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1 Statement of Results '

We study the Borel summability for the formal solution of the following Cauchy problem
for a partial differential equation of non-Kowalevski type

P(d,,8,)u(t,z) = (a"” Za a”“*f’am) u(t, z)

(6p aJ ) (t,.’l)) -
- 9%u(0, x) =0(k= 0, 1, oy pv —2), 3{”’_111(0,:1:) = ¢(x),

where t,z € C, p,q,v,11,¢; € N (p < q) (Z;-;l ¢; = v), aj,a;(# 0) € C and the Cauchy
data p(z) € O, which denotes the set of holomorphic functions in a neighbourhood of the
origin. :

The purpose in thlS paper is to investigate the condition for the k-summablhty with
respect to t-variable of a formal power series solution of the Cauchy problem (1.1) which
is divergent in general. The main result of this paper is to give the integral representation
of the Borel sum of the formal power series solution under some condition (Theorem 1.2).

The Cauchy problem (1.1) has a unique formal solution 4(t, z) which is given by

(1.1)

tpn+pu—1
(1.2) u(t,z) = nzg_l o g;oup,H.W ~1(z) ntpr =)
If we put N |
(1.3) Upntpu-1(2) = A(n)p'™ (z), n >0,
then A(n) satisfy the following differénce equation
(1.4) A(n-i-u)-—zy:a,-A(n+u—j)=0, n=—-v+1l,-v+2...,

j=1
with the Cauchy data
(1.5) A(—v+1)=A(-v+2)=---=A(-1) =0, A(0)=1.
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Since the fundamental system of solutions of this difference equation are given by {nk‘la?
sk=1,2,...,¢;, j=1,2,...,u}, A(n) are given by

P £
(1.6) . An)=> 0o} )" cixn™
j=1 "~ k=1

with the coefficients ¢;r (j = 1,2,...,u, k = 1,2,...,¢;) satisfying the following linear
system of equations

w7 Az =

where A denotes a v x v matrix which is given by

o

)

a 0 0 0) (1 0O 0  --- 0)
al_l(]-) "']-a (—'1)2’ Tty (_1)61-—1) a;1(17 “]jv (_1)27 T (_l)ll_l)
o’ (1, (=3), (=3)% -y (=)0 e a1 (=4), (=9)% s (29T
al“’“(l,(l—‘l/),---,(l—u)el‘l) a;"“(l,(l—V),---,(l——l/)el‘l) )
c = t(Cu,ClQ,"',Cl'él,Cgl,ng,'",6242,'",Cyl,cuz,'",CM“) and € = t(l,0,0,u-,O) de-

note the v-column vectors, respectively.

We study the Borel summability of the formal solution (1.2) and its Borel sum.
Before stating our results, we shall prepare some definitions and notations. |

1. Sector. Ford € R, 8> 0 and p(0 < p < 00), we define a sector S = S(d, 5, p) by

(1.8) S(d, B, p) = {t €C; |d—argt| < —g—, 0< |t < p} ,

where d, 3 and p are called the direction, the opening angle and the radius of S, respec-
tively.

2. Gevrey formal power series. We denote by O[[t]] the ring of formal power series
in t-variable with coefficients in @. For k > 0, we define that f(t,z) = Y2, fo(z)t" €
O[[t}]1/x(C O[[t]]), which is the ring of formal power series of Gevrey order 1/k in t-
variable, if there exists a positive constant r such that the coefficients f,(z) € O(B,),
which denotes the set of holomorphic functions on a comman closed disk B, = {z €
C; |z| < r}, and there exist some positive constants C' and K such that for any n, we have

n n
(1.9) max |fa(z)| < CK"T (1 + E) ,
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where I' denotes the Gamma function.
By using this terminology, we can easily prove that our formal solution u(t, z) of the
Cauchy problem (1.1) belongs to O[[t]]g—p)/, that is, k = p/(q — p).

3. Gevrey asymptotic expansion. Let k > 0, f(t,z) = £, fu(z)t" € O[[t]]1/x and
f(t,z) be an analytic function on S(d, 8, p) x B,. Then we define that

(110) f(t7x) gk f(t7x) in§= S(d7 :61 p))
if for any closed subsector S’ of S, there exist some positive constants C' and K such that
for any N, we have

N-1
(1.11) max |f(t,2) = Y- fal@)t"| < CK™t|"T (1 + %’) tes.

n=0

4. Borel summability. For k >0, d € R and f(t,z) € O[[t]]1/k, we define that f(t,x)
is k-summable or Borel summable in d direction if there exist a sector S = S(d, B, p) with
B > m/k and an analytic function f(t,z) on S x B, such that f(t,x) = f(t,z) in S.

