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Abstract
Let 4 and B be positive invertible operators. Then for each p > 0 and r > 0,
two inequalities

(Bé'APBﬁ)# > B" and AP > (.4"2215"‘:'1!;');5iT

are equivalent. In this report, we shall show relations between these inequalities
in case A and B are not invertible. And we shall show some applications of this

result to operator classes.

1 Introduction

In what follows, a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (detioted by T > 0) if (T'z,z) > 0 for all

Tz € H.
As a recent development on order preserving operator inequalities, it is known the

following Theorem F.

Theorem F (Furuta inequality [9]).
If A> B >0, then for each r > 0,
(i)  (B:APBi)s > (BiBPB3)a

and

()  (A5A4PA%)7 > (45BPA%):

©,~r)

FIGURE 1

hold for p > 0 and ¢ > 1 with (1 +7)g > p + 7.
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Theorem F vields the famous Lowner-Heinz theorem “A4 > B > 0 ensures A* > B®
for any a € [0,1]” by putting »r = 0 in (i) or (ii) of Theorem F. Alternative proofs of
Theorem F are given in [6] and [18] and also an elementary one page proof in [10]. It
was shown by Tanahashi [19] that the domain drawn for p, ¢ and r in the Figure 1 is the
best possible one for Theorem F.

As an application of Theorem F, the following result was shown in [7] and [11].

Theorem FC ([7][11]). Let A,B > 0. Then the following assertions are mutually
equivalent:

(i) log A > log B.
(ii)y (B5APB3)#+ > B" for allp >0 and r > 0.

(ii)) A" > (A3BPA5)# for allp > 0 and r > 0.

We remark that this result is an extension of [4] in case p = r, and an excellent proof
of this result which used only Theorem F was shown in [22].

On the other hand, the following assertions are well known: Let A and B be positive
invertible operators. Then

(1) A> B = log A > logB.

7 > B" and A? > (A3 B"A%)#+ for all p > 0 and

(2) log A > log B = (B3 APB%)
r > 0.

(3) For each p >0 and r > 0, (B A?PB%)# > B" «= AP > (AFB A%)#¥.

(1) holds since log t is an operator monotone function. (2) is an immediate consequence
‘of Theorem FC. (3) was shown in [11].

Related to these results, it is known in [23] that invertiblity of (1) and (2) can be
replaced with the condition N(A) = N(B) = {0}, that is, (1) and (2) hold for some
non-invertible operators A and B. But we have not known whether invertiblity of A
and B in (3) can be replaced with looser condition or not. In this report, we shall show
relations between

r

(BiAPB3)7+ > B" and AP > (A3BA%)7F
when A and B are not invertible. |

Next, An operator T is said to be hyponormal if T*T > TT*. An operator T is
invertible log-hyponormal (defined in [20]) if log T*T > log TT*. For each s > 0 and
t > 0, an operator T belongs to class A(s,t) (defined in [8]) if (IT'|"|T|2"|T'|‘)?wiLT >

|T*|2, where |T| = (T*T)2. Class A(s,t) is introduced as a generalization of class A
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(|72 > |T|?) defined in [14]. We remark that class A equals class A(1,1) and class A
is introduced as a class of operators including invertible log-hyponormal operators and
included in the class of paranormal operators (||T?x|| > ||Tz||? for all unit vectors z € H )
Moreover, for each s > 0 and t > 0, an operator T belongs to class wA(s,t) (defined in
[16]) if (\T*[H|T 2| T*|t) 7+ > |T*2 and |T|* > (|T)¢|T*|2|T|*)+*=. Obviously, for each
s> 0andt > 0, every class wA(s,t) operator belongs to class A(s,t). As inclusion
relations among these classes, the following assertions hold by (1), (2) and (3):

(1) Every invertible hyponormal operator is log-hyponormal.

(2)’ Every invertible log-hyponormal operator belongs to class wA(s,t) for all s > 0 and
t>0.

