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1. INTRODUCTION

Differential equations with regular singularities are well known, but in the case
of having irregular singularities, as is shown in Stokes phenomena, the structure of
their solutions are more complicated.

For example, in the regular case, formal solutions always converge. On the
contrary, they never converge in the irregular case. But we can make genuine
solutions which converge in some sectors.

These properties reflect on the solution complex in microlocal analysis. Many
theorems hold only in the case that sheaves considered there are R-constructible
because of the complexities of the irregular case.

In spite of these difficulties, we claim that we can construct the solutions as
WKB ones in the case of regular type and irregular type at the same time. A
few years ago, Professor Kataoka showed the construction of the solutions of some
microdifferential equations of regular type (Fuchsian microdifferential equations)
using a successive approximation. He estimated the term in the series solutions
by his formal norms. Our construction, however, needs WKB analysis by using
pseudodifferential operators with some exponentially decreasing growth order.

In this thesis, for some (partial) differential equations, we construct their solu-
tions which are pseudodifferential operators with exponential decreasing growth.
To start with, we make the formal solutions by using WKB analysis. Then we es-
timate them by the symbolic calculus with respect to pseudodifferential operators.
Thus we find that they possess exponentially decreasing growth, using the classical
Cauchy-Kovalevski theorem in the end. ’

We consider the next partial differential operator:

m
(1.1) P(z,0;,8) 1= ) a;(2)9077
. iz |
where 8,, = 8/0w, 8, = 8/8z, a;(z) (j =0,1,---,m) are holomorphic in a neigh-
borhood of z = 0 € C and
(1.2) 0<6<1.
Fractional derivations are defined as the Riemann-Liouville integral, but we do not
write down the detail because we regard 8, as a large parameter. In the case that
0 < # < 1, this operator is of irregular type. This fact requires a new class of
psedodifferential operators.
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2. DEFINITIONS OF SEVERAL SHEAVES IN MICROLOCAL ANALYSIS

We prepare some sheaves for using them in a following section.

In this section, let X be a complex manifold of dimension n and Y a submanifold
of codimension d. Then we can define a sheaf Cil;l x of holomorphic microfunctions
by

C¥x = py (Ox) ® ory|x[d]
where py (-) means a microlocalization functor along Y (see [KS]).
Let us consider the next spaces with local charts :

R*=RIxR*" 4 RIxC"?¢ —CixCr4=Cr
w w w
z = (z',z") (=',2") (,2")==z.
Let M = M'"x M", N = M'"x X"” and X = X’ x X" be subsets of R* =
R? x R*~4, R% x C*~4 and C% x C*~% = C" respectively. We set the following :
Ti=TyX x & Si=THX x X~TiyX x X"
M T3<X - N TE(X M
w w
(xI’EI’ xll) — (xl, 6’, zll) .
Then a sheaf of microfunctions with holomorphic parameters on 5 can be defined
by
CON := un(Ox) @ ornix[d] ,
where pn(-) is a microlocalization functor. We often write CqOy,—-gq or Cp O,
instead of COp.
Set z* = (0;¢o) € T* X and

Vo= {50 € PXslzl <e, [C] > 1, I%-lg—gl <e}.

We set the following spaces :

S(Ve) : = {p(2,¢) € Or-x(Ve); Ip(z, {)| < C exp(h1[(])
for any h; > 0 and with C > 0},

5=0(V.) := {p(z,¢) € Or-x(V2); Ip(2, ¢)| < C1 exp(h2|¢|*)
for any ha > 0 and with C; > 0, where 0 < p < 1},
N(Ve) := {p(z,¢) € Op-x(Ve); Ip(2,{)| < C’ exp(—I¢|) with C’,1 > 0},
NO(V,) := {p(2,¢) € Or-x(Ve); Ip(2,¢)| < C2exp(—12[¢|?) with C3, 12 > 0}.

Then the next proposition is obtained by Kataoka and Aoki’s symbolic calculus
(see [A3]).
Proposition 2.1. There is an isomorphism of vector spaces :
lim S(Ve)/N(Ve) — €X
E—>

-
32

where EX stands for a sheaf of pseudodifferential operators in microlocal analysis.

In a similar manner, we get the following definition.

12



Definition 2.2. We define a sheaf Sgi’(p —0d of pseudodifferential operators with
exponentially decreasing growth order (p — 0) by

(2.1) g = lim SC-O(V,) INPUVL) .

’

Proposition 2.3. The space NP (V,) is an ideal in SP=0(V,).

