<table>
<thead>
<tr>
<th>Title</th>
<th>On the Wellposedness of the Cauchy Problem for Weakly Hyperbolic Equations of Higher Order (Microlocal Analysis and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>D'Ancona, Piero; Kinoshita, Tamotu</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2002), 1261: 46-55</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2002-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/41998</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
</tbody>
</table>
On the Wellposedness of the Cauchy Problem for Weakly Hyperbolic Equations of Higher Order

By Piero D'Ancona and Tamotu Kinoshita

Dipartimento di Matematica
Università "La Sapienza" di Roma
Piazzale Aldo Moro, 2
I-00185 Roma, Italy

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki
305-8571, Japan

e-mail: dancona@mat.uniroma1.it
kinosita@math.tsukuba.ac.jp

§1. Introduction

We consider here the Cauchy problem on \([0, T] \times \mathbb{R}^n_x\)

\[
\begin{aligned}
D_t^m u &= \sum_{j+|\alpha|=m} c_{j,\alpha}(t) D_t^j D_x^\alpha u + \sum_{j+|\alpha| \leq d} c_{j,\alpha}(t) D_t^j D_x^\alpha u + f(t, x) \\
D_t^j u(0, x) &= u_j(x) \quad (j = 0, \cdots, m-1),
\end{aligned}
\]

where \(D_t = -i \partial_t\) and \(D_x = -(\partial_{x_1}, \cdots, \partial_{x_n})\), and \(0 \leq d \leq m - 1\). We shall write in short

\[
p(t, \tau, \xi) = \tau^m - \sum_{j+|\alpha|=m} c_{j,\alpha}(t) \tau^j \xi^\alpha
\]

for the principal part and

\[
p_d(t, \tau, \xi) = \sum_{j+|\alpha| \leq d} c_{j,\alpha}(t) \tau^j \xi^\alpha
\]

for the lower order terms. We shall assume that the principal part \(p\) is hyperbolic with respect to \(\tau\), that is, for any \(t \in \mathbb{R}_t, \xi \in \mathbb{R}^n_\xi\) the roots in \(\tau\) of the algebraic equation \(p(t, \tau, \xi) = 0\) are all real. We name them \(\lambda_j(t, \xi)\), according to the rule

\[
\lambda_1(t, \xi) \geq \lambda_2(t, \xi) \geq \cdots \geq \lambda_m(t, \xi),
\]

thus \(p(t, \tau, \xi)\) can be written

\[
p(t, \tau, \xi) = \prod_{k=1}^m (\tau - \lambda_k(t, \xi)).
\]

We recall that the functions \(\lambda_j(t, \xi)\) are homogeneous of degree 1 in \(\xi\).
There are many results on this problem. As to the C^∞-wellposedness, we mention that T. Nishitani [N1] considered the case when the multiplicity of the characteristic roots is at most double. F. Colombini and N. Orrù [CO] assumed that the characteristic roots vanish of finite order at $t = 0$ and satisfy

$$t^2 \sum_{k,j=1,k\neq j}^m \frac{|\lambda'_k(t,\xi)|^2 + |\lambda'_j(t,\xi)|^2}{|\lambda_k(t,\xi) - \lambda_j(t,\xi)|^2} < \infty \text{ near } t = 0.$$

Moreover, K. Kajitani, S. Wakabayashi and K. Yagdjian [KWY] dealt with the case of characteristic roots vanishing of infinite order. Concerning the Gevrey-wellposedness, F. Colombini and T. Kinoshita [CK] considered the Cauchy problem in the case when the characteristic roots are Hölder continuous in t. F. Colombini, H. Ishida [CI] and H. Ishida, K. Yagdjian [IY] assumed that the characteristic roots vanish of infinite order at $t = 0$ and satisfy for some $\bar{s} > 1$

$$\frac{\Phi_1(t)^{2\bar{s}/(\bar{s}-1)}}{\phi_1(t)^2} \sum_{k,j=1,k\neq j}^m \frac{|\lambda'_k(t,\xi)|^2 + |\lambda'_j(t,\xi)|^2}{|\lambda_k(t,\xi) - \lambda_j(t,\xi)|^2} < \infty \text{ near } t = 0,$$

where $\Phi_1(t) = \int_0^t \phi_1 \, dt$ and $\phi_1(t), \ldots, \phi_m(t)$ are real-valued functions such that

(i) $\phi_k(0) = \phi'_k(0) = 0$, $\phi'_k(t) > 0$ if $t \in (0, T]$ for any $k = 1, \ldots, m$.