(3)’ For each s > 0 and t > 0, invertible class wA(s,t) equals invertible class A(s,1).

There are many papers on these classes in case of invertible operators, for example
8], [20] and [24]. |

On the other hand, even if an operator is non-invertible, log-hyponormality can be
defined by N(T*) D N(T) and log A > log B, where A and B are the compressions of
T*T and TT* to W, respectively. This definition implicitly appeared in (3] and it was
pointed out in [23] that it is the general form of log-hyponormality. Ando [3] showed
that every hyponormal operator is log-hyponormal and every log-hyponormal operator
is paranormal. Moreover, Uchiyama [23] showed that every log-hyponormal operator is
also included in class A (even if an operator is non-invertible). In this report, we shall
show that for each s > 0 and t > 0, class A(s,t) coincides with class wA(s, t), that is,
we shall show (3)’ without invertibility of operators, and show some properties of class
A(s,t) operators. Lastly, we shall show a normality of class A(s, t) operators for s > 0
and t > 0.

2 Relations between
(BEAPB%)5 > B" and Ar > (AEB"AY)

i
p+r

In this section, we shall show the following result:

Theorem 1. Let A and B be positive operators. Then for each p > 0 and r > 0, the
following assertions hold:

r

(i) If (B%APB%)}H-r > B’, then AP > (ASBTA%)F-%.

r

(i) If A7 > (A3 B A%)7 and N(4) C N(B), then (B3 APB2)7+ > B'.
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We remark on Theorem 1 that the assumption of (ii) has a kernel condition N (A) C
N(B), but the assumption of (i) does not have any kernel conditions. If A and B are
invertible, then N(A4) = N(B) = {0} holds, and the kernel condition of (ii) in Theorem
1 is satisfied. Hence we know that Theorem 1 is a generalization of (3) in the previous
section.

To prove Theorem 1, we prepare the following lemma.

Lemma 2. Let A and B be positive operators. Then the following assertions hold:
(i) Jim AZ(A+el) 143 = Jim (A +el)™' A = Py,
where Py is the projection onto a closed subspace M.
(ii) lim AZB2{(BAB%)" +eI}7' B3 .43 = (A4 BAH for a € (0,1).
We remark that if A and B are both positive invertible, then
ATBH(BIABY) B34} = (AYBAY ' for a € (0,1)

by the following Lemma F. Therefore we can regard (ii) of Lemma 2 as a non-invertible
version of Lemma F for A € (0,1).

Lemma F ([12]). Let A be a positive invertible operator and B be an invertible opera-
tor. Then

(BAB*)* = BA3(A:B*BA3)*1 43 B*

holds for any real number \.

Proof of Lemma 2.
Proof of (1) \Ke give a proof which is a slightly modification of the proof of [5, Lemma).

Let A = / tdF(t) be the spectral decomposition of A. Then

_ i R Al
61_1’1110(‘4 +el)'A = 51—13:0/0 e dF(t) = ./0 X, (t) dF (t) = I — F(0),

where X(o,).4(?) is the characteristic function on (0, ||A||]. Since I — F (0) = Py(ays, we
have

b=

lim A2 (A+e) 42 = hm(~1+81)‘ A= Py(ays.

£=40 e—=40

Proof of (ii). Let A3B% = Ul_ﬁB%l be the polar decomposition of Az B%.
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Then we have
lim A2B3{(B*AB)" + c]})' B A3
= lim U[42B3|'~°| 45 BF|°(|43 B4 [ 4 c1)~}| A} BY|*| A} B3 i-ay
e

ipin- * .
_U|42B2|1 aPN(H?B’I)‘L,Fthll agr by (i)
= U|A2 Bz 2=y = | B3 43[20-0) = (4} B 43)l-

Hence the proof is complete. O

Proof of Theorem 1. Let € > 0. And also we may assume p > 0 and r > 0.
Proof of (i). Since (B3 APB%)5+ > BT, we obtain