Proof. In the definitions above, take Q(z,¢) € N (V.) and P(z,{) € S®~0(V,).
Then the multiplication PQ (as functions) satisfies the property of N(¥)(V;) if we
set hy = l3/2. ' O

3. CONSTRUCTION OF SOLUTION OPERATORS ON MICROFUNCTION

In this section, lef X be a manifold C, x CZ, and N a submanifold
N = {(z,w) € X;Imw = 0} ~ N® |
where NR is the underlying real analytic manifold of X. We denote (z,w;(, ) by
the coordinates of T* X ;
z=z+1iyeC, w=u+iveC® (e€C, 7e€C",

and (¢,7) is identified with the real cotangent vector Re({dz + 7 - dw) of T*NR.
Then the sheaf COpn on

X = {(z,w;¢,7) € T*X;¢ =0, Imw =0, Rer =0}
of microfunctions with a holomorphic parameter z is defined by
CON := {f(z,w) € Cyr;0,f =0} .

Here Cyr is a sheaf of usual microfuntions on N® and it is well-known that COx
is identified with a sheaf C|x of relative microfunctions as £x-modules.

3.1. Main result. Qur aim is to construct solutions which are microfunctions
f(z,w) with a holomorphic parameter z for the equation

(3.1) P(2,0;,04)f(z,w) := (Z a,-(z)a’;,"a;"-f) flew) =0,
j=0
where 8,, = 8/0w, 8, = 9/8z, aj(z) (j =0,1,---,m) are holomorphic in a neigh-
borhood of z = 0 and
(3.2) 0<f<1.

In the following, we consider 8, as a large parameter £&. Thus we make its
solutions on

(3.3) D={(2,¢)eCxC;0< |zl <& | >1/e} .

‘Here we can set ag(z) = 1 because there only exists a quantized contact trans-
formation which preserves a sheaf COx of microfunctions with a holomorphic pa-
rameter according to [KtS].

We will construct a microdifferential operator U(z, d,,) of some type instead of
a solution f(z,w), satisfying

(34) f(z,w) =U(z,8u)g(w) ,
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with an arbitrary microfunction g(w) in a neighborhood of w = 0.
In consequence, we get the following theorem.

Theorem 3.1. We consider the Jollowing equation

P(z’az’BW)U(;’aw) = (i aj(z)az?a;n—j) U(Z76w) =0 ’

j=0

where 8, = 8/0z, Oy = 0/0w, each aj(z) (j = 1,2,---,m) is holomorphic in a
netghborhood of z =0 € C and ‘ - ‘ : ’
0<0<1.

By virtue of regarding 8, as a large parameter £, at the point in which the solutions
n=ox(2,€) (k=1,2,---,m) of its total symbol

(3.5) D aj(z)eym3 =0
j =0

ramify on
D={(2,£) eCxC;0<|z| <¢, ]| >1/e},

the equation has solutions which are pseudodifferential operators with exponentially
decreasing growth order (6 — 0), that is, we have

U(z,0y) €I’ (D; 8R’(9—°)’d) .

Remark 3.2. On the classical Stokes lines, namely,
2 ,
(36) Re/ {aj(z’f) - ak(z7£)}dz = 07 j1 k = 1’27 ot ,Mm, J # k’

where a;(2,€) (j = 1,2,---,m) are solutions of (3.5), the equation (3.1) is of
hyperbolic type. Hence there exist solutions on these lines except at z = 0.

3.2. Solutions of WKB type. For the sake of brevity, we consider the next
partial differential operator

(3.7) P(2,0,,00) = 07 + Pi(2,04)07 " + -+ + Pr(z,0y) .
Then the principal symbol of this operator is

(3.8) oo(P) = (n — 1(2,€)) - - (1 — ala(2,€)) ,

where each o(z,£) (j = 1,---,m) is homogeneous of degree 1.

We find the solutions of WKB type :

(3.9) fir(z,w) =: Zuj(z,g)exp (/za;c(z,g)dz‘) : g(w) , k=1,2,---,m
3=0

where g(w) is a microfunction and : - : means its operation on g(w).
By the Weierstrass division theorem, the operator (3.7) is reduced to (m — 1)-
orderx (0, — a1(2)8, + lower order), namely, the equation we consider becomes

(3.10) (0; — a1(2)0y + lower)U(z,8,) =0 .



In this equation, the lower order term can be written as Q~1(8, — a(2)0,, )@, where
Q is a microdifferential operator of order 0. Hence we get

(az - al(z)aw)Q = Q(az - al(z)aw + A(Za Ow, az)) »

where A is a microdifferential operator of order 0.
Here Q = Q(z, 0,,) satisfies

o
563(,2,8“,) = QA(x,0,0.)

