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A Note on the Analytic Continuation of Solutions to
Nonlinear Partial Differential Equations

Jose Ernie C. LOPE* and Hidetoshi TAHARA!

Abstract

We consider the a,na.lyi;ic continuation of solutions to the nonlinear partial dif-
ferential equation

(3)" #mA(3) () Do)

in the complex domain. Let a solution u(t,z) be holomorphic in the domain
{(t,z) e CxC™® |z| < R, 0< |t| < r and |argt| < 8} for some positive numbers
R, r and 0. If u(t, ) satisfies some growth condition as ¢ approaches zero, then it is
possible to extend it as a holomorphic solution of this partial dlﬂ'erentlal equation
up to some neighborhood of the origin.

1 Introduction and Main Result

The investigation of the possibility of analytic continuation is an important problem
in the theory of partial differential equations in the complex domain. In particular,
in the study of singular solutions (i.e., solutions which possess some singularities) to
partial differential equations, one way of arguing the nonexistence of such solutions is
by means of analytic continuation.

If the partial differential equation is linear, then we have the well-known theorem
of Zerner[5] in 1971 which states that any holomorphic solution may be extended an-
alytically over noncharacteristic hypersurfaces. If the equation is not linear, then we
have some results by Tsuno[4] in 1975 that attempt to extend those of Zerner. As may
be expected, the nonlinear case is more difficult than the linear case, and thus Tsuno
had to assume the boundedness of the solution and its derivatives in order to establish
the possibility of analytic continuation. More than two decades later, Kobayashi[l]
published in 1998 a more precise result on this problem. He formulated two possible
premises to replace the boundedness assumption of Tsuno. The two conditions are not
equivalent; one implies the other. We are of the opinion that one condition is relatively
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simpler than the other, but this condition has the disadvantage that it gives a less
precise result.

This paper presents yet another result on this problem. We will come up with a
precise result using as our premise what we deem is the simpler of the two conditions.

Let us now begin the formulation of the problem. Denote by N the set of all
nonnegative integers and by N* the set N\ {0}. Let m € N*, n € N and A be the set of
multi-indices {(j, @) € NxN"; j+|a| < m, j < m}. Let (t,z) = (t,z1,...,%) € CxC"
and consider the nonlinear partial differential equation :

s ()" = P {3 () )

All throughout this paper, we will assume that the function F(¢,z, Z) = F(t, z, (Zje)(a)e A)

is holomorphic in the domain G x H x C#A, where G = {t € C; [t| < ro} and
= {z € C" |z| < Ry} for some positive numbers ro and Ry. For any ¢ > 0,
we set G. = {t € G\ {0}; |argt| < €}.
Now suppose that a solution u(t, z) is known to be holomorphic in G x H for some
6 > 0. We wish to answer the following question: Under what conditions will it ‘be
possible to extend the solution u(t,z) as a holomorphic solution of (1.1) up to some
neighborhood of the origin? We will answer this by focusing on the growth of u(t, z)
as t approaches the origin.
~ Since the function F(t,z, Z) is holomorphic, we may expand it into the following
convergent power series: \

F(t,z,2) = Y au(t,z)2"
‘ HEM

12 - = Z"t’?»b,‘(t,x)z#."

HEM

In the summation above, the set M has elements of the form u = (i15,4)(j,a)ea and is a
subset of N#A; we have omitted from M those multi-indices p for which a,(t,z) = 0.
The expression Z¥ is to be mterpreted as the product []; a)e A(Z a)Pie. Moréove'r,
we have taken out the maximum power of ¢ from each coefficient a,(t,z), so that we
have b,(0,z).# 0 for all u € M. Usmg this expansion, we can now write our pa.rtlal
differential equation as :

1 ()= e IR G

Denote by 7:(u) the total number of derivatives with respect to ¢ in the product
H(] a)EA [(a/at)J (a/am) ]“] **, that i 18, let

(1.4) )= ) i e

(Fe)en
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Since the highest order of differentiation with respect to ¢ appearing on the right-hand
side is at most m — 1, we have v (u) < (m — 1)|y.
For any real number )\, we define

(1.5) 60 = inf (ku+m = () + Al - 1).