We remark that the function f(t,x) above for a k-summable f(t,z) is unique if it
exists. Therefore such a function f(t,z) is called the Borel sum of f(t,z) in d direction
and it is written by f4(¢,x).

5. Let {a;}j-; C C\ {0}. For a direction d € R and an opening angle ¢, we define the
multi-sectors {2, and Q, by

7-1 d a; + 2
Qaj =Qaj(paq;da€) = U S(p +argaj+ 7rm’57oo)7 j:172a'-'7ﬂ'1

m=0 q
m
(1.12) Q =Q(p g;d,€) == | Q,(p, ¢;d, €).
j=1

We remark that if arga; = arg o; for any j and i, then we have Q, = Q.

Now, our first result for the Borel summability is stated as follows.

Theorem 1.1 (Borel summability) Let i(t,z) be the formal solution of the Cauchy
problem (1.1), which is given by (1.2). Then the following three propositions are equivalent:

(i) a(t,z) is p/(q — p)-summable in d direction.
() a(t,x) is p/(q — p)-summable in &' direction with d' = d (mod 27 /p).

(ii) The Cauchy data o(z) can be continued analytically in Q, and has a growth condi-
tion of exponential order at most q/(q— p) there, which means that there exist some
positive constants C' and § such that we have



27

(1.13) lo(z)| < Cexp (5]x|q/(q_”)) , T € Q.

This result is a generalization of results in [LMS] and [Miy]. Here in [LMS] they proved
that the condition (ii) is necessary and sufficient for the Borel summability in case heat
equation and in [Miy] he proved that the condition (ii) is necessary and sufficient in the
case v = 1 for our differential operator P(0;,0y).

Our main purpose is to give an integral representation of the Borel sum ud(t, z) of the
formal solution @(t, z) under the condition (ii) of Theorem 1.1 for the Cauchy data ¢(z).
Therefore we suppose the condition (ii) of Theorem 1.1.

Before stating our main results, we need some preparations for the special functions.

1. The Generalized Hypergeometric Series (cf. [Luk, p. 41])

For a = (a1,...,ap) € CP and v = (11, --,7,) € C7, we define

) = a \._s (2"
(114) » PFq(a777 ) PFQ ( ¥ ’ ) ' 7&) (7)71 ’I’L!,
where , . r
(@n =@ @ =T109n (= "5 <)

2. Meijer G-Function (cf. [MS, p.2])

Fora € CPandy € C? withay —v; ¢ N({=1,2,...,n;5 =1,2,...,m), we define

AT+ )M T — g — 1)

(8% 1
1.15) G™" |z = _— / 27 "dr,
(L15) Crg ( lv) 21y o T = = 1) [y D@ + 1)

where the path of integration I runs from k — é00 to &+ ioo for any fixed x € R in such a
manner that all poles of T'(y; +7), {—v; —k; k> 0,5 =1,2,...,m}, lie to the left of the
path and all poles of (1 — o —7), {l —ae+k; k >0,£=1,2,...,n}, lie to the right of
the path.

We use the following abbreviations:

p=(1,2,...,p) € N7, qg=(1,2,...,9) e N*

p \p'p " p
p=p—-1=(0,1,...,p—1), g =1,2...,6-1,+1,...,q) € N}

°()=1ir ()

12
p+tc=(1+c2+c,...,p+c)eC? (ceC), B=(—— --,E)
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In the following, the integration f0°°(0) denotes the integration from 0 to oo along the
half line of the argument 4.

We recall that the formal solution 4(t, ) is given by

i £; Z k=1 (gn) a;} tpntpr—1
(1.16) ~  a(t,xz) = Cjk ) _n" o' (x)
1ii 1k (19,51 3 e aj t7
- cikp " "(t0,)*~ o' () i
o it om0 (pn+pr—1)1

Now, our main result for the Borel sum is stated as follows.

Theorem 1.2 (Borel sum) The Borel sum u®(t,z) is obtained by an analytic continu-
ation in t-plane of the following function by rotating the argument of the integral path,
which can be permitted by the assumption (ii)

U oo((pd-+arg a;)/q)
(1.17) w(t,z) = (5) >3 et 0 [ @(,O)Kay (2, )L,
j=lk=1

where (t,z) € S(d, o, p) X B, with a < w(q — p)/p and some sufficiently small r > 0,

| -1 ' ,
(118) Bz,0)= 3 ple+Cul™), w, = il

m=0

and the functions Ko, (t,¢) ( =1,2,...,u) are given by

C. +D
(L19) Koy (t,0) = 22 Gt (z vt /{’1/” ) |
with P 1 I'(p/p)
Y i 2 ‘ _ ' _ p/p
(1.20) Za, (— ¢ tP) € 5(0,(g —p)m,00), Cpq= F(q/q)'

In the paper [Ich], we gave the explicit formula for the Borel sum, in case of v = 1 for
our differential operator P(&;,8;), in a different form by using pFg—1 but is the same one.
This theorem is a generalization of the previous result.

