<table>
<thead>
<tr>
<th>Title</th>
<th>REMARKS ON POSITIVE MAPS ON SELFDUAL CONES (Current topics on operator theory and operator inequalities)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miura, Yasuhide</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2002), 1259: 150-164</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41976</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
REMARKS ON POSITIVE MAPS ON SELF-DUAL CONES

岩手大・人文社会科学部 三浦 康秀 (YASUHIDE MIURA)

ここではヒルベルト空間における selfdual cone を保存する意味での正値写像および作用素の順序 (⊆) に関する基本的な性質を考える。内容は [MI] を部分的に含む。

§1. INTRODUCTION

Let \mathcal{H} be a separable complex Hilbert space with an inner product (\cdot, \cdot). A convex cone \mathcal{H}^+ in \mathcal{H} is said to be selfdual if $\mathcal{H}^+ = \{ \xi \in \mathcal{H} | (\xi, \eta) \geq 0 \forall \eta \in \mathcal{H}^+ \}$. The set of all bounded operators is denoted by $L(\mathcal{H})$. For a fixed selfdual cone \mathcal{H}^+, we shall write

$$A \preceq B \quad \text{if} \quad (B - A)(\mathcal{H}^+) \subset \mathcal{H}^+, \ A, B \in L(\mathcal{H}).$$

Since \mathcal{H} is algebraically spanned by \mathcal{H}^+, the relation '⊆' defines the partial order on $L(\mathcal{H})$.

Recall a selfdual cone associated with a standard von Neumann algebra in the sense of Haagerup [H], which appears in the form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ where \mathcal{M} is a von Neumann algebra on \mathcal{H} and J is an isometric involution related to a selfdual cone \mathcal{H}^+ in \mathcal{H}. For example, $\ell^2^+ = \{ \xi = \{ \lambda_n \} | \lambda_n \geq 0 \}$ is a selfdual cone associated with an abelian standard von Neumann algebra ℓ^∞. Then, for $A = (\lambda_{ij}) \in L(\ell^2)$, $A \succeq O$ if and only if $\lambda_{ij} \geq 0$ for $i, j = 1, 2, \cdots$.

Moreover, suppose that $(\mathcal{H}, \mathcal{H}_n^+, n \in \mathbb{N})$ and $(\tilde{\mathcal{H}}, \tilde{\mathcal{H}}_n^+, n \in \mathbb{N})$ are matrix ordered Hilbert spaces. Here \mathcal{H}_n^+ denotes a selfdual cone in $\mathcal{H}_n = M_n(\mathcal{H})$. A linear map A of \mathcal{H} into $\tilde{\mathcal{H}}$ is said to be n-positive (resp. n-co-positive) when the multiplicity map $A_n (= A \otimes \text{id}_n)$ satisfies $A_n \mathcal{H}_n^+ \subset \tilde{\mathcal{H}}_n^+$ (resp. $(A_n \mathcal{H}_n^+) \subset (\tilde{\mathcal{H}}_n^+)^\ast$). Here $\ast(\cdot)$ denotes a set of all transposed matrices. When A is n-positive (resp. n-co-positive) for all
$n \in \mathbb{N}$, A is said to be completely positive (resp. completely co-positive). Put, for $A \in L(\mathcal{H})$

$$\hat{A}\xi = AJAJ\xi, \quad \xi \in \mathcal{H}.$$

It is known that if, in a matrix ordered standard form $(\mathcal{M}, \mathcal{H}, \mathcal{H}_+)$ as introduced in [SW2], $A \in \mathcal{M}$ then \hat{A} is completely positive, and we shall write $\hat{A} \succ_{cp} O$.

§2. Positive maps associated with selfdual cones

We obtain the following proposition for a general selfdual cone in a finite dimensional Hilbert space. In particular, when \mathcal{H}^+ is associated with an abelian von Neumann algebra, that is, a matrix is entrywise positive, it is known as the Peron theorem (see, example [HJ, Corollary 8.2.6]).

Proposition 2.1. Let \mathcal{H} be an n-dimensional Hilbert space with a selfdual cone \mathcal{H}^+. If A is an injective linear operator on \mathcal{H} satisfying $A \succ O$, then there exist a number $\lambda > 0$ and a non-zero element $\xi_0 \in \mathcal{H}^+$ such that $A\xi_0 = \lambda\xi_0$.

Proof. Put

$$\mathcal{V} = \text{co}\{\xi \in \mathcal{H}^+| \|\xi\| = 1\},$$

where co denotes the convex hull. Consider the map r defined by

$$r(\xi) = \frac{A\xi}{\|A\xi\|}, \xi \in \mathcal{V}.$$

By assumption r maps \mathcal{V} to itself. Note that $0 \notin \mathcal{V}$. Because, by the Carathéodory theorem (see, for example [La, Theorem 2.23]) any element $\xi \in \mathcal{V}$ can be expressed as

$$\xi = \lambda_1\xi_1 + \cdots + \lambda_s\xi_s,$$

where $\lambda_1, \cdots, \lambda_s > 0, \xi_1, \cdots, \xi_s \in \mathcal{H}^+$ with $\|\xi_1\| = \cdots = \|\xi_s\| = 1$ and $1 \leq s \leq n + 1$. It follows that $\xi \succeq \lambda_1\xi_1(\mathcal{H}^+)$, and so $\|\xi\| \geq \|\lambda_1\xi_1\| = |\lambda_1| > 0$. Since a convex hull of a compact set is compact [La, Theorem 2.30], it follows from Schauder's fixed point theorem [Sd, Satz I] that there exists an element $\xi_0 \in \mathcal{V}$ satisfying $r(\xi_0) = \xi_0$. Hence $A\xi_0 = \|A\xi_0\| \xi_0$. □