Kobayashi used this quantity in the hypothesis of his theorem. The following is his
result.

Theorem 1 (Kobayashi, 1998). Suppose it is known that a solution u(t,x) that is
holomorphic in Gy x H satisfies the estimate

(1.6) lu@®)llz = sup lu(t,z)| = O(It]”)  (ast— 0 in G).

z€
If for this o, we have 6(a) > 0, then this solution may be eztended as a holomorphic
solution of (1.1) up to some neighborhood of the origin.

If §(o) is positive for some values of o, then it is natural to think of the least o for
which §(o) > 0. Kobayashi then identified a critical value for o, which he defined by

. ke
(1.7) ok = sup u—m ¥ (W) .
neM, [uf>2 lul -1

Since k,, is nonnegative and v (s) < (m—1)|u|, then it follows from the above definition
that oy < m — 1. It may also be shown using the definition that (¢) > 0 if and only
if o > ok, and that o > ok implies §(c) > 0, but not the other way around. This last
observation leads to the following corollary to Kobayashi’s theorem.

Corollary 2 (Kobayashi, 1998). Suppose it is known that a solution u(t, z) that is
holomorphic in Gy x H satisfies the estimate

(1.8) lu@)ller = sup |lu(t,z)l = O(ItI°)  (ast— 0 in Gy).

If o s strictly greater than ok, then this solution may be extended as a holomorphic
solution of (1.1) up to some neighborhood of the origin.

The statement above is more straightforward and for us is more desirable than
Theorem 1. Kobayashi himself might have preferred this to the preceding theorem,
had there been no gap between the conditions o > ok and (o) > 0. For the condition
o > ok actually yields a weaker result, as may be seen in the following example. For
simplicity, let (,z) € C? and consider the first-order nonlinear equation

R I LAY

For this equation, we have k, = 0 for all u. It can be easily checked that §(0) = 1
and ox = limj_,0 —1/j = 0. Note that Corollary 2 fails to guarantee the analytic
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continuation of a solution u(t,z) satisfying ||u(t)|lg = O(1) (as t = 0 in Gg). But
Theorem 1 does, since §(0) is positive!

We are therefore faced with a dilemma: the condition §(c) > 0 yields a sharp result
but is not as straightforward as the condition o > ok.

This paper resolves this dilemma. Our theorem gives up the first condition in favor
of the second but comes up with the same degree of accuracy in the result.

Define the subset M of M by

Mo={p€M; |ul>2 and ky+m—y(p)+ox(lul - 1) = 0}.
Then our result may be stated as follows.

Theorem 3. Suppose a solution u(t,z) is known to be holomorphic in the domain
Go x H. Then this solution may be extended as a holomorphic solution of (1.1) up to
some neighborhood of the origin if any of the following two conditions is satisfied:

(i) The set My is empty and ||u(t)||ag = O(|t|°%) (ast— 0 in Gp).
(i) The set My is not empty and ||u(t)||g = o(|t|’*) (ast— 0 in Gy).

Note that if Mo = @, then k, + m — v (p) + ox(|u| — 1) > 0 for all |u| > 2.
Statement (i) of Theorem 3 says that when Mo = @, analytic continuation is possible
whenever o > ok (or equivalently, whenever d(c) > 0). This in effect says that the con-
dition 6(c’) > 0 of Theorem 1 is not really optimal. On the other hand, statement (ii) of
the theorem guarantees that when Mg # @, analytic continuation is possible whenever
o > ok (or equivalently, whenever d(c) > 0).