(ii) $\phi_1(t) \geq \phi_2(t) \geq \cdots \geq \phi_m(t)$ for $t \in [0, T]$.

(iii) $|\lambda_k(t,\xi)| \leq C_k \phi_k(t)|\xi|$ ($^3C_k > 0$) for $k = 1, \ldots, m$ and $(t, \xi) \in [0, T] \times \mathbb{R}_{\xi}^n \setminus 0$.

(iv) $|\lambda_k(t,\xi) - \lambda_j(t,\xi)| \geq c \phi_k(t)|\xi|$ ($^3c > 0$) for $k < j$ and $(t, \xi) \in [0, T] \times \mathbb{R}_{\xi}^n \setminus 0$.

Then they showed the wellposedness in the Gevrey classes of order $1 \leq s < \bar{s}$.

We see that in most results concerning the higher order case $m > 2$ the roots are assumed to coincide only at isolated points, and then a precise behaviour is assumed at those points. In this paper we try to give a global assumption valid in more general cases, even when this happens at an arbitrary set of points (also infinite or dense). To this end we introduce the sets Ω^k_σ, Ω_σ defined as follows: for any $0 < \sigma < 1$, $k = 1, \ldots, m - 1$,

$$\Omega^k_\sigma(\xi) = \{t \in [0, T] : |\lambda_k(t,\xi) - \lambda_{k+1}(t,\xi)| \leq \sigma\}$$

and

$$\Omega_\sigma(\xi) = \bigcup_{k=1}^{m-1} \Omega^k_\sigma(\xi).$$
These sets enclose, for each \(\xi \), the points \(t \) where the roots coincide; thus we can regard the measure \(\mu(\Omega_\sigma) \), which is a function of \(\sigma, \xi \), as a measure of the defect of strict hyperbolicity of \(p \). Here \(\mu(A) \) is the Lebesgue measure in \(\mathbb{R}_t \) of the set \(A \subseteq [0, T] \). We denote by \(AC([0, T]) \) the space of absolutely continuous functions on \([0, T]\) and by \(G^s(\mathbb{R}^n) \) the space of Gevrey functions \(g(x) \) satisfying
\[
\sup_{x \in K} |D^\alpha_x g(x)| \leq C_K |\alpha|!^s \quad \text{for any compact set } K \subset \mathbb{R}^n, \quad \alpha \in \mathbb{N}^n.
\]

Our first result is the following:

Theorem 1. (Gevrey-wellposedness). Assume that the coefficients \(c_{j,\alpha}(t) \) of \(p \), \(p_d \) belong to \(C^0([0,T]) \) and the characteristic roots of the principal part \(\lambda_1, \ldots, \lambda_m \) belong to \(AC([0,T]) \) and that there exist constants \(C > 0, a \geq 0 \) and \(b > 0 \) such that for any \(0 < \sigma < 1, |\xi| = 1, k = 1, \ldots, m - 1 \)

\[
(2) \quad \mu(\Omega_\sigma(\xi)) \leq C\sigma^a,
\]

\[
(3) \quad \int_{[0,T] \setminus \Omega_{\sigma}^k(\xi)} \frac{|\lambda'_k(t,\xi)| + |\lambda'_{k+1}(t,\xi)|}{|\lambda_k(t,\xi) - \lambda_{k+1}(t,\xi)|} \, dt \leq C\sigma^{-b}.
\]

Then, when the degree \(d \) of the lower order terms satisfies

\[
0 \leq d \leq \frac{m(a + b)}{a + b + 1},
\]

the Cauchy problem (1) is wellposed in the Gevrey classes of order

\[
(4) \quad 1 \leq s < 1 + \frac{a + 1}{b},
\]

i.e., for any data \(u_j \in G^s(\mathbb{R}^n) \) and \(f \in C^0([0, T]; G^s(\mathbb{R}^n)) \) the Cauchy problem (1) has a unique solution \(u \in C^m([0, T]; G^s(\mathbb{R}^n)) \). Moreover, when the degree \(d \) of the lower order terms satisfies

\[
d > \frac{m(a + b)}{a + b + 1},
\]

then the problem is wellposed for

\[
(5) \quad 1 \leq s < \frac{m}{d + a(d - m)}.
\]