The following fundamental proposition is valid for a general selfdual cone. It says that the order $'\succeq'$ is different from the usual order $'\leq'$ based on positivity of hermitian operators in point of compatibility with product.
(2.2). (cf. [IM, Proposition 1]) Let \mathcal{H} be a Hilbert space with a selfdual cone \mathcal{H}^+. Then for bounded operators on \mathcal{H} we have the following properties:

1. If $O \leq A_1 \leq B_1$ and $O \leq A_2 \leq B_2$, then $O \leq A_1 A_2 \leq B_1 B_2$. In particular, if $O \leq A \leq B$, then $A^n \leq B^n$ for every natural number n.

2. If $O \leq A \leq B$, then $O \leq A^* \leq B^*$.

3. If $A, A^{-1}, B, B^{-1} \geq O$ and $A \leq B$, then $B^{-1} \leq A^{-1}$.

4. If $O \leq A \leq B$, then $||A|| \leq ||B||$.

Proof. We sketch a proof which is similar to [IM].

1. By assumption $A_i(\mathcal{H}^+) \subset \mathcal{H}^+$ and $(B_i - A_i)(\mathcal{H}^+) \subset \mathcal{H}^+$ hold for $i = 1, 2$. Since $B_1 B_2 - A_1 A_2 = B_1(B_2 - A_2) + (B_1 - A_1)A_2$, we obtain the desired inequality.

2. Let $A(\mathcal{H}^+) \subset \mathcal{H}^+$. Then we have $(A^* \xi, \eta) = (\xi, A \eta) \geq 0$ for all $\xi, \eta \in \mathcal{H}^+$. The selfduality of \mathcal{H}^+ shows that $A^* \geq O$. Exchanging the role of A and $B - A$ we obtain the desired property.

3. If $A \leq B$, then $B^{-1} = A^{-1}AB^{-1} \leq A^{-1}BB^{-1} = A^{-1}$ from (1).

4. For $A \geq O$, put $||A||_+ = \sup\{||A \xi||; \xi \in \mathcal{H}^+, ||\xi|| \leq 1\}$. Suppose $O \leq A \leq B$. Note that if $\eta - \xi \in \mathcal{H}^+$ for $\xi, \eta \in \mathcal{H}^+$, then $||\xi|| \leq ||\eta||$. Since $||A||_+ \leq ||B||_+$, it suffices to show $||\cdot||_+ = ||\cdot||$. It is known that any element $\xi \in \mathcal{H}$ can be written as $\xi = \xi_1 - \xi_2 + i(\xi_3 - \xi_4), \xi_1 \perp \xi_2, \xi_3 \perp \xi_4$, for some $\xi_i \in \mathcal{H}^+$. Then $||\xi||^2 = \sum_{i=1}^4 ||\xi_i||^2$. Noticing that $A \geq O$, we see that

$$||A \xi||^2 = \sum_{i=1}^4 ||A \xi_i||^2 - 2(A \xi_1, A \xi_2) - 2(A \xi_3, A \xi_4) \leq ||A(\xi_1 + \xi_2)||^2 + ||A(\xi_3 + \xi_4)||^2 \leq ||A||^2_+ ||\xi||^2.$$

It follows that $||A|| \leq ||A||_+$. The converse inequality is trivial. \qed

(2.3). Let $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ be a standard form of a von Neumann algebra. For a selfadjoint element $A \in \mathcal{M} \cup \mathcal{M}'$, the following conditions are equivalent:

1. $A \geq O$.

2. $A \in \mathcal{Z}(\mathcal{M})$ and $A \geq O$.

Proof. (1) \Rightarrow (2): Since $A \geq O$ if and only if $JAJ \geq O$, it suffices to investigate the case $A \in \mathcal{M}$. Suppose $A \geq O, A \in \mathcal{M}$. Since any element of \mathcal{H} can be written

$$||A \xi||^2 = \sum_{i=1}^4 ||A \xi_i||^2 - 2(A \xi_1, A \xi_2) - 2(A \xi_3, A \xi_4) \leq ||A(\xi_1 + \xi_2)||^2 + ||A(\xi_3 + \xi_4)||^2 \leq ||A||^2_+ ||\xi||^2.$$

It follows that $||A|| \leq ||A||_+$. The converse inequality is trivial. \qed
as \(\xi + i\eta \) with \(J\xi = \xi, J\eta = \eta \), it follows that for such elements \(\xi, \eta \)

\[
JAJ(\xi + i\eta) = JA(\xi - i\eta) = JA\xi + iJA\eta = A(\xi + i\eta).
\]

Hence \(A \in Z(M) \) and \(A^* = JAJ = A \). Choose an arbitrary element \(\xi \in \mathcal{H} \). Then one can write as \(\xi = \xi_1 - \xi_2 + i(\xi_3 - \xi_4) \), \(\xi_i \in \mathcal{H}^+ \) such that \(\mathcal{M}\xi_1 \perp \mathcal{M}\xi_2, \mathcal{M}\xi_3 \perp \mathcal{M}\xi_4 \). We then have

\[
(A\xi, \xi) = (A\xi_1 - A\xi_2 + i(A\xi_3 - A\xi_4), \xi_1 - \xi_2 + i(\xi_3 - \xi_4))
\]

\[
= \sum_{i=1}^{4} (A\xi_i, \xi_i) \geq 0
\]

because \((A\xi_1, \xi_2) = (A\xi_3, \xi_4) = 0 \) and \(((A(\xi_1 - \xi_2), \xi_3 - \xi_4) \) is a real number. Hence \(A \geq O \).

