Structure of the solutions to Fuchsian systems

Takeshi MANDAI (萬代武史)

Osaka Electro-Communication University (大阪電気通信大学)

Hidetoshi TAHARA (田原秀敏)

Sophia University (上智大学)

Abstract: To a certain Volevič system of homogeneous singular partial differential equations in a complex domain, called a Fuchsian system, holomorphic solutions which have singularities only on the initial surface are considered. All the solutions are constructed and parametrized in a good way, without any assumptions on the characteristic exponents.

1 Introduction

We consider a system of linear partial differential operators

$$P = tD_t I_m - A(t, x; D_x), \qquad (t, x) \in \mathbf{C} \times \mathbf{C}^m, \tag{1.1}$$

where I_m is the $m \times m$ unit matrix, and

$$A = ig(A_{i,j}(t,x;D_x)ig)_{1 \leq i,j \leq m} \ , \qquad A_{i,j} = \sum_{lpha: ext{finite}} a_{i,j;lpha}(t,x)D_x^lpha \ ,$$

The research was partially supported by the Ministry of Education, Science, Sports and Culture (Japan), Grant-in-Aid for Scientific Research 12640194(2000,2001).

Key Words: Fuchsian system, Volevič system, regular singularity, characteristic exponent, characteristic index.

 $a_{i,j;\alpha}$ are holomorphic in a neighborhood of the origin $(0,0) \in \mathbb{C}^{n+1}$. We use $D_t = \frac{\partial}{\partial t}$, $D_x = (D_1, \dots, D_n), \ D_j = \frac{\partial}{\partial x_j}$, without dividing by $\sqrt{-1}$.

P is called a Fuchsian system if P satisfies the following two conditions.

(A-1) There exists
$$n_j\in \pmb{N}:=\{0,1,2,\dots\}$$
 such that
$${\rm ord}_{D_x}\,A_{i,j}(t,x;D_x)\leq n_i-n_j+1\ .$$

(A-2) $A(0, x; D_x) =: A_0(x)$ is independent of D_x .

The condition (A-1) is equivalent to each of the following condition ([4], [5]).

$$\begin{array}{ll} \text{(A-1)'} & \max_{\substack{1 \leq p \leq m \\ 1 \leq i_1 < \dots < i_p \leq m}} \left(\frac{1}{p} \max_{\pi \in \mathcal{S}_p} \sum_{k=1}^p \operatorname{ord}_{D_x} A_{i_k, i_{\pi(k)}} \right) =: \rho(A) \leq 1 \\ & (\rho(A) \text{ is called the } matrix \ order \ \text{of} \ A.) \end{array}$$

When this condition is satisfied, the system $D_t I_m - A(t, x; D_x)$ is called a kowalevskian system in Volevič's sense ([4]).

The polynomial

$$\mathcal{C}(x;\lambda) := \detig(\lambda I_m - A_0(x)ig)$$

of λ is called the *indicial polynomial* of P, and a root λ of $C(x; \lambda) = 0$ is called a characteristic exponent or a characteristic index of P at x.

The second author ([6], [7]) has shown the following fundamental theorems corresponding to the Cauchy-Kowalevsky theorem and the Holmgren theorem. Let $\mathcal{O}_{(0,0)}$ denote the germ space of holomorphic functions at $(0,0) \in \mathbb{C} \times \mathbb{C}^m$.

Theorem 1.1 ([6, Theorem 1.2.10]). If $C(0;j) \neq 0$ $(j \in \mathbb{N})$, then for every $\overrightarrow{f} \in (\mathcal{O}_{(0,0)})^m$, there exists a unique $\overrightarrow{u} \in (\mathcal{O}_{(0,0)})^m$ such that $P\overrightarrow{u} = \overrightarrow{f}(t,x)$.

