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1 Introduction

This report is based on the following preprint:

T.Yamazaki and M.Yanagida, Relations between two operator inequalities and their
applications to paranormal operators, preprint.

In what follows, a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive (denoted by T' > 0) if (T'z,z) > 0 for
all z € H. The following Theorem F is well known as a recent development on order
preserving operator inequalities.

Theorem F (Furuta inequality [11]).
P l+r)g=p+r

IfA> B >0, then for eachr > 0,

()  (BEA°BY): > (BiB’Bi):

and

(i)  (ASAPA%)s > (AEBPAT)s |

(01 —1')
hold forp >0 andg>1 with (1+r)g>p+r. FIGURE

Theorem F yields the famous Léwner-Heinz theorem “A > B > 0 ensures A* > B®
for any a € [0,1]” by putting r = 0 in (i) or (ii) of Theorem F. Alternative proofs of
Theorem F are given in [6] and [18], and also an elementary one page proof in [12]. It
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was shown in [19] that the domain drawn for p, ¢ and r in the Figure is the best possible
for Theorem F.

For positive invertible operators A and B, the order defined by log A > log B is called
the chaotic order. The chaotic order is weaker than the usual order since logt is an
operator monotone function. The following result is a characterization of the chaotic
order which is an application of Theorem F.

Theorem 1.A ([7][13]). For positive invertible operators A and B, the following asser-
tions are mutually equivalent:

(i) log A > log B.
(ii) (B3APB3)# > B" forallp >0 andr > 0.
(iii) AP > (A3BTA%)5% for alip> 0 andr > 0.
The case p = r of Theorem 1.A was shown in [4]. An alternative proof of Theorem
1.A was shown in [8], and also a breathtakingly simple proof in [21]. It was attempted in
[22] to remove the invertibility of operators in Theorem 1.A.

Recently, Ito-Yamazaki [17] showed the following result on the relations between the
two inequalities in Theorem 1.A.

Theorem 1.8 ([17]). Let A and B be positive operators. Then for eachp > 0 andr > 0,
the following assertions hold:

(i) If (B5APB%)#% > B, then AP > (A3 BrA%)#.
(if) If A» > (A5BTA%)#% and N(A) C N(B), then (B> APB5)7 > Br.

It turns out by the following Lemma F that the two inequalities in Theorem 1.B are
equivalent in case A and B are invertible.

Lemma F ([14]). Let A be a positive invertible operator and B be an invertible operator-
Then
| (BAB*)» = BA?(A"B*BAY)*-14}B*

holds fo r any real number ).

In fact; for each p=20andr >0,

-r

AP > (ARBTA%)5 <= AP > ASB¥(BiAPB5)#"B5A% by Lemma F
<= B~ > (BiAPB%)#+
<= (BiAPB3)# > B'.
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2 Relations between two operator inequalities

As a parallel result to Theorem 1.B, we obtain the following result.

Theorem 2.1. Let A and B be positive operators. Then for each p > 0, r > 0 and
A > 0, the following assertions hold:

$APB3 p+r PASBTAS
rBiAPB37 + pX IZBT, then AP > (p+T)IA3B" Az

O — e = rASBrA% +parrl’

P AR
(ii) If 4» > P FTINATBTAT

rBiAPB3 + pAPtT] > B
= rARBrAT 4+ pietr] ’

and N(A) C N(B), then (p+r)I® =

We remark that the two inequalities in Theorem 2.1 are equivalent in case A and B
are invertible. In fact, for each p > 0,r > 0 and A > 0,
AP > (pz-l- r)/\:A%BrA% w0 (p+ ,-2;\1’ _
rA31BT A3 + plrtr] rl + pI\t"A3 B-TA%
rl + pA"*" AT BTAT
P+r1)I
rBiAPB3 + pAP+T] -
(p+71)I -
We also remark that the inequalities in Theorem 2.1 are weaker than those in Theo-
rem 1.B. In fact, by the arithmetic-geometric-harmonic mean inequality,

> A

r r r 3 p % #
(B3 APBE)# = (5“:_’,11) (N
r B3APB3 P ,,_ TBIAPBi +p tT]
“p+r M p+r (p+r1)I
and
-
(ASBTA%)5+ = (@)”+ (AP)7+r

> P (A%BfA%)“,+ T_oen)t _1= (p+r)WASBrAS
p+r\ X p+r rASBrA% + pirtr]

hold for each positive invertible operators A and B, p > 0, r > 0 and A > 0. Hence
Theorem 2.1 can be understood as a parallel result to Theorem 1.B.
In order to give a proof of Theorem 2.1, we use the following lemma.

Lemma 2.A ([17]). Let A be a positive operator. Then
. 1 —-14% _ s 14 _
El_1+ri10A2 (A+el) AT = el-lﬂlo(A +el)7 A = Py

holds, where Py, is the projection onto a closed subspace M.



103

Proof of Theorem 2.1.