(2) \(\Rightarrow \) (1): It is immediate. \(\square \)

(2.4). Suppose that \(A \in L(H)^+ \) has a closed range in which \(A\mathcal{H}^+ \) is a selfdual cone. Then we obtain the following properties:

1. Under the condition that \(\mathcal{H}^+ \) is a facially homogeneous selfdual cone in \(\mathcal{H} \), if \(A \geq O \), then for all \(\lambda \in \mathbb{R} \), \(A^\lambda \geq O \).

2. For a matrix ordered standard form \((\mathcal{M}, \mathcal{H}, \mathcal{H}_{n}^+) \), if \(A \geq O \) and the support projection of \(A \) is completely positive, then for all \(\lambda \in \mathbb{R} \), \(A^\lambda \geq_{cp} O \).

Here the inverse for a not invertible \(A \) is taken as reduced by the support projection of \(A \).

Proof. (1) Let \(P \) denote the support projection of \(A \). By assumption we obtain that \(P \geq O \) and \(PA^+ = A\mathcal{H}^+ \). Hence, by [I, Proposition II.1.6], \(P\mathcal{H}^+ \) is facially homogeneous. Since \(A = PA = AP \) and \(PA \) maps \(P\mathcal{H}^+ \) onto itself, it follows from [I, Corollary II.3.2] that there exists a derivation \(\delta \in D(P\mathcal{H}^+) \) such that \(PA|_{P\mathcal{H}} = e^\delta \). Hence

\[
A^\lambda = Pe^\lambda \delta P \geq O
\]

for every real number \(\lambda \).

(2) Put \(\mathcal{N} = PM|_{P\mathcal{H}} \). Since \(P \) is completely positive, we see from [MN, Lemma 3] that \((\mathcal{N}, P\mathcal{H}, P\mathcal{H}_{n}^+) \) is a matrix ordered standard form. It follows
from [C, Theorem 3.3] that there exists an element $B \in \mathcal{N}^+$ such that $PA = BJ_{P\mathcal{H}^+}BJ_{P\mathcal{H}^+}P$. Hence

$$A^\lambda = B^\lambda J_{P\mathcal{H}^+}B^\lambda J_{P\mathcal{H}^+}P \succeq_{cp} O$$

for every real number λ. □

A simple counter-example can show that it is essential in the above proposition for $A\mathcal{H}^+$ to be selfdual. In fact, we obtain the following remark:

Remark. In the case \mathbb{C}^n^+ (non-negative entries), a necessary and sufficient condition for $A \in M_n^+$ to enjoy $AC^n^+ = \mathbb{C}^n^+$ is that A is a non-singular positive definite diagonal matrix. We obtain the following facts:

1. In the case \mathbb{C}^n^+, if $A \in M_n^+$ and $A \succeq O$, then there exists a real number $s \geq 1$ such that $A^\lambda \succeq O$ for all $\lambda \in [s, +\infty)$.

2. In the case \mathbb{C}^n^+, if $A \in M_n^+, A \succeq O, \det A \neq 0$ and $AC^n^+ \subsetneq \mathbb{C}^n^+$, then there exists a real number $s' < 0$ such that $A^\lambda \nsubseteq O$ for all $\lambda \in (-\infty, s']$.

Indeed, let $A \in M_n$ be entrywise positive and positive semi-definite. We may assume $\| A \| = 1$. Let $1, a_1, \cdots, a_m, 0 \leq m \leq n - 1$, be distinct eigenvalues of A. Since A can be diagonalized by a real orthogonal matrix, each entry of A^λ is written in the form

$$f(\lambda) = \alpha_0 + \alpha_1 a_1^\lambda + \cdots + \alpha_m a_m^\lambda$$

for some real numbers α_k. Then α_0 must be positive, since $A^n \succeq O$ for all $n \in \mathbb{N}$ by (2.2) (1) and $0 \leq a_k < 1, 1 \leq k \leq m$. From the continuity of the function we can find a number $s \geq 1$ such that $f(\lambda) > 0$ for all $\lambda \geq s$. So (1) holds. Suppose, in addition, that A is non-singular and $A\mathbb{C}^n^+ \subsetneq \mathbb{C}^n^+$. If $A^{-\lambda_0} \succeq O$ for some $\lambda_0 > 0$, then $A^{-\ell\lambda_0} \succeq O$ for all $\ell \in \mathbb{N}$. From (1), $A^{\ell\lambda_0} \succeq O$ for a large $\ell \in \mathbb{N}$. This implies that $A^{\ell\lambda_0}$ is diagonal, and so is A, a contradiction. Therefore, (2) holds.