Remark 1. In the cases mentioned above, when \(\lambda_1(t, \xi), \ldots, \lambda_m(t, \xi) \) vanish of infinite order, assumption (2) can be dropped (one is forced to choose
\(a = 0\). Thus by Theorem 1 we see that the Cauchy Problem (1) is wellposed in the Gevrey classes of order

\[
1 \leq s < \min \left\{ 1 + \frac{1}{b}, \frac{m}{d} \right\}.
\]

Remark 2. M. D. Bronshtein [B], S. Wakabayashi [W] proved the Lipschitz (or Hölder) continuity in \(t\) of the characteristic roots of hyperbolic polynomials with smooth coefficients (see also [M]). Thus if we assume that \(c_{j,\alpha}\) are smooth for \(j + |\alpha| = m\), we can drop the assumption that \(\lambda_{j}\) belong to \(AC([0, T])\).

Remark 3. It is well-known that the lower order terms do not influence the \(C^{\infty}\)-wellposedness for strictly hyperbolic equations (the multiplicity of the characteristic roots is equal to 1) and the lower order terms of order \(d = m - 1\) give the Gevrey-wellposedness of order \(1 \leq s < m/(m - 1)\) for weakly hyperbolic equations (the multiplicity of the characteristic roots is equal to \(m\)) (see [B], [C], [CDS], [CJS], [OT], etc.). As the parameter \(a\) in (2) becomes greater, the type of \(p\) approaches to strictly hyperbolic type. Especially, when \(d = m - 1\), the second exponent in (4) is equal to \(m/(m - 1 - a)\). Taking \(0 \leq a < m - 1\), we can obtain an interpolation between \(C^{\infty}\) and the Gevrey classes of order \(m/(m - 1)\).

Example A. When the characteristic roots are

\[
\lambda_{k}(t, \xi) = k t^{h} \left\{ 1 + \sin^{2} \left(\frac{1}{t^{h/\alpha - 1}} \right) \right\} \cdot \xi
\]

for some \(0 < \alpha \leq 1, \alpha < h < \alpha/(1 - \alpha)\) and \(k = 1, \ldots, m\), we find that \(\lambda_{1}, \ldots, \lambda_{m}\) belong to \(AC([0, T])\) and also \(C^{\alpha}([0, T])\) and vanish of finite order at \(t = 0\) and satisfy (2) with \(a = 1/h\) and (3) with \(b = 1/\alpha - 1/h\), since

\[
\mu(\Omega_{\sigma}(\xi)) \leq C \int_{0}^{C \sigma^{1/h}} dt \leq C \sigma^{1/h},
\]

\[
\int_{[0, T] \setminus \Omega_{\sigma}^{\delta}(\xi)} \frac{|\lambda'_{k}(t, \xi)| + |\lambda'_{k+1}(t, \xi)|}{|\lambda_{k}(t, \xi) - \lambda_{k+1}(t, \xi)|} dt \leq C \int_{C \sigma^{1/h}}^{T} \left(\frac{1}{t^{h/\alpha - 1}} \right)' dt \leq C \sigma^{1/h - 1/\alpha}.
\]

Applying Theorem 1, we get the wellposedness in the Gevrey classes of order

\[
1 \leq s < \frac{h}{h - \alpha} (1 + \alpha).
\]
According to [CK] or [OT], if the characteristic roots belong to $C^\alpha([0, T])$, the Cauchy problem (1) is in the wellposed in the Gevrey classes of order

$$1 \leq s < 1 + \alpha.$$

For the second order polynomial $P(t, \tau, \xi) \equiv \tau^2 - A(t)\xi^2$ where $A(t) \geq 0$, if $A(t)$ belongs to $C^{2\alpha}([0, T])$, we also know the Gevrey order (7) (see [CJS], [D1] and [N2]). We remark that (6) approaches to (7) as h tends to infinity and s can be taken arbitrarily large as h tends to α (the characteristic roots oscillate more slowly). This example implies that the oscillation and the degeneracy of the characteristic roots influence on the wellposedness independently of their regularity.