ASBH(B" +cI)7'B3 A} > ASBi {(B5APBS) + eI} T'B% A%, (2.1)
In (2.1), by tending ¢ — +0 and Lemma 2, we obtain
AR Pypy A% > (ASBTAR)E

Hence we have

A2 AE Py Al > (A3BTAR)H

Proof of (ii). Since A? > (45BrA )v+' | we obtain
BriAY(AP +61)"'45B5 < B5 A% {(A8BTA%)i% 4+ eI} 1455, (2.2)

In (2.2), by tending € — +0 and Lemma 2, we obtain

B Py 4. B3 < (B3 APB5)i* (2.3)

On the other hand,
N(A) C N(B) <= Py4yr > Pyps. (2.4)
By (2.3) and (2.4), we have
(B*AB%)7 > BiPy(.. B} > B PypuBi = B'.

Therefore the proof is complete. | O
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Remark. We recall the assumptions of (i) and (ii) in Theorem 1. Here we assume
p=r=1in Theorem 1.

(i-a) (B?ABz): > B.
(ii-a) A > (A2BA?)3 and N(A) C N(B).
We proved that (i-a) ensures A > (A5B.4%)% and (ii-a) ensures (i-a) in Theorem

1, so we might expect that (i-a) and (ii-a) are equivalent. But we have the following
counterexample.

Example 1. (BAB%)} > B and A > (AiBA?), but N(4) ¢ N(B).

1 2 10 A (2 (1 2 1 (1 0\ _
Let.4--2(2 4).3—(0 0).Th(,nAz—\/;(2 4>,B2—(0 0)_B. Hence

va(} ) = (prashi> B

and

A> (A3BA2): = V2 (; i) |

But (—12) € N(A) and ('12) ¢ N(B), so.tha.t N(A) ¢ N(B).

Moreover, we have the following example in [16].
Example 2 ([16]). 4 > (4}BA%)3, but (B3 AB7): # B and N(4) ¢ N(B).
~Let A= ((1) g) and B = (g (1)) Then we can check A > (A%BA%)%, (B%AB%)% z B
and N(4) ¢ N(B). easily.

Therefore we recognize that 4 > (A%BA%)% requires some condition to be equivalent
to (B éAB%)% > B. So we consider the following condition.

(i-a’) A > (A}BA})} and N(A31B7) C N(B).

We can easily check that N(A) C N(B) ensures N(AiB:) C N(B). And
also (B%AB%)é > B ensures N(A:Bz) c N(B) since N(AiB:) = N(B%AB%) =
N((B%AB%)%) C N(B), so that (i-a) ensures (ii-a’) by (i) in Theorem 1. '

But, unfortunately, we understand that (ii-a’) does not ensure (i-a) by the following
example.
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Example 3. 4 > (42 BAz): and N(A:B?) C N(B), but (B2AB?)z # B.

1(1 2 10 L 1 (1 2 L 10
Let A= - B= . n A? = —— 2 = = B. Henc
e 5 (2 4), <0 0) Then A N (2 4), B (0 0) ence

and N(A%B

!
=
5

]

0 11 1 10
j it B = —— . But
{f (1) tE(C} since A2 B = (2 0) u

% ((1) g) = (B*AB?)? # B.

At the end of this remark, we note that Cho-Huruya-Kim [5] gave an example such
that N(T) ¢ N(T*), N(T) 3 N(T*) and |T| > |T| > (T T)*| (1e T is w-hyponormal)
by using A and B in Exanmple 1 stated above, where T = |T|2U|T|z and T = U|T)| is
the polar decomposition of T

3 Applications

In this section, we shall show some applications of Theorem 1 to operator classes. In
section 1, we introduced definitions of some operator classes, here we recall definitions
of these classes as follows:

Definition 1. Let s > 0, t > 0 and T = U|T| be the polar decompbsition of T.