(2.5). For a matrix ordered standard form $(M, \mathcal{H}, \mathcal{H}_n^+)$, suppose that $A \in L(\mathcal{H})$, and $B \in M$ is an injective operator with a dense range. Then, $O \preceq A \preceq \hat{B}$ if and only if there exists an element $C \in Z(M)$ with $O \preceq C \preceq I$ such that $A = C\hat{B}$. In particular, if M is a factor, then one can choose a scalar λ with $0 \leq \lambda \leq 1$ such that $A = \lambda\hat{B}$.
Proof. Consider the polar decomposition $B = U|B|$ of B. By assumption U is a unitary element of \mathcal{M}, and so $\hat{U} \succeq O$ and $\hat{U}^* \succeq O$ by (2.2). Hence we may assume B to be positive semi-definite. Let $B = \int_0^\|B\| \lambda dE_\lambda$ be a spectral decomposition of B. Put $P_n = \int_n^\|B\| \mathbf{1} dE_\lambda$ for $n \in \mathbb{N}$. Then one sees that $\hat{P}_n \not\subset I$ and $\hat{P}_n A\hat{P}_n \not\subset \hat{P}_n \hat{B} \hat{P}_n$ by (2.2). Since $\hat{P}_n \hat{B} \hat{P}_n$ is invertible on $\hat{P}_n \mathcal{H}$, where the inverse shall be denoted by $(\hat{P}_n \hat{B} \hat{P}_n)^{-1}$, we have

$$O \not\subset \hat{P}_n A\hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} \not\subset \hat{P}_n.$$

There then exists an element c_n in an order ideal $Z_{\hat{P}_n \mathcal{H}^+}$ of a selfdual cone $\hat{P} \mathcal{H}^+$ with $\|c_n\| \leq 1$ such that $\hat{P}_n A\hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} \xi = c_n \xi$ for all $\xi \in \hat{P}_n \mathcal{H}$. By [I, Theorem VI.1.2 3)] we obtain that $c_n \in Z(\hat{P}_n \mathcal{M}|_{\hat{P}_n \mathcal{H}})^+$. Since $\hat{P}_n Z(\mathcal{M})\hat{P}_n = Z(\hat{P}_n \mathcal{M}\hat{P}_n)$, we can find an element $C_n \in Z(\mathcal{M})$ such that $c_n \xi = \hat{P}_n C_n \hat{P}_n \xi$ for all $\xi \in \hat{P}_n \mathcal{H}$. Since $P_n B = BP_n$, $n \in \mathbb{N}$, we have

$$\hat{P}_{n+1} C_{n+1} \hat{P}_{n+1} \xi = \hat{P}_{n+1} A\hat{P}_{n+1} (\hat{P}_{n+1} \hat{B} \hat{P}_{n+1})^{-1} \hat{P}_n \xi = \hat{P}_n A\hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} \xi = \hat{P}_n C_n \hat{P}_n \xi$$

for all $\xi \in \hat{P}_n \mathcal{H}$. Since $\{\hat{P}_n C_n \hat{P}_n\}$ is a bounded sequence, one can define

$$C \xi = \lim_{n \to \infty} \hat{P}_n C_n \hat{P}_n \xi, \ \xi \in \mathcal{H}.$$

Thus $C \in Z(\mathcal{M})$, $O \leq C \leq I$ and we get

$$A = \operatorname{s-lim}_{n \to \infty} \hat{P}_n A\hat{P}_n = \operatorname{s-lim}_{n \to \infty} \hat{P}_n C_n \hat{P}_n A\hat{P}_n = C \hat{B}.$$

The converse implication is immediate. Indeed, if $C \in Z(\mathcal{M})$ with $O \leq C \leq I$, then $I - C \succeq O$, and so$I - C \succeq O$. Hence $\hat{B} - C \hat{B} = (I - C)\hat{B} \succeq O$. This completes the proof. \ }
§3. COMPLETE ORDER OF OPERATORS

Consider two matrix ordered standard forms \((\mathcal{M}^{(1)}, \mathcal{H}^{(1)}, \mathcal{H}_{n}^{(1)+})\) and \((\mathcal{M}^{(2)}, \mathcal{H}^{(2)}, \mathcal{H}_{n}^{(2)+})\) with respective canonical involutions \(J^{(1)}\) and \(J^{(2)}\). For an arbitrary element \(\xi \in \mathcal{H}^{(1)}\), let \(R_{\xi}\) be a right slice map of \(\mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}\) into \(\mathcal{H}^{(2)}\) such that

\[
R_{\xi}(\xi' \otimes \eta') = (\xi', \xi)\eta', \xi' \in \mathcal{H}^{(1)}, \eta' \in \mathcal{H}^{(2)}.
\]

For any element \(x \in \mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)}\), we put

\[
r(x)\xi = R_{J^{(1)}}(\epsilon x), \xi \in \mathcal{H}^{(1)}.
\]

Then \(r(x)\) is a map of Hilbert-Schmidt class of \(\mathcal{H}^{(1)}\) to \(\mathcal{H}^{(2)}\). A set of all maps of Hilbert-Schmidt class of \(\mathcal{H}^{(1)}\) to \(\mathcal{H}^{(2)}\) is denoted by \(HS(\mathcal{H}^{(1)}, \mathcal{H}^{(2)})\). A set of all completely positive maps of \((\mathcal{H}^{(1)}, \mathcal{H}_{n}^{(1)+})\) to \((\mathcal{H}^{(2)}, \mathcal{H}_{n}^{(2)+})\) in \(HS(\mathcal{H}^{(1)}, \mathcal{H}^{(2)})\) is denoted by \(CPHS(\mathcal{H}^{(1)}+\times \mathcal{H}^{(2)}+\))\). Here \(\mathcal{H}_{n}^{(1)+}\), \(n \in \mathbb{N}\), means a family of the self-dual cones associated with \(\mathcal{M}^{(1)}\), that is \(\mathcal{H}_{n}^{(1)+} = \{[\xi_{ij}]_{i,j=1}^{n} | [\xi_{ij}]_{i,j=1}^{n} \in \mathcal{H}_{n}^{(1)+}\}\). We shall write \(\mathcal{H}^{(1)+} \otimes \mathcal{H}^{(2)+}\) for a selfdual cone associated with a von Neumann tensor product \(\mathcal{M}^{(1)} \otimes \mathcal{M}^{(2)}\). It was shown in [MT, SW1] that

\[
\mathcal{H}^{(1)+} \otimes \mathcal{H}^{(2)+} = \{x \in \mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)} | r(x) \in CPHS(\mathcal{H}^{(1)}+\times \mathcal{H}^{(2)}+\))\}.
\]