Example B. [CI] and [IY] gave an example of the following kind:

$$\lambda_k(t, \xi) = \begin{cases} k \exp\left(\frac{1}{t^h}\right)\left(1 + \sin^2\left(\exp\frac{\gamma}{t^h}\right)\right) \cdot \xi \\ 0 \end{cases}$$

for some $\gamma > 0$, $h > 0$ and $k = 1, \ldots, m$. They proved the wellposedness in the Gevrey classes of order $1 \leq s < 1 + 1/\gamma$. Notice that $\lambda_1(t, \xi), \ldots, \lambda_m(t, \xi)$ belong to $AC([0, T])$ and vanish of infinite order at $t = 0$ (see Remark 1) and satisfy (3) with $b = \gamma$;

$$\int_{[0,T]\backslash \Omega^k_{\sigma}(\xi)} \frac{|\lambda_k'(t, \xi)| + |\lambda_{k+1}'(t, \xi)|}{|\lambda_k(t, \xi) - \lambda_{k+1}(t, \xi)|} dt \leq C \int_{1/(\log \sigma^{-1} + C)^{1/h}}^{T} \left(\exp\frac{\gamma}{t^h}\right)^' dt \leq C \sigma^{-\gamma}.$$

Thus we can apply Theorem 1 and we get the same Gevrey order $1 \leq s < 1+1/\gamma$.

Our theorems can be applied also when the vanishing order of characteristic roots is different from the order of contact between the roots. For instance, if the characteristic polynomial is

$$p(t, \tau, \xi) = \tau^2 - 2t^\alpha \tau \xi + (t^{2\alpha} - t^{2\beta})\xi^2$$

where $0 < \alpha < \beta$,

we easily obtain $\lambda_1(t, \xi) = (t^\alpha + t^\beta)\xi$ and $\lambda_2(t, \xi) = (t^\alpha - t^\beta)\xi$ which implies that $|\lambda_k(t, \xi)| \leq 2t^\alpha|\xi|$ ($k = 1, 2$), $|\lambda_1(t, \xi) - \lambda_2(t, \xi)| \geq 2t^\beta|\xi|$ for $(t, \xi) \in [0, T] \times \mathbb{R}_\xi$. Since $\lambda_1(t, \xi)$ and $\lambda_2(t, \xi)$ satisfy (2) with $a = 1/\beta$ and (3) $b = 1 - \alpha/\beta$, applying Theorem 1 we have wellposedness in the Gevrey classes of order

$$1 \leq s < 1 + \frac{\beta+1}{\beta - \alpha}.$$

In the favourable case of analytic characteristic roots, more generally from Theorem 1 we also obtain the following results:
Corollary 2. (Gevrey-wellposedness). Assume that the coefficients $c_j, \alpha(t)$ of p, p_d belong to $C^0([0,T])$ and the characteristic roots of the principal part $\lambda_1(t, \xi), \cdots, \lambda_m(t, \xi)$ are analytic in t and vanish at $t = 0$ and that there exist constants $C > 0, c > 0$ and $0 < \alpha < \beta$ such that for any $(t, \xi) \in [0, T] \times \mathbb{R}^n$

$$|\lambda_k(t, \xi)| \leq Ct^\alpha|\xi| \quad \text{for} \quad k = 1, \cdots, m,$$

$$|\lambda_{k+1}(t, \xi) - \lambda_k(t, \xi)| \geq ct^{\beta}|\xi| \quad \text{for} \quad k = 1, \cdots, m - 1.$$

Then, when the degree d of the lower order terms satisfies

$$0 \leq d \leq \frac{m(\beta - \alpha + 1)}{2\beta - \alpha + 1},$$

the Cauchy problem (1) is wellposed in the Gevrey classes of order

$$1 \leq s < 1 + \frac{\beta + 1}{\beta - \alpha}.$$

Moreover, when the degree d of the lower order terms satisfies

$$d > \frac{m(\beta - \alpha + 1)}{2\beta - \alpha + 1},$$

then the wellposedness holds for

$$1 \leq s < \frac{\beta m}{\beta d + d - m}.$$

In Corollary 2 and Examples A and B, the characteristic roots coincide only at $t = 0$ or at a finite number of points. We give a final example to emphasize that our results allow the characteristic roots to coincide at an infinite number of points.