Recall Equation (1.9). Since —1/j # 0 = ox for all j, the set My is empty. By our
theorem, analytic continuation is possible whenever o > ox = 0. This agrees with the
result of Theorem 1. ‘

The growth condition assumed in (ii) above may not be weakened, say by assuming
that we only have |u(t)|lz = O(|t|’*) (as t — 0 in Gy). Consider the following
nonlinear equation in two variables (¢,z) € C2%:

(1.10) | %: u(gg)] (j € N*).

In this equation, m = 1 and k(; ;) = 0, ox = -1 /7 and My is not empty. It may be
verified that this equation has as a solution the function u(t,z) = (—=1/4)Y/9 zt=1/9,
which is of large order |t|?<. But clearly this has an essential discontinuity at ¢ =0.
(For a more general treatment, the reader is referred to Section 3 of Kobayashi[1] which
is devoted to the construction of singular solutions of order [t|7%.)

2 A Family of Majorant Functions

Once again, the variables (t,z) will denote elements in C x C". In the following
discussion, we will use the following notations to describe majorant relations:
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(1) If a(z) = 3} aqz® and A(z) = Y A,z then we say that a(z) < A(z) if and
only if for all @ € N®, we have |aq| < Aq.

(1) If g(,7) = 3_gr,alt — €)*z* and G(t,z) = 3 Gy alt — £)z, then we say that
9(t,z) < G(t,z) if and only if for all (k,a) € N x N*, we have l9k,al < Gia-

In 1953, Lax[2] made clever use of a certain majorant function to establish the
convergence of a formal series. In proving our main result, we will be using a suitably
modified version of Lax’s function, defined as follows: for z € C and i € N, we set

2k
(2.1) pi(z) = Eg(lﬁ—l)“"
Here, § = 1+1/22+1/32 +--. = 7n2/6. This constant is introduced to facilitate

computation.

Note that each ¢;(z) converges for all |2| < 1 and thus defines a holomorphic func-
tion in this domain. Moreover, this family of functions satisfy a number of interesting
majorant relations.

Proposition 4. The following relations hold for the functions p;(2):

(a) wo(z)po(z) < vo(2);
(b) wi(z) < pj(2) for anyi,j € N withi> j;

1\ 2+i d .
© (3) w10 < £ 0i(2) < pic1(z) for any i € N¥;

(d) Given any 0 < € < 1, there ezists a constant C;. > 0 such that

1
m%‘(z) < G epi(2).

Proof. The first three relations may be easily verified using the definition of ¢;(z). It
may also be checked that ¢;(2z)p;(2) < 2%p;(2) holds. Hence, to prove the fourth, it is
sufficient to show that

1
1—¢€2

00
= Zekz" < Bi pi(2)
k=0 ’

(2.2)

for some B;. > 0. But this is the same as showing that_; for all k, we have 45 e*(k +
1)2*¢ < B; . for some constant B; . > 0. Since £*(k+1)2* is close to zero for sufficiently
large values of k, such constant exists. a

The following two lemmas will play important roles in the proof of the main theorem.
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Lemma 5. Let f(x) be holomorphic and bounded by M in a neighborhood of {x €
C"; |z| < Ro}. Fiz any positive R < Ry. Then there exists a constant B; > 0,
dependent on R but not on f(z), such that

f@) < MBI,
Proof. We have
M 4SM T1+--+7x
@3) @) < g < TmEEE o),
Ro ‘ Ry
since 4S¢p;(z) > 1. Using (d) of Proposition 4 with ¢ = R/Ry < 1, we obtain the
desired result. ' O

Lemma 6. Let a(t,z) be holomorphic and bounded by A in a neighborhood of {(t,x) €
CxC" |t| < ro and |z| < Rg}. We express a(t,z) in the form a(t,z) = t9b(t,z), where
g € N and b(0,z) # 0. Now fix any R < Ry and set € = cr/2, where ¢ is any number
in (0,1] and r < g is sufficiently small. Then we have '

‘ t—¢ T1+---+zy
(o7
Here, the constant By is the constant associated with o in the preceding lemma.