Thus

\[r : \mathcal{H}^{(1)} \otimes \mathcal{H}^{(2)} \rightarrow HS(\mathcal{H}^{(1)}, \mathcal{H}^{(2)})\]

is an isometry mapping \(\mathcal{H}^{(1)+} \otimes \mathcal{H}^{(2)+}\) onto \(CPHS(\mathcal{H}^{(1)}+\times \mathcal{H}^{(2)}+\))\).

Indeed, \(r\) is isometric. Suppose that \(HS(\mathcal{H}^{(1)}, \mathcal{H}^{(2)})\) has an inner product

\[
\langle A, B \rangle = \sum_{k=1}^{\infty} (A e_{k}, B e_{k}),
\]

where \(\{e_{k}\}\) is a complete orthogonal basis of \(\mathcal{H}^{(1)}\). Noticing that \(\{J^{(1)} e_{k}\}\) is a complete orthogonal basis of \(\mathcal{H}^{(1)}\), we obtain for a complete orthogonal basis \(\{f_{k}\}\)
\[\langle r(J^{(1)}e_{i} \otimes f_{j}), r(J^{(1)}e_{i'} \otimes f_{j'}) \rangle = \sum_{k=1}^{\infty} (r(J^{(1)}e_{i} \otimes f_{j})(e_{k}), r(J^{(1)}e_{i'} \otimes f_{j'})(e_{k})) = \sum_{k=1}^{\infty} (R_{J^{(1)_{Ck}}}(J^{(1)}e_{i} \otimes f_{j}', J^{(1)}e_{i'} \otimes f_{j'})) \]
\[= \sum_{k=1}^{\infty} (J^{(1)}e_{i}, J^{(1)}e_{k})f_{j}, (J^{(1)}e_{i'}, J^{(1)}e_{k})f_{j'}) = \delta_{i'i'} \delta_{jj'} \]

for \(i, j, i', j' = 1, 2, \ldots \).

Therefore, \((r(\mathcal{M}^{(1)} \otimes \mathcal{M}^{(2)})r^{-1}, HS(H^{(1)}, H^{(2)}), r(J^{(1)} \otimes J^{(2)})r^{-1}, CPHS(H^{(1)+}, H^{(2)+})) \) is a standard form. Using the Radon-Nikodym theorem for \(L^{2} \)-spaces [S, Theorem 1.2], we obtain the following theorem:

(3.1). Let \((\mathcal{M}, H, H^{+}) \) be a matrix ordered standard form. Then \((r(\mathcal{M}' \otimes \mathcal{M})r^{-1}, HS(H, H), r(J \otimes J)r^{-1}, CPHS(H^{+}, H^{+})) \) is a standard form which is isomorphic to \((\mathcal{M}' \otimes \mathcal{M}, H \otimes H, J \otimes J, H^{+} \otimes H^{+}) \) by the identification \(r : H \otimes H \rightarrow HS(H, H) \) defined as above. If \(A, B \in HS(H, H) \) satisfies \(O \leq_{cp} A \leq_{cp} B \), then there exists an element \(C \in \mathcal{M}' \otimes \mathcal{M} \) with \(O \leq C \leq I \) such that \(A = rC r^{-1} B \).

(3.2). If in (3.1) \(\mathcal{M} \) is an injective factor (or semi-finite injective von Neumann algebra) on a separable Hilbert space \(H \), then the above statement is valid for \(A \in L(H) \) instead of \(A \in HS(H, H) \).

Proof. Suppose that \(\mathcal{M} \) is the von Neumann algebra in the statement. There then exists an increasing net \(\{ E_{i} \} \) of completely positive projections of finite rank on \(H \) which converges strongly to 1 by [M1, Theorem 1.4]. It follows that \(O \leq_{cp} E_{i} A \leq_{cp} E_{i} B \). Hence
\[\text{Tr}(A^{*}E_{i}A) \leq \text{Tr}(B^{*}E_{i}B) \leq \text{Tr}(B^{*}B). \]
Considering a limit with respect to \(i \), we have \(\text{Tr}(A^{*}A) < +\infty \). Using (3.1) we obtain the desired result. \(\square \)
(3.3). For a matrix ordered standard form $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$, any element $A \in HS(\mathcal{H})$ can be uniquely decomposed into the following:

$$A = A_1 - A_2 + i(A_3 - A_4)$$

where $A_1 \perp A_2, A_3 \perp A_4, A_i \in CPHS(\mathcal{H}^+)$. The proof of the above proposition is immediate from a decomposition theorem of vectors in the ordered Hilbert space.

§4. DECOMPOSITION OF POSITIVE MAPS

The purpose of this section is to show that any order isomorphism between non-commutative L^2-spaces associated with von Neumann algebras is decomposed into a sum of a completely positive and a completely co-positive maps. The result is an L^2 version of a theorem of Kadison [K] for a Jordan isomorphism on operator algebras.

We first generalize a theorem of A. Connes [C] for the polar decomposition of an order isomorphism, to the case where a von Neumann algebra is non-σ-finite.