Example C (see also Example A). When the characteristic roots are

$$\lambda_k(t, \xi) = kt^h \sin^h\left(\frac{1}{t^h - 1}\right) \cdot \xi$$

for some even number h and $k = 1, \cdots, m$, we find that $\lambda_1(t, \xi), \cdots, \lambda_m(t, \xi)$ are absolutely continuous in t, more precisely Lipschitz continuous in t and vanish at $t = (\pi j)^{1/(1-h)}$ ($j = 1, 2, \cdots$), they satisfy (2) with $a < 1/h$ and (3) with $b > 1 - 1/h$. Applying Theorem 1, we get the wellposedness in the Gevrey classes of order $1 \leq s < 2h/(h - 1)$ (see (7)).
§2. Sketch of the proof

When $s = 1$, the Cauchy problem (1) is wellposed in the class of real analytic functions. Therefore we can suppose that $s > 1$ for the proof. By Fourier transform with respect to x, the Cauchy problem (1) turns into

\begin{equation}
\begin{cases}
p(t, D_t, \xi) \hat{u} = \hat{f}(t, \xi) + p_d(t, D_t, \xi) \hat{u} \\
D_t^j \hat{u}(0, \xi) = \hat{u}_j(\xi) \quad (j = 0, \ldots, m - 1).
\end{cases}
\end{equation}

Let $0 < \sigma < 1$ and $\varphi(r)$ be a non-negative function such that $\varphi \in C_0^\infty(\mathbb{R})$, $\varphi(r) \equiv 0$ for $|r| \geq 2$ and $\varphi(r) \equiv 1$ for $|r| \leq 1$. We define

$$
\omega(t, \xi) = \sigma|\xi| \sum_{l=1}^{m-1} \varphi(\sigma^{-1}\{\lambda_l(t, \frac{\xi}{|\xi|}) - \lambda_{l+1}(t, \frac{\xi}{|\xi|})\}) ,
$$

$$
\mu_k(t, \xi) = \lambda_k(t, \xi) + ik\omega(t, \xi) \quad \text{for} \quad k = 1, \ldots, m.
$$

Moreover we denote by $q(t, \tau, \xi)$ the polynomial of degree m in τ

$$
q(t, \tau, \xi) = \prod_{k=1}^{m} (\tau - \mu_k(t, \xi)).
$$

Now we set the energy density

$$
E(t, \xi) = \frac{1}{2} \sum_{l=1}^{m} |q_l(t, D_t, \xi) \hat{u}|^2 ,
$$

where $q_l(t, \tau, \xi)$ is the polynomial of degree $m - 1$ in τ defined by

$$
q_l(t, \tau, \xi) = \frac{q(t, \tau, \xi)}{\tau - \mu_l(t, \xi)} (= \prod_{k=1, k \neq l}^{m} (\tau - \mu_k(t, \xi))).
$$

We denote by $'$ the derivative in t. Differentiating $E(t, \xi)$ in t and dividing by $2\sqrt{E(t, \xi)}$, by (8) we have

$$
\sqrt{E}' \leq C \left(\max_{1 \leq k \leq m-1} \frac{|\lambda'_k| + |\lambda'_{k+1}| + |\omega'|}{|\lambda_k - \lambda_{k+1}| + \omega} + \frac{|\xi|^d}{\prod_{k=1}^{m-1} |\lambda_k - \lambda_{k+1}| + \omega^{m-1}} \right) \sqrt{E} + |\hat{f}| .
$$

Thus, Gronwall's inequality yields the estimate

$$
\sqrt{E(t, \xi)} \leq \exp \left\{ C \int_0^T \left(\max_{1 \leq k \leq m-1} \frac{|\lambda'_k| + |\lambda'_{k+1}| + |\omega'|}{|\lambda_k - \lambda_{k+1}| + \omega} + \frac{|\xi|^d}{\prod_{k=1}^{m-1} |\lambda_k - \lambda_{k+1}| + \omega^{m-1}} \right) dt \right\} \
\times \left\{ \sqrt{E(0, \xi)} + \int_0^T |\hat{f}(t, \xi)| dt \right\}.
$$
We remark that there exists $C > 0$ such that for any $(t, \xi) \in [0, T] \times \mathbb{R}_\xi^n \setminus 0$

$$C^{-1}(\sigma|\xi|)^{m-1}|\xi|^{-j}|D_t^j \hat{u}| \leq \sqrt{E(t, \xi)} \leq C \sum_{j=0}^{m-1} |\xi|^{m-1-j}|D_t^j \hat{u}|.$$