Set Q = Z(;?—_o Qj, Qo = 1. Then a successive approximation leads to the relation

9Q;j+1 ,
— =(Q;A.
0z @
Therefore we have

Q:JZ:%QFH/O QAdz .

The operator @ has a form as follows :

0
Q(zvaw) = Z Ql(z)a;l )

l=—o00 -

where @ _; is of order l!. Hence @ is a pseudodifferential operator.
Thanks to the formal symbol theory of the symbolic calculus, we get the next
proposition.

Proposition 3.3. For the formal sum

Zw(z,ﬁ) exp (/z a}c(z,g)dz) , k=1,2,---,m,
j=0

corresponding to n = ai(z2,€) (k = 1,2,---,m) of simple zeros of the principal
symbol oo(P’) = (n — a}(z,£))--- (n — . (2,£)), its simple symbol U(z,€) has the
next property :

for an arbitrary € > 0, there exists a positive constant C > 0 such that

(3.11) |P(2,0:,)U(2,€)| = |F(2,6)| < Cexp (el¢]®), for €] >1.

3.3. Construction of solutions from formal solutions. The results of this
section are due to [KtF].
We formally have

k .
[e,9] m-—1
(3-12) U(z,8) =™ Y (— > é“'mwaj(z)a;"“") F(z,)
k=0 j=0

as the solution of (3.1), where ap(z) = 1.
This formal sum does not converge in general. But we can make solutions of
some type in the following manner.
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Let A be a sufficiently large constant. We set Wy := {£ € (1,00); €% > Ak} for
k € N\{0}. Then we define U, instead of U by the following :

k
oo m-—1
(313)  Ui(z,6) =&Y xw, (%) (—Zf“"""’aj(z)a;"*f) F(z,¢),
3=0

k=0
where xw, (£9) is a characteristic function of Wi, namely,

1, ifef ew,

0y _
XWk(E)—{O’ if€o¢Wk.

In the following, we set D, = {z € C; 2| < r}.

Lemma 3.4. For an arbitrary € > 0, there erists a positive constant M, such that

(3.14) [U1(2,€)| < M, exp (]¢|%) .

The function U, (z, &) is not a solution of (3.1) but it gives a sufficient approxi-
mation of the solution of (3.1) in the following sense.
By virtue of the construction, we have

P(Z, 627 €)UI(Z, 6)

k
oo m-—1
= xw (€9 (— > £‘j"")°aj(2)3;"‘j) F(z,¢)
k=0 =0
©o m—-1 - k+1
- ZXW" (50) (_ E £(j—m)oa'j(z)6;n—j) F(Z,ﬁ)
k=0 j=0
oo m-—1 k
=F(2,6) = Y xwi_,\w: (€°) (— > f(j-m)oaj(z)ain_j) F(z,¢) .
k=0 j=0
Therefore we find
(315) P(Z, az: §)U1(Z, g) = F(Z7 g) - FO(Z7 5)
on D; x (1, 00), where
k
oo m-—1
(3.16)  Fo(z,8) =) xwi_,\wi(€) (~ D gUmeg, (z)a:"‘f) F(z,) .
k=0 j=0

This error function Fy(z, £) is holomorphic in D, for each fixed € € (1, 00) since the
sum is locally finite on D; x (1, 00). Then the next lemma is obtained.

Lemma 3.5. There erist positive constants 61 and M, such that

(3.17) IF()(Z, f)l < M1 €xp (—61 IE'O) , Z € Dl .



Next we prove the existence of Uy in some class, satisfying

(318) P(z,az,§)Uo(z,§) :F()(Z,g) ’
by the Cauchy-Kovalevski theorem with a large parameter. Then U = Uy + U
satisfies the equation (3.1) with desired properties.

Forr >0 and L > 1, set

.,.={Z€C;|ZI<T},
Qrr={2€C;Ljz| <} .

Now we consider the Cauchy problem :

P(Zv az,f)Uo(Z,f) = FO(z7§) P

3.19 .
( ) 6;U0(Z,§)|z=0 =0, g<m.

Lemma 3.6. There exists L > 1 such that the Cauchy problem (3.19) has a unique
solution Uy € O(Q2L ) for any . Moreover, there exist 11 >0, Mo > 0 and 62 > 0
such that

(3.20) [Uo(2,€)| < Moexp (—62/€]°), z€Qrr,.

Hence we have proved the main theorem.
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