a(t,z) <. 2Ac By o

Proof. This lemma was essentially proved by Kobayashi in [1], but for the benefit of
the reader, we will present a proof here. -

For brevity, let us set z = (t — ¢)/er + (z1 + - - - + zn)/R. We first note that ¢ is
majorized by o : v
(2.4) t = e+(t—-¢) K (e+4der)(1+(t—¢)/4cr)

Le (e +4cr) 48 o(2).
As for b(t, z), we may expand it into b(t,z) = Y bx(z)t*, where each bi(z) is holomor-
phic in a neighborhood of {z € C"; |z| < Ro} and satisfies
: A
(2:5) : |bk(-"3)l < ey
To

By Lemma 5, there exists a constant By such that

_ ABy [T+ +2n
(2.6) LA oo (22).
Combining this with (2.4) and setting € = cr/2, we have
= k ABo
(2.7) alt,z) e Y [(e+4er)aSpo(2)] "™ oz eo(2)
k=0 0
oo
18crS etk
<e ABO‘PO(Z)":Z_%( To ) )

since we know that ¢g(2)po(z) <. po(z). We finish off the proof by taking the term c?
out of the summation and fixing a sufficiently small » > 0 such that 187S < r9/2. 0O

61



3 Proof of Main Result

We will construct a holomorphic function w(t, ) which coincides with u(t, z) in an open
set in Gg x H, and show that this w(t,z) is holomorphic in a domain containing the
origin (0,0) € C; x CZ. The approach being used in this section is a sharp modification
of the one by Kobayashi[l].

We consider the following initial value problem:

a\m : O\is d\a 1#ia

(B = 5 enen T[22
(3.1) BEM (Ja)eA »
By the Cauchy-Kowalevsky Theorem for nonlinear equations, this initial value problem
has a unique holomorphic solution w(t,z), and by construction, w(t, z) coincides with
u(¢, z) in some neighborhood of (¢,0) € C; x C*. We now have to show that the w(t, )
we have found is holomorphic up to some neighborhood of the origin, i.e., we will show
that the domain of convergence of the formal solution w(t,x) = Y peowk(z)(t — €)¥
contains the origin.

As it is quite complicated to establish convergence by just working on the formal
solution, we will instead construct a majorant function W (t, z) for w(t, z) that is, again,
holomorphic in a neighborhood of the origin. The rest of the following discussion will
be devoted to this task.

We note that since the function F(t,z,Z) is holomorphic in G x H x C#A the
expansion

(3.2) F(t,z,Z)= ) au(t,z)Z" = > thub,(t,z)2#

BEM PEM

is valid in a neighborhood of the set 2, = G x H x {Z = (Zja)(,a)en € CFA; | Z; 0] <
p for all (j,a) € A} for any positive p. Let M, be a bound for F(t,z,Z) in this
neighborhood. Then in G x H, the estimate [tf#b,(t,z)| < M,/p™ holds, and hence
by Lemma 6, we have

2M,B, t—e T +---+xy
plH ck“%( + R )’

where R € (0, Ry) is fixed, ¢ moves in the interval (0, 1], » € (0,7¢) is chosen to be small
enough and fixed, and we have set ¢ = cr/2. Having fixed R and r, we can only play
with the remaining unfixed constant c.

At this point, the discussion will have to branch, depending on whether the set M,
is empty or not.

(3.3) thub,(t,z) <.

Proof of (i) of Theorem 3. (The case when My = @.)