The G-function in the expression (1.19) has the following integral representation with
an integral path I = {r € C|ReT =k > —1/q}

q/q T

(121) G%9 (Zaj

C2miiT(w+p/p+71) T gl tr

By calculating the residues of the left side of the path I, we obtain the following propo-
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Proposition 1.3 (A relationship between G-function and ,F; )

(1.22) G29 (Za

v+D/p
0P ) o (1,0) = P (0:0)

where

: ’ 1+8/q—v=B/P _\p-ay )
(1.23)  F,,(t,¢) = Zcpq,, j q1< 1+2/q-Gi/q ;( 1)p qzaj),

(1.24) Pa,(t,¢) = Cpgu Vil (gl_—é/;)ié{’();) ((_1)P-QZaj)m, (Polynomial),

o T@lq-tl9) :__Pﬁ_@/q;
(1.25) Cpaw(l) = T +ei7/P —0/q) _Cf”""’_ " Tw+p/p)

In the case where the arguments of «; are all the same, we can prove that the poly-
nomial parts P,; will disappear from the function Ko, in Theorem 1.2.

Corollary 1.4 If arg a; .y for all j, then the Borel sum u®(t,x) is given by

t\P g & oo((pd+0)/q)
(1.26) u'(t, z) = (1—7> ZZ kP (t0)F 1 /0 " @(z,¢) ”Fa,(t C)dC
j: =1
Especially, if p = 1, that is, a; = « for all j, then the Borel sum ud(t,z) is given by
pr—1 ‘

oo((pd-+arg @)/q)

(1.27) ul(t,x) = (;) [T e oKt 0,
0 B .

where ®(z,¢) is given by (1.18) and the function K,(t,() is given by
gLy Pl
a;/q ) «

q‘IaAtP.
Dpgw 2 <1+e/q-u—ﬁ/p C >
= 22N DL (0)ZY,  F =7 "5 (=12, ),
< Doar®OZ1Fer | 41— @l =1

(128) Ka(taC) = DPCQV G;Iy—lq 1 (Z

with A
__ T(p/p) _ T((q)e/a—4/q)
(1.29) Drar = ST (aa) Dy o) = OETETE

Ifp=1o0rq=2, thenp, or ((/J/\q\)g are empty.




30

In order to illustrate the difference between our results, we shall give the following
example.
Example. Let us consider the following Cauchy problem

{ [15-1(8: — a;02)u(t, z) = 0,

(1.30) u(0,7) =0, Ju(0,z) = (z),

where a; € C\ {0} and assume that ¢(z) satisfies the conditions for the Borel summability.

When arg a; # arg as, the Borel sum u?(t, z) is given by

(1.31) u®(t, )

B 2 oo((d+arg a;)/2) t _1/ 2 ) Cz ¢
- o o0 B (i) - 6

where ¢; = a1 /() — a3), ¢2 = az/(a2 — ay).

When arga; = argoy, =0 (a; # a3), we have

] _ peol@re)2) 2 [t -1/2 ¢
(1.32) ul(t, z) _/0 ®(z,() {jglcj F&lel ( 1/2 ,—Kjt)}dc.

This expression is obtained from ¢;/a; + c3/a2 = 0 in the equality (1.31).

When a; = ay = a, we have

oo((d+arga)/2) 2
(1.33) wito) = [T a,0) ——ep( ft) .

This expression is also derived from (1.32) by taking ay — a;(= ).

2 Proof of Theorem 1.2

In order to prove Theorem 1.2, we use the following important lemma for the Borel
summability (cf. [Bal], [LMS], [Miy]).

Lemma 2.1 Letk >0, d € R and i(t,z) € O[[t]]1/x. Then the following three statements
are equivalent:

(i) a(t,z) is k-summable in d direction.

(ii) Let vi(s,x) be the formal k-Borel transform of i(t, z)

(2.1) vi(s,7) = (Bid)(s,) := Z “"(””)1“(1 + n/k)

n=0
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which is holomorphic in a neighbourhood of the origin. Then vi(s,x) can be contin-
ued analytically in a sector S(d,e,00) in s-plane for some positive constant € and
satisfies a growth condition of exponential order at most k there, that s, there exsit
some positive constants C and y such that

(2.2) {nla,xlvl(s ,z)| < Cexp{v|s|¥}, s€ S(d,e,00).