(i) T belongs to class A(s,t) < (|T*||T|*|T*|* )sjrt > T+

(ii) T belongs to class wA(s,t)
= (IT |T|23|T*| )7 > |T*[* and ITI2“" > (T[T T ")
> [Ty > [T and [T|* > |(T,0)° |,
where Tyy = |T|*U IT|* (generalized Aluthge tmnsformatz'on).

(iii) T belongs to class A <= |T?| > |T|?, that is, T belongs to class A(1,1).

(iv) T is w- hyponormal = IT| > |T| > |(T)*|, that is, T belongs to class wA(3, 3
where T = IT|2U|T|> (Aluthge transformation).

(1), (ii), (iii) and (iv) of Definition 1 were defined in [8], [16], [14] and [2], respectively.
We remark that Aluthge transformation has many interesting properties, and many
authors study this transformation, for instance, [1], [13], [15] and [17]. These classes
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include invertible log-hyponormal operators, and are included in normaloid (i.e., |T|| =
r(T), where 7(T) is the spectral radius of T'). It has been known that for each s > 0 and
t > 0, class A(s,t) includes class wA(s,t) by the definitions (i) and (ii). And also for
each s > 0 and t > 0, every invertible class A(s,t) operator is an invertible class wA(s, t)
operator, which was shown in [8] and [16]. More precise inclusion relations among class
wA(s,t), and powers of class wA(s,t) operators were already shown as follows:

Theorem A ([16], [26]).

(i) For eachs >0 andt > 0, every class wA(s,t) operator is a class wA(e, 3) operator
for any a > s and 3 > t.

(i) Let T be a class wA(s,t) operator for s € (0,1) and t € (0,1]. Then for each
natural number n, T™ belongs to class wA(2, L).

We remark that Theorem A holds for classes of invertible class A(s,t) operators
instead of class wA(s,t), which were shown in [8] and [25]. We can summarize inclusion
relations among these classes as the following Figure 2. Dotted lines in the diagram
mean that we need invertibility of operators to prove the relations.

e 4 CL)

-'xi t
33 E (1)
-"'m class A(3.3) ' class wA(s, t)
PPttt : (L.1) y
© "’? ; lass wA(1,1)
5 - hly

| w-hyponormal

log-hvponormal

1
5-hyponormal

o

hyponormal

p-hyponormal
(T*T)* = (TT*)?)

FIGURE 2

Here, in general, we can obtain that class A(s,t) coincides with class wA(s,t) by (i)
of Theorem 1 as follows:
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Theorem 3. For each s > 0 and t > 0, the following assertions hold:

(i) Class A(s,t) coincides with class wA(s,t).
(i) Class A coincides with class wA(1,1).

(iii) Class A(3,3) coincides with the class of w-hyponormal operators, i.e., class wA(3, 3).

We can prove Theorem 3 by only applying (i) of Theorem 1 to definitions of these
classes, so we omit to prove. By (iii) of Theorem 3, we have

IT| > |T| < (|T*|2|T||T*|?)z > IT*I <= T :class A(L, 1)
l

&= T : w-hyponormal <= |T| > |T| > ](’f )

Hence - 5 _
IT| > |T| = |T|>(T)"],

that is, we may as well define w-hyponormality by only [T| > |T].

Next, we shall show some properties of class A(s, t) operators without the assumption
of invertibility, which are known as properties of invertible class A(s, t) operators and
class wA(s,t) operators.

Theorem 4.

(i) For each s > 0 and t > 0, every class A(s,t) operator is a class A(o, 8) operator
forany a > s and 3.> t. - B

(i) Let.T be a class A(s,t) operator for s € (0,1] and t € (0,1]. Then for each natuml

number n, T" belongs to class A(2, L).

Proof is very easy by (i) of Theorem 3 and Theorem A, so we omit the proof, too.
By putting s = ¢ = 1 in (ii) of Theorem 4 and noting that class A(3,1) equals w-
hyponormality by (111) of Theorem 3, we obtain the following result on powers of class

A operators without the assumption of invertibility.

Corollary 5. Let T be a class A operator. Then for each natural number n, T" belongs
to class A(— —) Especzally T? is w- -hyponor mal.