Theorem 1.2 ([7, **Theorem 2**]). Let Ω be an open neighborhood of $0 \in \mathbb{R}^n$ and T > 0. Let $L \in \mathbb{R}$ satisfy that if $C(x; \lambda) = 0$ $(x \in \Omega)$, then $\operatorname{Re} \lambda < L$. If $\overrightarrow{u}(t) = \overrightarrow{u}(t,x) \in C^1((0,T],\mathcal{D}'(\Omega))^m$ satisfies $P\overrightarrow{u} = \overrightarrow{0}$ in $(0,T) \times \Omega$, and if $t^{-L}\overrightarrow{u} \in C^0([0,T],\mathcal{D}'(\Omega))^m$, then $\overrightarrow{u} = \overrightarrow{0}$ near (0,0) in $(0,T) \times \Omega$. Here, $\mathcal{D}'(\Omega)$ denotes the space of Schwartz distributions on Ω .

Now, we introduce the following notation.

$$\mathcal{O}(\Omega) := \{ ext{ holomorphic functions on } \Omega \} \; , \ B_R := \{ x \in C^n : |x| < R \} \; , \qquad \Delta_T := \{ t \in C : |t| < T \} \quad (T > 0) \; , \ \mathcal{O}_0 := \bigcup_{R>0} \mathcal{O}(B_R) \; , \qquad \mathcal{O}_{(0,0)} := \bigcup_{R>0,T>0} \mathcal{O}(\Delta_T \times B_R) \; , \ S_{\infty,T} := \mathcal{R}(\Delta_T \setminus \{0\}) \quad ext{(the universal covering of } \Delta_T \setminus \{0\}) \; , \ S_{ heta,T} := \{ t \in S_{\infty,T} : |\arg t| \le \theta \} \; , \qquad \widetilde{\mathcal{O}} := \bigcup_{T>0,R>0} \mathcal{O}(S_{\infty,T} \times B_R) \; . \$$

Now, we consider solutions of $P\overrightarrow{u} = \overrightarrow{0}$ which are singular only at t = 0, that is, $\overrightarrow{u} \in (\widetilde{\mathcal{O}})^m$. Under the assumption that the characteristic exponents $\lambda_j(x)$ (j = 1, 2, ..., m) of P do not differ by integers, that is, $\lambda_i(0) - \lambda_j(0) \notin \mathbb{Z}$ $(i \neq j)$, the structure of the kernel $\text{Ker}_{(\widetilde{\mathcal{O}})^m} P$ of the map $P : (\widetilde{\mathcal{O}})^m \to (\widetilde{\mathcal{O}})^m$ has been studied by the second author([6]).

Our purpose of this talk is to construct a solution map, that is, a linear isomorphism

$$(\mathcal{O}_0)^m \xrightarrow{\sim} \operatorname{Ker}_{(\widetilde{\mathcal{O}})^m} P := \{ \overrightarrow{u} \in (\widetilde{\mathcal{O}})^m : P \overrightarrow{u} = \overrightarrow{0} \} , \qquad (1.2)$$

rather explicitly, with no assumptions on the characteristic exponents (Theorem 2.2).

In the case of *single* Fuchsian partial differential equations, the first author([2]) have constructed a good solution map. These single equations can be reduced to our Fuchsian systems as follows.

Remark 1.3. Let P' be a single Fuchsian partial differential operator with weight 0 ([1], [6], [2], etc.); that is, $P' = (tD_t)^m + \sum_{j=1}^m P'_j(t, x; D_x)(tD_t)^{m-j}$, $\operatorname{ord}_{D_x} P'_j \leq j$, and $P'_j(0, x; D_x) =: a_j(x)$ is a function of x. Then, by $u_j = (tD_t)^{j-1}u$ $(1 \leq j \leq m)$,

the equation Pu = f is reduced to

$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -P'_m & -P'_{m-1} & -P'_{m-2} & \dots & -P'_1 \end{pmatrix} \overrightarrow{u} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f \end{pmatrix}.$$

Since this system satisfies (A-1) with $n_j = j$ and (A-2), it is a Fuchsian system. Further, this system has the same indicial polynomial $C(x; \lambda)$ as P', where the indicial polynomial of P' is defined by

$$\mathcal{C}[P'](x;\lambda) := \lambda^m + \sum_{j=1}^m a_j(x) \lambda^{m-j} = \left[t^{-\lambda} P'(t^{\lambda}) \right]|_{t=0} .$$

