),...,n(k+1) — 1 and ¢ = q(k"),...,q(k" + 1) — 1. Thus

(1/2)
'u’n(i:) o 5
e, P= PCk ’
1/2
o uf.(ill) 1

for an orthogonal matrix P given by

P = (Pl P2) )
Pl = ((Qn(k)+i—17¢p(k')+j—1)1)15iSN(k)’lsjsp(kl) )
Py = ((\Il"(k)'“—l’w‘I(k")'Hi-l)z)1gi5N(k),1§j5Q(k”)'
This means that x$/? (n(k) < n < n(k+ 1) — 1) are the eigenvalues of the

matrix C}. Since these eigenvalues are independent of a choice of sequences
{¢i}52,, we obtain Theorem 1.13.

Proof of Theorem 1.16. For s = 1,..., L(k), we define V,c(la) by the unique
solution to
AV(I) =0 in £y, Vk(:,) = Vk,s on Iy,

and U, ,5,13) by

AU,S’IS) =0in Ql, a:lv-’ + aa({jc: =0 on an U,g,ls) =0 on 1-\1, ;

and U by |
AU(z) = 0 in o, U(z) U(l) on I's.
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We set an approximate eigenfunction

ks = ¢k,a + ClﬂVk,s + CU]S,I,) in ﬁl,
BT s+ Ui + 2V 4 UP im0

Using matching conditions on Iz, we have ¢, € H}(2). We substitute Dk,
for ¢ in (1.5) and we get

M'I(OT—#" ((Bags Prs)y + (Tag, Vrs)y)

= %"— ((®ng, Vi) + (Un, Ukys)2)

= Bn()(@ng, U1 + (Vng, VYD) = pin(€) (g, Vi)
+ 2 (Vg VU2 = () (g, U2):) (35)
On the other hand, we set ‘
ttn = ((®n, Bp(r)1s- - - (P, Bpgr+1)-1)1)
Bn = ((Tn, Ygem)2s - - - » (¥, Yok +1)-1)2) -

Then for n = n(k) +I(k) +j — 1, 1 < j < L(k), the vectors (i, d,) are
eigenvectors of the eigenvalue 0 of C; and we have

L(K)
(am i”’n) = Z bns(ul(k)+.n vl(k)+a)

s=1

where bns = fin Uyk)ss + Dn'vyr)+s. Hence

L(k) L(k)
¢, = ans ¢k,s in,, ¥,= ans "pk,s in O
s=1 s=1

forn =n(k) +1(k)+j—1,1< j < L(k) and we have

1)t (0,021 + (P )

L(k)

= E bna (_ﬂn(C) (q)"»O UIS,IJ))I + (V\I’ﬂ,(’ V‘/k(,i)b - ”"(C) (‘I,"’(’ ‘/;‘(,-13))2)
s=1
+ 1 § :bns ((®rc) Via)t + (¥ng, Ury)2) + O(CH?).

s=1
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Put ¢ = {; and take | — oo, then for n = n(k) + (k) +j — 1,1 < j < L(k)
there exist

=00 C
L(k)
=3 bus (~tn (0, U1 + (T, TV = b (¥, Vi)2)

s=1

We denote this value by uﬁl). It will be proved below that usll) are well-

defined. We consider | — oo for ¢ = ¢ in (3.5) and we get

/‘1’51.1) bns = _ﬂn((pn, Ulf:;ls))l + (V\I’na V‘/lc(,t))2 - 'u’n(q’"’ ‘/"?(;))2
= / (Qn% + B\I!n Vk,s) de
I

61/2 81/2
- Lk
OUrs OVi;,
= b,,-/ (U‘ ’—————’-’-V,)dSz
; J T, k. 61/2 61/1 k.

for n = n(k) + (k) +j— 1,1 < j,s < L(k). Hence

o) |
Fon (k) +1(k) o
P te. = DkP
1) :
o o Bt 1y—1k)-1
for an orthogonal matrix P given by

P = (bni)ISi,jSL(k) (n = n(k) + l(k) +] - 1)

This means that the limits ,ufll()k) k) ,us()k +1)—i(k)—1 Bre the eigen\{alues
of the matrix D;. Since these eigenvalues are independent of a choice of
sequences {(;}{2,, we obtain Theorem 1.16.
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