At the end of this section, we shall summarize relations among these classes which
are obtdlned in this section as follows: Please compare Figure 3 with Figure 2 stated



96

class A(s,t) b (5,1)
—
class wA(s,t)
class A (81 t)
4
class wA(1,1)
class A(%, %) 7 [61))
—
w-hyponormal
1 1
. 0)?/' s
0
log-hyponormal
1-hyponormal
P\
2
hyponormal
1
p-hyponormal

FIGURE 3

4 Normality

In this section, we shall show a normality of some non-normal operators. It is well
known that if 7" and T* are hyponormal, then T is normal. But in the case T and T*
belong to weaker class than hyponormal; this assertion is not obvious. Many authors
obtained many results on this problem, and the following results were known until now.

Theorem B ([21]). IfT is a class A operator and T* is a w- hypanormal operator then
T is normal. ‘

Theorem C ([3]). If T and T* are paranormal opemtore satzsfyzng (T) =N (T‘)
then T is normal.

Here, we shall generalize Theorem B as fellov{'s:

Theorem 6. Let s, >0, s9>0,t;, >0andt, >0. IfT belongs to class A(sl,tl) 'a}zd
T* belongs to class A(sy,t3), then T is normal.

Put sy =t, =1 and s2 = 12 = - in Theorem 6, we have T heorem B by Theorem 3,
put s, =t =sy=t,=1inT heorom 6 we obtaln the followi mg result on class A:

Corollary 7. If T and T* belong to class A, then T is normal.

To prove Theorem 6, we need the following results:
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Lemma 8. Let A and B be self-adjoint operators, and X € B(H) satisfying
X*AX > X\*BX.
If N(A) D N(X*) and N(B) D N(X*), then A > B.

Proof. Let H = R(X)® N(X*) and x = Xy + z, where y € H and z € N(X*). Put
T=A-B. Then T=T*and N(T) D N(X*). Hence we have

(Tz,z) = (TXy,Xy)+ (TXy,2) + (Tz,Xy) + (T2,2) = (X*'TXy,y) >0,
that is, A > B. , O
Proposition 9. Let A> 0 and B > 0. If
B:AB: > B? (4.1)
and
ATBAY > A2, 492
then A = B.

Proof. Put E = Py(41 and F = Pyg.. (4.1) is equivalent to B3FAFB: > B? =
B:BB:. By Lemma 8, we have FAF > B since N(FAF) D N(B?) and N(B) =
N(Bz). Then we have :

(A2 FA2)2 = AsFAFA? > A*BA* > A by (4.2),
and we obtain the following (4.3) by Lowner-Heinz theorem.
AFAT > A .(4.3)

(4.3) is equivalent to A2EFEA? > 43EA:. By Lemma 8, we have EFE > FE since
N(EFE) D N(A?) and N(E) = N(Az). Therefore we obtain EFE = E, and then
F > E, so that N(A) D N(B). Hence

AZB'

by applying Lemma 8 to (4.1).
By the same way, we also get B > A4, so that A = B. : O

Proof of Theorem 6. Let p = max{s,, ss,t1,t2}.
Firstly, if T belongs to class A(s;,t;), then T belongs to class A(p, p) by (i) of Theorem
4. This class coincides with class wA(p, p) by (i) of Theorem 3. Hence we have

(IT*P|T?|T*P)s > |T*|* and |T|? > (|T|P|T*?*|TJP)3. (4.4)
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Secondly, if T* belongs to class A(s,,ty), then T* belongs to class A(p,p) by (i) of
Theorem 4. This class coincides with class wA(p, p) by (i) of Theorem 3. Hence we have

(TPIT**|TP): > |T|® and |T** > (|T*P|T|T* ). (4.5)
Therefore
|TP|IT**|TPP = |T|* and |T**" =|T*P|T*|T*P
hold by (4.4) and (4.5), and then |T| = |T*| by Proposition 9. O
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