Lemma 1. Let $b \geq 0$. Assume that $\lambda_1(t, \xi), \cdots, \lambda_m(t, \xi)$ belong to $AC([0, T])$ and satisfy (3). Then there exists $C > 0$ such that for any $0 < \sigma < 1, |\xi| = 1$ and $k = 1, \cdots, m$

$$\int_{\Omega_\sigma^k(\xi) \cup \Omega_\sigma^{k-1}(\xi)} |\lambda_k'(t, \xi)| dt \leq \begin{cases} C & \text{if } b \geq 1 \\ C\sigma^{1-b} & \text{if } 0 \leq b < 1 \end{cases} \leq C\sigma^{1-b},$$

where $\Omega_\sigma^0(\xi) = \Omega_\sigma^m(\xi) = \phi$ and $\Omega_\sigma^k(\xi)$ for $k = 1, \cdots, m-1$ are defined in §.1.

Lemma 2. Let $0 \leq a < m-1$. Assume that $\lambda_1, \cdots, \lambda_m$ satisfy (2). Then there exists $C > 0$ such that for any $0 < \sigma < 1, |\xi| = 1$

(21) $$\int_{[0, T] \setminus \Omega_\sigma(\xi)} \frac{dt}{\prod_{k=1}^{m-1} |\lambda_k(t, \xi) - \lambda_{k+1}(t, \xi)|} \leq C\sigma^{a+1-m},$$

where $\Omega_\sigma(\xi)$ is defined in §.1.

Consequently, it follows that

$$\sum_{j=0}^{m-1} |\xi|^{-j}|D_t^j \hat{u}(t, \xi)| \leq C\sigma^{1-m} \exp\left\{C(\sigma^{-b} + \sigma^{a+1}|\xi| + \sigma^{a+1-m}|\xi|^{d+1-m})\right\}$$

$$\times \left\{\sum_{j=0}^{m-1} |\xi|^{-j}|\hat{u}_j| + \int_0^T |\xi|^{1-m}|\hat{f}(t, \xi)| dt\right\}.$$

When

$$d \leq \frac{m(a+b)}{a+b+1},$$

the third term is smaller and this choice gives immediately

$$|\xi|^\gamma b + |\xi|^{1-\gamma(a+1)} + |\xi|^{\gamma(m-a-1)+d+1-m} \leq 3|\xi|^{\frac{b}{a+b+1}}.$$

Hence, there exists $\rho > 0$ such that for any $(t, \xi) \in [0, T] \times \mathbb{R}_\xi^n \setminus 0$

$$\sum_{j=0}^{m-1} |\xi|^{-j}|D_t^j \hat{u}(t, \xi)| \leq C \exp\left\{\rho|\xi|^{\frac{b}{a+b+1}}\right\} \left\{\sum_{j=0}^{m-1} |\xi|^{\frac{m-1}{a+b+1}-j}|\hat{u}_j(\xi)| + \int_0^T |\xi|^{\frac{(1-m)(a+1)}{a+b+1}}|\hat{f}(t, \xi)| dt\right\}.$$
In virtue of Paley-Wiener theorem, \(\{D_t^j u(\cdot, t) ; t \in [0, T], j = 0, \ldots, m - 1 \} \) is bounded in the Gevrey classes of order (5). Thus, taking into account that \(u \) is a solution of (1), we find \(u \in C^m([0, T]; G^s(\mathbb{R}^n)) \). This concludes the proof of Theorem 1 in the case when \(d \leq m(a + b)/(a + b + 1) \).

On the other hand, when

\[
d > \frac{m(a + b)}{a + b + 1},
\]

the dominant terms in

\[
|\xi|^{\gamma b} + |\xi|^{1-\gamma(a+1)} + |\xi|^{\gamma(m-a-1)+d+1-m}
\]

are the last two (the first one is smaller). In this case we choose

\[
\gamma = \frac{m-r}{m}
\]

and proceeding as above we conclude the proof of this case and we get (4).

REFERENCES

F. Colombini and T. Kinoshita, On the Gevrey wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order, preprint.

K. Kajitani, S. Wakabayashi and K. Yagdjian, The C^∞-well posed Cauchy problem for hyperbolic operators with multiple characteristics vanishing with the different speeds, to appear in *Osaka J. Math.*