Since u(t,z) = O(|t|°%) as t = 0 in Gy, by shrinking Gy into Gg with 6 < 6 if
necessary, we may assume that for 1 < p < m — 1, we have (8/9t)Pu(t,z) = O(|t|”*7P)
as t = 0 in Gg¢. This implies that there exist constants L, > 0 such that

(3.4) sup ’?fl—l’(e,x)l < Lpe’7? 0<p<m-1).
lal<k | O

(Note that € = cr/2 is small enough since 7 may be chosen to be very small.) Applying
Lemma 5 gives '

a:1+---+a:,,)

o»
(3.5) W’f(s, ) < Lpe""_me_pcpm_p( =

Observe that we have chosen different functions to majorize the derivatives (at t = ¢)
of the solution u(t, z).
With (3.5) and (3.3) in mind, we set up the following problem:

B)yw > 5B TT [(5) (52) ™)™
(M) BEM (4ra)eA

o

(gi)pwlz=e> 5 (&%), 0sps<m-—L

Here, for brevity, we have again set z = (t — ¢)/er + (1 + -+ + zn)/R. It is easily
checked that any W (t,z) satisfying the majorant relations above must majorize the
solution w(t, z) of (3.1). ) :

We claim that we can construct one such W(t,z) in the form

(3.6) . W(t,2) = L Bmpm(2),

where the constants L and ¢ will later be specified.
Let us first check the initial conditions. We have

_ ox T1+ -+ Tn
(3.7) Wi(e,z) = Le Bmwm(————R )
and
3 p _ LEUKBm (P) x1+...+$n
(3.8) (50) ™l = (cryp #m (%)
Le«~PB,, 1+ -+ 2n
> Tokm) m—r(‘—zr_)-

The quantity k(p,m) is the constant resulting from repeated applications of Proposi-
tion 4 (c). Comparing these with (3.5), we see that the initial conditions are satisfied
if we choose L to satisfy

(3.9) L > 0<;n<ar.§_l{2k(”’m)Lme_p/Bm}.
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We choose and fix one such L.

Having already checked the initial conditions, we now consider the majorant relation
involving (8/3t)™W (t,z). Computing in the same manner as had been done in checking
the initial conditions, and setting ¢ equal to cr/2, we get

a\m LBy, (r/2)ox—™
(3.10) (a) W >, "2'56('{. ,3‘) X o 2).
Let us turn to the right-hand side. By applying Proposition 4, we obtain the

following majorant relations:

oW  Le°<B Le°<B
(3.11) 5= Pm(2) < o ¢m-1(2)
and
OW  Le°<B, Le° B,
(3.12) e £ 7 = P(2) <e R = Om-1(2).
Combining these two gives
O\is 9\ Le’«<B
(3.13) (&) (5) W <, (:r')—]-RT{:‘I‘Pm—(jHaI)(z)-
Thus, the right-hand side (RHS) is majorized by
2ByM, Le’* By, Hiva
(3.14) RHS <. gd A c""<po(2)(.l_)[€A{m ‘Pm—(j+lal)(z)}
n Ja

) LEUKBm ”j-a
<e 2BoMppo(2) D & [[ { =52
neM (j,a)eA{ (cry? Rlelp j

_ LBy (r/2)7 \ i

_ +ok m

= 2BoM_,po(2) Z crutoulul 7'(").1_‘[ riRlelp } )
BPEM (4,0)eA

In the simplifications above, we have used (a) and (b) of Proposition 4 as well as the
fact that e has been set equal to cr/2.

Let us wrap up this part of the computation. Comparing the right-hand side of
(3.10) and the last line of (3.14), we can see that the first of the majorant relations in
(M) is satisfied by W (t,z) = Le“* Binpm(2) if we can force the following inequality to
hold:

LBp,(r/2)ox—™
2k(m,m) (2By)

(3.15)

_ _ LBy (r/2)% \ #i.a
M +m—7e(p)+ox(|ul-1) Zm\/e)
2 p ch# H{ rjRI"'p } -
PEM (G,@)EA



The expression on the left-hand side of the above inequality (which for convenience
will be denoted by K) involves only fixed constants, while the right-hand side has
constants ¢ and p which we can vary as we please. Note also that M, is dependent on
p. Since My is empty, we know that k, +m — (p) + ox(|u| — 1) > 0 for all p with
|ul > 2. If |p| <1, then

(3.16) ku4+m—y(p) +ox(lpl —1) > ky+1+(m—1-0x)(1 - lu]) > 1.