Proof of (i). By the assumption,

rBiAPB7 4+ pAPtT]
(p+T)Ne

holds for any € > 0. By tending ¢ — +0 and Lemma 2.A, we have

rB5APB% + pAP+'I) - BiAb — (PHT)VARB AT
(p+r1)Aw rATBTA% 4+ prtr]

-1
A%B3(B" +cI)"'BiA% > A% B ( + sz) BiA%

AP > AR Py g A% > A%B3 (
since
ARBi(rB5APBE + p\*I)"'Bi A% = U|ASB3|(r|AS BE|? + pA**"I) 71| AR B3 |U*
= U|ARBE U (r|BE AR + pX°*7 1)
= |B5 A% |*(r|BE A% + pA**I)~!
_ A§BrA%
T rARBrA 4 pae+rl
where A¥ B3 = U|A% B3| is the polar decomposition of A% B3,

Proof of (ii). By the assumption,
Bi Ak ( (p+r)WAEBAS
rASBrAs + pavtr]
holds for any € > 0. By tending ¢ = +0 and Lemma 2.A, we have

-1
+ eI) A%B% > BiA%(A? + ¢I)"'A%B3

rBi APBS + pyetr] _ TBIAPBE +pNYTPL g0,
(p+71)Iw - (p+r1)I
since N(A) C N(B) is equivalent to Py4). > Py(p)+ and
. A3Br A% el \7 -
lim B5A% 7
e (rA%B’A'zZ + pArtr[ M (P+T)/\p) AR5
-1
ARBTAR b\
rASBrA% 4 pap+r]
|B2A%|(|B3 A5 2 + b(e)I)"!|B5 A3|

> BiPya.B3 > B"

= lim a(e)Bi A% (
e—+0

- sl—lgrlo a(e)V (r|B§A§|2 + pAp+r])-1 4
PN(BEAE)L "

=V -
(r|B5A%[2 + pap+rI)=t
=V(r|BEARP + pN*T Py s 15, )V

= £ps2 +r
—T|A232| +pAp PN(A&B&)J-
=rBiAPB3 + pN*'P,,

by a(0) =1, E1_1’15_10 b(¢) = 0 and Lemma 2.A

(a¥BhE)L
where BiA% = V|B%A%| is the polar decomposition of BiA%, a(e) = ﬁﬁ% al

b(e) = Gﬁ% Therefore the proof is complete.
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3 Classes of non-normal operators

In the following sections, we shall show applications of Theorem 2.1 to non-normal
operators. To begin with, we introduce several classes of non-normal operators.

Definition ([2][9][10][{15][16][23]). Let p > 0 and r > 0.
(i) T is p-hyponormal <= (T*T)? > (TT*)*.
(ii) T is log-hyponormal <= T is invertible and log T*T > log TT*.

(iii) T is hyponormal <= T*T > TT* <= T is 1-hyponormal.

(iv) T belongs to class A(p,r) <= (|T*|"|T|?|T*|")7+ > |T*|*.

(v) T belongs to class A <= |T?| > |T|? <= T belongs to class A(1, 1).

(vi) T is w-hyponormal <= |T| > |T| > |(T)*| <= T belongs to class A(3, 1) ([17]).
(vii) T is absolute-(p, r)-paranormal <= |||T|P|T*|"z||" > |||T*|"z||P*" for all ||z|| = 1.
(viii) T is paranormal <= ||T?z|| > ||Tz||? for all ||z|| =1

<= T is absolute-(1, 1)-paranormal.

Inclusion relations among these classes are as follows and can be expressed as the
diagram on the next page.

Theorem 3.A ([9][17][23]).

(i) T is p-hyponormal for some p > 0 or log-hyponormal
== T belongs to class A(p,r) for allp >0 andr > 0.

(i) For eachp >0 andr >0,
T belongs to class A(p,r) => T is absolute-(p, r)-paranormal.

(iii) T is absolute-(p, r)-paranormal for some p >0 andr > 0
== T is normaloid (i.e., ||T|| = r(T)).

(iv) T is log-hyponormal
<= T is invertible and absolute-(p, p)-paranormal for all p > 0
<=> T 1s invertible and absolute-(p, r)-paranormal for allp > 0 and r > 0.

(v) For each0 <p; <ps and0 < r; < 19,
T belongs to class A(p1,m1) = T belongs to class A(ps,T3).

(vi) For each0 <p; <p; and0 < r; <1y,
T is absolute-(p,, r1)-paranormal => T is absolute-(p2, r2)-paranormal.
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normaloid

absolute-(p, r)-paranormal

class A(p,7)

(0,0 w-hyponormal
log-hyponormal

hyponormal

p-hyponormal

4 Normality conditions via paranormality

‘Recently, Ito-Yamazaki [17] showed the following result on the normality of class
A(p,r) operators.

Theorem 4.A ([17]). Let p; > 0, po > 0, r; > 0 and ro > 0. If T belongs to class
A(p1,71) and T* belongs to class A(pe,2), then T is normal.

On the other hand, Ando [3] showed the following result on the normality of paranor-
mal operators under the condition N(T') = N(T*).

Theorem 4.B ([3]). If T and T* are paranormal with N(T') = N(T*), then T is normal.