(4.1). Let $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ and $(\tilde{\mathcal{M}}, \tilde{\mathcal{H}}, \tilde{J}, \tilde{\mathcal{H}}^+)$ be standard forms, and A be a linear bijection of \mathcal{H} onto $\tilde{\mathcal{H}}$ satisfying $A\mathcal{H}^+ = \tilde{\mathcal{H}}^+$. Then for a polar decomposition $A = U|A|$ of A we obtain the following properties:

1. There exists a unique invertible operator B in \mathcal{M}^+ such that $|A| = BJBJ$.
 (cf. [I, Corollary II.3.2])

2. There exists a unique Jordan $*$-isomorphism α of \mathcal{M} onto $\tilde{\mathcal{M}}$ such that

$$\langle \alpha(X)\xi, \xi \rangle = \langle XU^{-1}\xi, U^{-1}\xi \rangle$$

for all $X \in \mathcal{M}, \xi \in \tilde{\mathcal{H}}^+$.

Proof. (1) Let \mathcal{M} be non-σ-finite. Choose an increasing net $\{p_i\}_{i \in I}$ of σ-finite projections in \mathcal{M} converging strongly to 1. Put $q_i = p_i J p_i J$. By [[C, Theorem 4.2]] $q_i \mathcal{H}^+$ is a closed face of $\tilde{\mathcal{H}}^+$. Since A is an order isomorphism, $A(q_i \mathcal{H}^+)$ is a closed face of $\tilde{\mathcal{H}}^+$. There then exists a σ-finite projection $p'_i \in \tilde{\mathcal{M}}$ such that $A(q_i \mathcal{H}^+) = q'_i \mathcal{H}^+$ where q'_i denotes $p'_i J p'_i J$. Hence $q'_i A q_i$ is an order isomorphism.
of $q_i\mathcal{H}^+$ onto $q_i'\tilde{\mathcal{H}}^+$. These cones appear respectively in the reduced standard forms $(q_i\mathcal{M}q_i, q_i\mathcal{H}, q_iJq_i, q_i\mathcal{H}^+)$ and $(q_i'\tilde{\mathcal{M}}q_i', q_i'\tilde{\mathcal{H}}, q_i'Jq_i', q_i'\tilde{\mathcal{H}}^+)$. Put $A_i = (q_i'Aq_i)^*q_i'Aq_i$. Then $A_i \in q_i\mathcal{M}^+q_i$ is an order automorphism on $q_i\mathcal{H}^+$. By [C, Theorem 3.3] there exists a unique invertible operator $B_i \in q_i\mathcal{M}^+q_i$ such that $A_i = B_iJ_iB_iJ_i$, where J_i denotes q_iJq_i. Taking a logarithm of both sides, we have $\log A_i = \log B_i + J_i(\log B_i)J_i$. Since $\{A_i\}$ is a bounded net, $\{\log B_i\}$ is bounded. Indeed, we have in a standard form that a map

$$X \mapsto \delta_X = \frac{1}{2}(X + JXJ)$$

is a Jordan isomorphism of a selfadjoint part of \mathcal{M} into a selfadjoint part of a set of all order derivations $D(\mathcal{H}^+)$ by [I, Corollary VI.2.3]. It is known that any isomorphism of a JB-algebra into another JB-algebra is isometry(see [HS, Proposition 3,4,3]). Hence

$$\|\delta_X\| = \|X\|, \quad X \in \mathcal{M}_{\text{s.a.}}.$$

Thus $\{\log B_i\}$ is bounded. It follows that $\{p_i(\log B_i)p_i\}$ is bounded because $p_i\mathcal{M}p_i$ and $q_i\mathcal{M}q_i$ are $*$-isomorphic. Therefore, one can find a subnet of $\{p_i \log B_i p_i\}$ which converges to some element $C \in \mathcal{M}^+$ in the σ-weak topology. We may index the subnet as the same $i \in I$. We then have for $\xi, \eta \in \mathcal{H}$

$$(C + JJC)q_i\xi, q_i\eta = \lim_i((p_i(\log B_i)p_i + Jp_i(\log B_i)p_iJ)q_i\xi, q_i\eta)$$

$$= ((\log B_i + J_i(\log B_i)J_i)q_i\xi, q_i\eta)$$

$$= \lim_i(\log A_iq_i\xi, q_i\eta)$$

$$= (\log A^*Aq_i\xi, q_i\eta),$$

using the facts that $q_iXq_iJq_iXq_iJq_i = p_iXp_iJp_iXp_iJq_i$ for all $X \in \mathcal{M}$, and under the strong topology $\{A_i\}$ converges to A^*A; hence $\{q_i(\log A_i)q_i\}$ converges to $\log A^*A$. Since $\bigcup_{i \in I} q_i\mathcal{H}$ is dense in \mathcal{H}, we obtain the equality $C + JJC = \log A^*A$. Therefore, $e^{C}Je^{C}J = A^*A$. Thus there exists an element $B \in \mathcal{M}^+$ such that $|A| = BJBJ$. Since, in addition, $q_iBq_iJq_iBq_iJq_i = q_i|A|q_i$, one easily sees the invertibility and the unicity of B using the same properties as in the σ-finite case.
From (1) we have $U = AB^{-1}JB^{-1}J$. It follows that U is an isometry satisfying $U\mathcal{H}^+ = \tilde{\mathcal{H}}^+$. Let p_i and q_i be as in (1). There then exists a σ-finite projection $p_i' \in \tilde{\mathcal{M}}$ such that $U(q_i\mathcal{H}^+) = q_i'\tilde{\mathcal{H}}^+$ with $q_i' = p_i'\tilde{J}p_i'\tilde{J}$. Using also [C, Theorem 3.3], one can find a unique Jordan $*$-isomorphism α_i of $q_i\mathcal{M}q_i$ onto $q_i'\tilde{\mathcal{M}}q_i'$ such that