Here we made use of the fact that (i) < (m — 1)|u| and that ox < m — 1. Thus, for
any p € M, we have cFutm—r(+ox(ul-1) <1,

As for the expression inside the brackets, we can choose and fix a large p = p so
that it becomes less than 1/2. This fixes a value for M, and makes the infinite series
converge. We can therefore choose a number N large enough so that

1) My 3 e (H < K,
HEM,|u|>N

To handle the remaining finite number of terms in the summation, we take the minimum
power of c, that is, we let v = minj,<n (ky +m — ve(p) + ox (|| - 1)). Since v > 0 and
since ¢ may be made as close to zero as we please, we choose ¢ = ¢ so that

(3.18) &My Y (%)“" < %
lul<N

To summarize, we were able to establish our claim that for suitable values of the
constants R, r, p and ¢, the function W (¢,z) in (3.6) will satisfy the relations posed in
(M). By our choice of €, the origin (0,0) € C¢ x C7 lies within {|2| = |[(¢ —¢€)/cr +(z1+
-+-+x,)/R| < 1}, the domain of convergence of W (¢, z), and of course, also within the
domain of convergence of the formal solution w(t, z). This establishes (i) of Theorem 3.

Proof of (ii) of Theorem 3. (The case when Mg # 3.)

We will follow the arguments of the previous case. Since u(t,z) = o(|t|°) ast — 0
in Gg, then (8/8t)Pu(t,z) = o(|t|°<"P) as t — 0 in G with ¢ < 6. This means that
there exist constants L, and functions 7,(t) tending to zero as ¢t — 0 in G¢ such that

oP

(3.19) sup [2(e,2)| < Lye™Pmple) (@ <p<m—1).
jal<R | O

Without loss of generality, we may assume that for any a > 0, t* = O(ny(t)). (For

otherwise, we replace 7, (t) by a function which tends to zero at a slower rate.) Again

by Lemma 5, we have

o*u

- Ty +---+z
(3.20) A aﬂ’(:s,:z:) & Lpe®™ Pyy(e) Bm_pcpm_p(—l———").

R
We wish to find a function W (¢, ) satisfying (M). We seek it in the form

(3.21) W (t,z) = Le™n(e) Bmpm(2),
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where the constant L > 0 is to be determined later, and we define the function 7(e) by
n(e) = max{no(e), M (), .-, Nm-1(€)}.
As before, we can check that W (t, ) satisfies the initial conditions if we choose

(3.22) L > max {2*C™L,B. ,/Bn}.

We then continue following the previous arguments and arrive at the following inequal-
ity which must hold in order for W (¢, z) to satisfy the majorant relations in (M):
LBy, (r/2)ox—™

(3.23) Fmm 2By 2

M, Z ckntm—r(u)+ox(lul-1) n(e)lkl—1
BEM\Mp

LB (r/2)7* )
X H{ ri Rlalp .
(4,a)eA

+ M, Y nEe)+ T {f’w}’%{

j Rlel
BEMo (Fra)eA ™R p

Note that we have split the summation into two. Both sums may be made to converge
by choosing a large p. Note further that in the first summation, we still have the
expression ks +m—7(W)+ox(lul~1) byt in the second, this expression is simply equal to 1.

Just like before, the first summation may be made as small as we want, except for
the addend corresponding to |u| = 0. To deal with this, we recall that we required 7, (t)
to satisfy t%/np(t) — 0 as ¢t — 0. Hence the addend may be made small by choosing a
small value for c¢. As for the second summation, we recall that p# € My implies that
|| > 2 and so we can factor out at least one 7)(e). This compensates for the absence of
¢ in the second summation, and therefore, it can also be made arbitrarily small. This
establishes (ii) of Theorem 3, and the theorem is now completely proved.
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