2 Construction of the solution map

Let μ_l $(l=1,\ldots,d)$ be all the distinct roots of $\mathcal{C}(0;\lambda)=0$, and let r_l be the multiplicity of μ_l . There exists $Q(x)\in GL_m(\mathcal{O}_0)$ such that

$$ullet \ Q(x)^{-1}A_0(x)Q(x) = A_1(x)\otimes \cdots \otimes A_d(x) := egin{pmatrix} A_1(x) & O & \ldots & O \ O & A_2(x) & O & dots \ dots & O & \ddots & dots \ O & \ldots & O & A_d(x) \end{pmatrix},$$

 $\bullet \ \ A_l \in M_{r_l}(\mathcal{O}_0) \ \ (l=1,\ldots,d),$

$$\bullet \ \det(\lambda I_{r_l} - A_l(0)) = (\lambda - \mu_l)^{r_l} \ (l = 1, \ldots, d).$$

Corresponding to the blocks of $Q(x)^{-1}A_0(x)Q(x)$, we denote the l-th block of \overrightarrow{u} by $\overrightarrow{u}^{\flat(l)} \in C^{r_l}$, that is, $\overrightarrow{u} = \begin{pmatrix} \overrightarrow{u}^{\flat(1)} \\ \vdots \\ \overrightarrow{u}^{\flat(d)} \end{pmatrix}$. Conversely, for an r_l -vector $\overrightarrow{v} \in C^{r_l}$, we

denote by $\overrightarrow{v}^{\sharp(l)} \in \mathbb{C}^m$ the *m*-vector

$$\overrightarrow{v}^{\sharp(l)} = \begin{pmatrix} 0 \\ \vdots \\ \overrightarrow{v} \\ \vdots \\ 0 \end{pmatrix} \langle l \text{ th block }$$

with the entries \overrightarrow{v} in the *l*-th block and the entries 0 in the other blocks. Set

$$\Lambda_P := \{ \mu_l - j \in \mathbf{C} : 1 \le l \le d, j \in \mathbf{N} \} . \tag{2.1}$$

Take $\epsilon \geq 0$ as $\operatorname{Re} \mu_l - \epsilon \notin \mathbb{Z}$ for all l. For each l, take $L_l \in \mathbb{Z}$ as $L_l + \epsilon < \operatorname{Re} \mu_l < L_l + \epsilon + 1$.

Lemma 2.1. (1) For each l, there exists a domain D_l in C enclosed by a simple closed curve Γ_l such that

- (a) $\mu_l \in D_l \ (1 \leq l \leq d)$,
- (b) $\overline{D_l} \cap \overline{D_{l'}} = \emptyset$ $(l \neq l')$, where \overline{D} denotes the closure of D.
- (c) $\overline{D_l} \cap \Lambda_P = \{ \mu_l \}$ for every l.
- (d) $\overline{D_l} \subset \{ \lambda \in \mathbb{C} : L_l + \epsilon < \operatorname{Re} \lambda < L_l + \epsilon + 1 \} \text{ for every } l.$
- (2) There exists $R_0 > 0$ such that
- (e) $C(x; \lambda + j) \neq 0$ for every $x \in B_{R_0}$, every $\lambda \in \bigcup_{l=1}^d \Gamma_l$, and every $j \in \mathbb{N}$.

The main result is

Theorem 2.2. For every l and every $\overrightarrow{\varphi_l} \in (\mathcal{O}_0)^{r_l}$, there exists a unique $\overrightarrow{V} = \overrightarrow{V}[l, \overrightarrow{\varphi_l}](t, x; \lambda) \in \mathcal{O}(\{(0, 0)\} \times (\bigcup_{l=1}^d \Gamma_l))^m$ such that

$$P(t^{\lambda}\overrightarrow{V}) = t^{\lambda}Q(x)\overrightarrow{\varphi_{l}}^{\sharp(l)}(x) \tag{2.2}$$

in a neighborhood of $\{(0,0)\} \times \left(\bigcup_{l=1}^d \Gamma_l\right)$. $Set \ \overrightarrow{u_l}[\overrightarrow{\varphi_l}](t,x) := \frac{1}{2\pi\sqrt{-1}} \int_{\Gamma_l} t^{\lambda} \overrightarrow{V}[l,\overrightarrow{\varphi_l}](t,x;\lambda) \, d\lambda. \ \ Then, \ the \ map$

$$(\mathcal{O}_0)^m \ni \begin{pmatrix} \overrightarrow{\varphi_1} \\ \vdots \\ \overrightarrow{\varphi_d} \end{pmatrix} \stackrel{\sim}{\longmapsto} \sum_{l=1}^d \overrightarrow{u_l} [\overrightarrow{\varphi_l}] \in \operatorname{Ker}_{(\widetilde{\mathcal{O}})^m} P$$
 (2.3)

is a linear isomorphism.