$$(\alpha_i(q_iXq_i)\xi, \xi) = (q_iXq_iU^{-1}\xi, U^{-1}\xi)$$

for all $X \in \mathcal{M}, \xi \in q_i'\tilde{\mathcal{H}}^+$. Fixed now $X \in \mathcal{M}_{s.a.}$. Since $p_i'\tilde{\mathcal{M}}p_i'$ and $q_i'\tilde{\mathcal{M}}q_i'$ are $*$-isomorphic, there exists a unique operator $Y_i \in p_i'\tilde{\mathcal{M}}_{s.a.}p_i'$ such that $Y_i|_{q_i'\tilde{\mathcal{H}}} = \alpha_i(q_iXq_i)$. Using an isometry between the Jordan algebras, one sees that $\{\alpha_i(q_iXq_i)\}$ is a bounded net, because $||\alpha_i(q_iXq_i)|| = ||q_iXq_i|| \leq ||X||, i \in I$. Thus $\{Y_i\}$ is bounded. We may then say that $\{Y_i\}$ converges to some operator $Y \in \tilde{\mathcal{M}}_{s.a.}$ in the σ-weak topology. We then have for $\xi \in \tilde{\mathcal{H}}^+$

$$(Yq_j'\xi, q_j'\xi) = \lim_i(Yq_j'\xi, q_j'\xi) = \lim_i(\alpha(q_iXq_i)q_j'\xi, q_j'\xi)
\quad = \lim_i(q_iXq_iU^{-1}q_j'\xi, U^{-1}q_j'\xi)
\quad = (XU^{-1}q_j'\xi, U^{-1}q_j'\xi).$$

Taking a limit with respect to j, we obtain

$$(Y\xi, \xi) = (XU^{-1}\xi, U^{-1}\xi)$$

for all $\xi \in \tilde{\mathcal{H}}^+$. It is known that any normal state on the von Neumann algebra $\tilde{\mathcal{M}}$ is represented by a vector state with respect to an element of $\tilde{\mathcal{H}}^+$ (see [H, Lemma 2.10 (1)]). Therefore, the above element Y is uniquely determined. Moreover, we have $q_i'Yq_i' = \alpha_i(q_iXq_i)$. It follows that $\{\alpha_i(q_iXq_i)\}$ converges to Y in the strong topology. Hence one can define $\alpha(X) = Y$ for all $X \in \mathcal{M}$. It is now immediate that $\alpha(X^2) = \alpha(X)^2$ for all $X \in \mathcal{M}_{s.a.}$. Considering the inverse order isomorphism U^{-1}, we have $\alpha(\mathcal{M}) = \tilde{\mathcal{M}}$. This completes the proof. \(\square\)

In the following proposition we deal with a reduced matrix ordered standard form by a completely positive projection.

(4.2). With $(\mathcal{M}, \mathcal{H}, \mathcal{H}_n^+)$ a matrix ordered standard form, let E be a completely positive projection on \mathcal{H}. Then $(EM\mathcal{E}, E\mathcal{H}, E\mathcal{H}_n)$ is a matrix ordered standard form.
Proof. The statement was shown in [MN, Lemma 3] where M is σ-finite. In the case where M is not σ-finite, since E is a completely positive projection, there exists a von Neumann algebra N such that $(N, E\mathcal{H}, E_n\mathcal{H}_n^+)$ is a matrix ordered standard form by [M2, Lemma 3]. Hence $EM|_{E\mathcal{H}} = N$ and $(EME, E\mathcal{H}, E_n\mathcal{H}_n^+)$ is a matrix ordered standard form by using the same discussion as in the proof in [M3].

Now, we shall state the decomposition theorem for an order isomorphism between non-commutative L^2-spaces.

(4.3). Let (M, H, H_+^n) and $(\tilde{M}, \tilde{H}, \tilde{H}_n^+)$ be matrix ordered standard forms. Suppose that A is a 1-positive map of H into \mathcal{H} such that AH^+ is a selfdual cone in the closed range of A. If both the support projection E and the range projection F of A are completely positive, then there exists a central projection P of EME such that AP is completely positive and $A(E - P)$ is completely co-positive.

In particular, if A is an order isomorphism of H onto \tilde{H}, then there exists a central projection P of M such that AP is completely positive and $A(1 - P)$ is completely co-positive.