(iii) Let j > 2 and ky > 0,...,k; > 0 satisfy 1/k = 1/ki + -~ + 1/k;. Let va(s, ) be
the following iterated formal Borel transforms of 4(t, )
(23) U2(31 x) = (Bkj °°"°Bk1ﬂ)(s$z')'
Then vs(s, z) holds the same properties as vi(s,z) above.

In case (i), the Borel sum u?(t, z) is obtained after an analytic continuation from the
following k-Laplace integral by shifting the argument in the path of integration of the half
line of argument d.

S

(2.4) ul(t, ) = (Lxvr)(t, ) = tlk / = exp [— (;)k} vi(s, 2)d(s%),

where (t,z) € S(d, 3, p) x B, with § < m/k and p > 0.

In case (iii), the Borel sum u%(t, z) is obtained after an analytic continuation from the
following iterated Laplace integrals

(2.5) ud(t,x) = (Lry © - -+ 0 Li;v2)(t, T).
Proof of Theorem 1.2. Let v(s, ) be the (g—p) times iterated formal p-Borel transform
of 4(t, z) which is given by (1.2)-(1.3) with (1.6) :
(26) v(s,x) = (BIPi)(s,2)
_ 5 Amp ) g
5o (on+pv — DIT(1 + (pn +pv — 1)/p)a~?

bob (@) (2) o™ sP™
= Sp"_lzzcjkznk'l ‘fj (z) of —.
Sa 5 (m4+py -1+ (en+prv-1)/p)i?

By the Cauchy integral formula for the sufficiently small |s| and |z|, we have

(2.7) v(s,z) = il lizcﬂcpl k(s05)F" lj{ whaj(‘S,C)dC

211'7,31,61 ¢

pul

= ZZc]kpl k(505)* o, (s, z)dC,

27er1,cl
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where for j =1,2,...,pu

(qn)! (%‘S”)n
2.8 ho;(s,) =
28 he(80) = 2 o T+ rr = D \ G
1 q/q,1 ¢ a8
EOQ+1 q l/+ﬁ/p,l/+p;—l,.. V+P— ’pp Cq ’

with Co = I'(pv)I'(v + (p — 1)/p)??, and h,,(s, =) has the following Barnes type integral
representation (cf. [IKSY], [Luk])

I'(g/q+ 7)T(1 + 7)I(-7) (—a ﬂ)f dr
g B o e e (3

(2.9)  hay(s,¢) =

where the path of integration I runs from x — ico to k + ico with —1/q < £ < 0 and

_ L'(p/p) - Cp,q
(210) O WajapT ~ T

In the expression (2.7), by the assumption that ¢(z) is analytic in ., we can deform
the each path of integration of I,,(s, ) as follows (cf. [Ich]).

co((pd+arga;)/a) B(g, )
(2.11) Io;(s,x) -—-/0 R
where ®(z, () is given by (1.18) and

(2]‘2) Ha_,- (8, C) = haj (S, C) - h'aj (37 wq_IC)

_ T'(g/q+T) I\ 4

~ ThTw+p/p+ T+ @-1)/p+7)P \ pp¢e) T
Since the Borel sum u%(t, z) is given by the analytic continuation of the following (g—p)
times iterated p-Laplace integral

(2.13) ul(t,r) = (L3 7Pv)(t, z),

H,,(s,¢)dC,

we have

(2.14) wi(t,x)

[l oo((pd+arg;)/9) &(x, ¢ .
= [/;g P( o ch]kp1 k(sa )k 1/ (( )Ha,( C)dC)} (t, z).
j=1k=1
By exchanging the order of integrations, we have
Lo oo((pd+arg a;)/q)
(2.15) uwi(t,z) = Y chk/ ’ ®(z, ()
j=1lk= 1

27rzC (ﬁq—P(SPV—l 1k (58, H, (s, C))) (¢, C)dC.
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By substituting the integral representation (2.12) of Hy,, we calculate the iterated Laplace
integral carefully as follows.
) v
q— pv—1_1—k k—1
g (L5777 960 Hoy (5,00) (50)
' T(g/g+)T* (g’
= 1 - — Q; dr
2ni JIT(w+p/p+7) pPCe
_ 1k k—1/g,0 v+DP/p 7 =p_”i§j’_
1P (0" Cog (Zaj ale ) TV oitr
In the above equality are obtained by the following reasons. The first equality is obtained
by exchanging the differentiation and integration, and calculating (¢—p) Gamma integrals
after exchanging the order of Laplace integrals and Barnes type integral. The second
equality is obtained by exchanging the integration and differentiation, and employing the
G-function representation. ' ‘ '
Thus we get the desired formula (1.17). . O

(2.16)

pr—1
t C;H
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