3 Expansion of the solutions

Expand the operator A and the vector \overrightarrow{V} as follows.

$$egin{align} A(t,x;D_x) &= A_0(x) + \sum_{l=1}^\infty t^l B_l(x;D_x) \;\;, \ &\overrightarrow{V}[l,\overrightarrow{arphi_l}](t,x;\lambda) = \sum_{j=0}^\infty t^j \overrightarrow{V_j}(x;\lambda) \;\;. \end{gathered}$$

Then, the equation (2.2) for \overrightarrow{V} is equivalent to

$$(\lambda I_m - A_0(x))\overrightarrow{V_0}(x;\lambda) = Q(x)\overrightarrow{\varphi_l}(x) , \qquad (3.1)$$

$$((\lambda + j)I_m - A_0(x))\overrightarrow{V_j}(x;\lambda) = \sum_{l=1}^j B_l(x;D_x)\overrightarrow{V_{j-l}}(x;\lambda) \quad (j \ge 1) . \tag{3.2}$$

From these equations, we can determine \overrightarrow{V}_j by Lemma 2.1 (e), and we get an expansion of $\overrightarrow{u_i}[\overrightarrow{\varphi_l}]$ as follows.

$$egin{aligned} \overrightarrow{u_l}[\overrightarrow{arphi_l}](t,x) &= \sum_{j=0}^\infty t^j \overrightarrow{u_{l,j}}(t,x) \;\;, \ \overrightarrow{u_{l,j}}(t,x) &:= rac{1}{2\pi\sqrt{-1}} \int_\Gamma t^\lambda \overrightarrow{V_j}(x;\lambda) \, d\lambda \;\;. \end{aligned}$$

Especially, the leading term of $\overrightarrow{u_l}[\overrightarrow{\varphi_l}]$ is

$$\overrightarrow{u_{l,0}}(t,x) = t^{A_0(x)}Q(x)\overrightarrow{\varphi_l}^{\sharp(l)}(x) = Q(x)\{t^{A_l(x)}\overrightarrow{\varphi_l}(x)\}^{\sharp(l)}. \tag{3.3}$$

4 Sketch of the proof of the existence of \overrightarrow{V}

We change the letter λ to ζ . Then, the system $P(t^{\zeta}\overrightarrow{V}) = t^{\zeta}Q(x)\overrightarrow{\varphi_{l}}^{\sharp(l)}(x)$ is equivalent to another system

$$\widetilde{P}\overrightarrow{V}:=ig((tD_t+\zeta)I_m-A(t,x;D_x)ig)\overrightarrow{V}=Q(x)\overrightarrow{arphi_l}^{\sharp(l)}(x)$$
 .

This is also a Fuchsian system in (t, x, ζ) . Note that we consider (x, ζ) as the space variables. Further, the indicial polynomial of \widetilde{P} is

$$\mathcal{C}[\widetilde{P}](x,\zeta;\lambda) = \mathcal{C}[P](x;\lambda+\zeta)$$
.

Since $C[\widetilde{P}](0,\zeta;j) \neq 0 \ (\zeta \in \Gamma_l, \ j \in \mathbb{N})$ by Lemma 2.1 (e), we can use Theorem 1.1 to this new system. Thus, there exists a unique $\overrightarrow{V} = \overrightarrow{V}[l,\overrightarrow{\varphi_l}](t,x;\zeta) \in \mathcal{O}(\{(0,0)\} \times \Gamma_l)^m$ such that $\widetilde{P}\overrightarrow{V} = Q(x)\overrightarrow{\varphi_l}|_{l}^{l(l)}(x)$.