We obtain the following result as an application of Theorem 2.1.

Theorem 4.1. Let p; > 0, po > 0, r; > 0 and ro > 0. If T is absolute-(p;,r1)-
paranormal and T* is absolute-(py, 2)-paranormal, then T is normal.

Theorem 4.1 is an extension of Theorem 4.A by (ii) of Theorem 3.A. Theorem 4.1 is
also an extension of Theorem 4.B since the following result can be obtained as a simple
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corollary of Theorem 4.1 by putting p; = p, = r; = r; = 1. We remark that Corollary
4.2 requires no kernel conditions.

Corollary 4.2. If T and T* are paranormal, then T is normal.

In order to give a proof of Theorem 4.1, we prepare the following results.

Theorem 4.C ([23]). Let p > 0 and r > 0. T is absolute-(p, r)-paranormal if and only
if

r|T*|"|T)?|T*" — (p + r)MP|T*|> + pAP*" I >0 for all A > 0.
Theorem 4.D ([3]). Let A and B be positive operators. If

A%+ \?] 22 A2
2727 S > 20
) >B and B’A2+X"I

hold for all A > 0, then A = B.

Proof of Theorem 4.1. Put k = max{p;,ps,71,72}. If T is absolute-(p;, r;)-paranormal,
then T is absolute-(k, k)-paranormal by (vi) of Theorem 3.A. By Theorem 4.C, we have

E|T*[FIT 21T |* — 2kX5|T*|* + kA%*1 >0 for all A > 0.
This is equivalent to
[T HTIT ¢ + X2

2)k
so that by (i) of Theorem 2.1, we have

> |T*|*,

|T"|le|2k|T*|k+/\2kI
2)\k

2XF|T|*|TP*|T|*
|T*|T*2*|T|F + N*T°

>|T** and [T > (41)

On the other hand, if T* is absolute-(ps,7;)-paranormal, then T* is absolute-(k, k)-
paranormal by (vi) of Theorem 3.A. By Theorem 4.C, we have

E|T|F|T* || T|F — 2kX*|T* + kD21 >0 for all A > 0.

This is equivalent to

|TPIT*2*IT* + N1 2%
2Ak 2 ITl b
so that by (i) of Theorem 2.1, we have
ITIIT* T + X1 2% 2% 5 _ 2T MT T
> |T d |T** > . .
INF 2 |T|" and |T*[™ 2 [T+ [F| T[T [F + A1 (4.2)

Hence (|T*|¥|T|%*|T*|¥)? = |T*|** and (|T|*|T*|%*|T|¥)3 = |T|?* by (4.1), (4.2) and The-
orem 4.D, that is, T and T* belong to class A(k, k). Therefore T is normal by Theorem
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5 Normality conditions via Aluthge transformation

Let T be an operator whose polar decomposition is T = U|T|. Then T = |T|3U T3
is called Aluthge transformation of T'. Aluthge transformation was firstly introduced in
[1] and has been studied by many researchers.

Cho-Huruya-Kim [5] showed the following result on the normality of w-hyponormal
operators via Aluthge transformation.

Theorem 5.A ([5]). If T is w-hyponormal and T is normal, then T is also normal.
We remark that Theorem 5.A can be considered as an extension of the following
result since every log-hyponormal operator is w-hyponormal by (i) of Theorem 3.A and
T; = U|T|* is log-hyponormal for any ¢ > 0 if T = U|T| is log-hyponormal.
Theorem 5.B ([20]). If T = U|T) is log-hyponormal and T; = |T|tU|T|* is normal for
some t > 0, then T is also normal.
As an application of Theorem 2.1, we obtain the following result which is an extension

of Theorem 5.A since every w-hyponormal operator is absolute-(3 3 2) -paranormal by (ii)
of Theorem 3.A.

Theorem 5.1. If T is absolute-(1, 1)-paranormal and (T)* is hyponormal, then T is
normal.

Proof. If T is absolute-(1, 1)-paranormal, then
|T*|3|T||T*|3 + A\

> | | 5.1
oA > |T7| (5.1)

holds for all A > 0 by Theorem 4.C. Applying (i) of Theorem 2.1 to (5.1), we have
2T T T 62)

712 |T|3|T*||T|3 + M
Let T = U|T| be the polar decomposition of 7. Then by (5.1) and (5.2),

[T+ M _ U7 |T||T*|2U+)\I U,(lT‘I%ITllT‘I%+AI)U
(5.3)

2% 23 223

* L2

s G = (7| > T _ 2M(Ay

TETTE + A @)+ M

l .
Since f(t) = —:—A— and g(¢) = Zj\:; are operator monotone,
TYI2 + A 2 Liye2 L2
(@) + AL S TP+ 23|(T)"]* _ 2A%|T] (5.4)

>|T| and |T =
2)2 2A3 d 712 |(T)*|2 + AT = |T|2 + AI

hold by (5.3) and the hyponormality of (T)*. By (5.4) and Theorem 4.D, we have
IT| = |T| = |(T)*|, that is, T is w-hyponormal and T is normal. Hence T is normal
by Theorem 5.A. O
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