Proof. We first consider the case where A is an order isomorphism. Let U, B and α be as in (4.1). It follows from a theorem of Kadison [K] that there exists a central projection P of M satisfying

$$\alpha : M_P \rightarrow \tilde{M}_{\alpha(P)}, \text{ onto } *\text{-isomorphism}$$

and

$$\alpha : M_{1-P} \rightarrow \tilde{M}_{\alpha(1-P)}, \text{ onto } *\text{-anti-isomorphism}.$$

Indeed, $\alpha(P)$ is a central projection of \tilde{M}. Since α preserves a $*$-operation and power, $\alpha(P)$ is a projection. Suppose that Q is an arbitrary projection in M. Since α is order preserving, we have $\alpha(QP) \leq \alpha(P)$ and $\alpha(Q(1 - P)) \leq \alpha(1 - P)$. It follows that two projections $\alpha(P)$ and $\alpha(QP)$ are commutative, and so are $\alpha(1-P)$ and $\alpha(Q(1 - P))$. Hence $\alpha(Q) = \alpha(QP + Q(1 - P))$ and $\alpha(P)$ commute. Since α is bijective, a set $\alpha(Q)$ generates a von Neumann algebra \tilde{M}. Therefore, $\alpha(P)$ belongs to a center of \tilde{M}. Now, there then exists a unique completely positive
isometry $u : \mathcal{H} \to \alpha(P)\tilde{\mathcal{H}}$ such that

$$u(\mathcal{H}^+) = \alpha(P)\tilde{\mathcal{H}}^+$$
and
$$\alpha(x) = uxu^{-1}, \quad x \in \mathcal{M}_P$$

by [M3, Proposition 2.4] which is also valid for the non-σfinite case. Hence

$$(UXU^{-1}\xi, \xi) = (ux^{-1}\xi, \xi), \quad x \in \mathcal{M}_P, \quad \xi \in \alpha(P)\tilde{\mathcal{H}}^+.$$ We have from the unicity of a completely positive isometry $UP = u$. Note that $\alpha(P)UP = UP$. Indeed, we have for $\xi, \in \alpha(1 - P)\tilde{\mathcal{H}}^+$ the equality

$$\|PU^{-1}\xi\|^2 = (UPU^{-1}\xi, \xi) = (\alpha(P)\xi, \xi) = 0.$$ This yields $PU^{-1}\alpha(1 - P) = O$, and so $PU^{-1} = PU^{-1}\alpha(P)$. Therefore, we obtain $AP = UB\tilde{J}BJP = uBJBJP$ and AP is completely positive.

We next consider a $*$-isomorphism $\alpha' : \mathcal{M}_1-P \to \tilde{\mathcal{M}}_1-P$ defined by $\alpha'(X) = \tilde{J}\alpha(X)^*\tilde{J}, X \in \mathcal{M}_1-P$. There then exists a unique completely positive isometry $v : (1 - P)\mathcal{H} \to \alpha(1 - P)\tilde{\mathcal{H}}$ such that

$$v(1 - P)\mathcal{H}^+ = (1 - \alpha(P))\tilde{\mathcal{H}}^+$$
and
$$\alpha'(x) = vxv^{-1}, \quad x \in \mathcal{M}_1-P.$$ Then we have $\alpha(x) = \tilde{J}vx^{*}v^{-1}\tilde{J}, x \in \mathcal{M}_1-P$. Note that the complete positivity above means $v(1 - P)\mathcal{H}^+ = (1 - \alpha(P))\tilde{\mathcal{H}}^+$, where $\tilde{\mathcal{H}}^+$ denotes the selfdual cones associated with $\tilde{\mathcal{M}}'$. Hence v is a completely co-positive map under the setting $(\mathcal{M}, \mathcal{H}, \mathcal{H}^+)$ and $(\tilde{\mathcal{M}}, \tilde{\mathcal{H}}, \tilde{\mathcal{H}}^+)$. Hence

$$(UXU^{-1}\xi, \xi) = (\tilde{J}vx^{*}v^{-1}\tilde{J}\xi, \xi)$$
$$= (\tilde{J}\xi, vx^{*}v^{-1}\tilde{J}\xi)$$
$$= (uxu^{-1}\xi, \xi)$$
for all $x \in \mathcal{M}_1-P, \xi, \in (1 - P)\mathcal{H}^+$. It follows that $U(1 - P) = v$. We conclude by the equality $A(1 - P) = vBJBJ(1 - P)$ that $A(1 - P)$ is completely co-positive.

We now consider a general A. Since $A\mathcal{H}^+ \subset \tilde{\mathcal{H}}^+$, we have $A\mathcal{H}^+ \subset F\tilde{\mathcal{H}}^+$. Since F is a projection, $F\tilde{\mathcal{H}}^+$ is a selfdual cone in $F\tilde{\mathcal{H}}$. It follows from the selfduality of $A\mathcal{H}^+$ that $A\mathcal{H}^+ = F\tilde{\mathcal{H}}^+$. This yields from (4.2) that FAE is an order isomorphism of $E\mathcal{H}$ onto $F\tilde{\mathcal{H}}$ in the sense of matrix ordered standard forms $(E\mathcal{M}E, E\mathcal{H}, E_n\alpha^+_n)$.
and \((F\tilde{M}F, F\tilde{H}, F_{n}\tilde{H}_{n}^{+})\). Using the first part of the proof, we obtain the desired result. Indeed, there exists a central projection \(P \in EME\) such that \(FAP\) is completely positive and \(FA(E - P)\) is completely co-positive under the reduced matrix ordered standard forms. We obtain the inclusion

\[t(A_n(E_n - P_n)\mathcal{H}_n^+) = t(F_nA_n(E_n - P_n)\mathcal{H}_n^+) \subseteq F_n\tilde{H}_n^+ \subseteq \tilde{H}_n^+. \]

This completes the proof. \(\square\)

Finally, the author wishes to express his sincere gratitude to Professor Y. Katayama for having pointed out the problem of Section 4 to him.

REFERENCES

DEPARTMENT OF MATHEMATICS, FACULTY OF HUMANITIES AND SOCIAL SCIENCES, UNIVERSITY, MORIOKA, 020-8550, JAPAN

E-mail address: ymiura@iwate-u.ac.jp