5 Function spaces to estimate the order

Definition 5.1. ([2, Definition 5.1]) For $a \in \mathbb{R}$, we set

$$W^{(a)} := \bigcup_{R>0, \ T>0} \Big\{ \ \phi \in \mathcal{O}(S_{\infty,T} imes B_R) :$$

$$\sup_{|x| < R} |\phi(t,x)| o 0 \ \ (ext{as } t o 0 ext{ in } S_{ heta,T}) ext{ for every } heta > 0 \, \Big\}$$

Lemma 5.2. ([2, Lemma 5.2]) (1) $a' < a \implies W^{(a)} \subset W^{(a')}$.

- (2) $t \times W^{(a)} \subset W^{(a+1)}$, $\partial_t(W^{(a)}) \subset W^{(a-1)}$.
- (3) If $B(t, x; D_x)$ is a partial differential operator in x with $\mathcal{O}_{(0,0)}$ coefficients, then $B(t, x; D_x)(W^{(a)}) \subset W^{(a)}$.

6 Keys to the proof of the theorem

The first key is the temperedness of the solutions in $(\tilde{\mathcal{O}})^m$.

Proposition 6.1. There exists $a \in \mathbf{R}$ such that if $\overrightarrow{u} \in (\widetilde{\mathcal{O}})^m$ and $P\overrightarrow{u} = \overrightarrow{0}$, then $\overrightarrow{u} \in (W^{(a)})^m$.

The **second key** is an estimate of the remainder terms of our solutions $\overrightarrow{u_l}[\overrightarrow{\varphi_l}](t,x)$.

Lemma 6.2. For $\overrightarrow{\varphi_l} \in (\mathcal{O}_0)^{r_l}$, we have

$$\overrightarrow{u_l}[\overrightarrow{arphi_l}](t,x) = Q(x)\{t^{A_l(x)}\overrightarrow{arphi_l}(x)\}^{\sharp(l)} + t\cdot\overrightarrow{r_l}[\overrightarrow{arphi_l}](t,x)$$
 ,

and $\overrightarrow{r_l}[\overrightarrow{\varphi_l}] \in (W^{(L_l+\epsilon)})^m$. Note that $t^{A_l(x)}\overrightarrow{\varphi_l}(x) \in (W^{(L_l+\epsilon)})^{r_l}$ and $\overrightarrow{u_l}[\overrightarrow{\varphi_l}] \in (W^{(L_l+\epsilon)})^m$.

The **third key** is the two facts on the Euler system $(tD_t - A_0(x))\overrightarrow{u} = \overrightarrow{f}(t,x)$ with holomorphic parameters x.

Lemma 6.3. If $\overrightarrow{u} \in (\widetilde{\mathcal{O}})^m$ and $(tD_tI_m - A_0(x))\overrightarrow{u} = \overrightarrow{0}$, then there exists $\overrightarrow{\varphi_l} \in (\mathcal{O}_0)^{r_l}$ $(1 \leq l \leq d)$ such that

$$\overrightarrow{u} = \sum_{l=1}^d Q(x) \{t^{A_l(x)} \overrightarrow{arphi_l}(x)\}^{\sharp(l)} = Q(x) egin{pmatrix} t^{A_1(x)} \overrightarrow{arphi_1}(x) \ dots \ t^{A_d(x)} \overrightarrow{arphi_d}(x) \end{pmatrix} \; .$$

Further, if $L \in \mathbb{Z}$ and $\overrightarrow{u} \in \widetilde{W}^{(L+\epsilon)}(\theta, R)^m$, then $\overrightarrow{\varphi_l} = 0$ for all l such that $L_l < L$.

Proposition 6.4. For any $L \in \mathbb{Z}$ and any $\overrightarrow{g} \in W^{(L+\epsilon)}$, there exists $\overrightarrow{v} \in W^{(L+\epsilon)}$ such that $(tD_tI_m - A_0(x))\overrightarrow{v} = \overrightarrow{g}(t,x)$.

If a root $\lambda(x)$ of $C(x;\lambda) = 0$ touches the line $\operatorname{Re} \lambda = L + \epsilon$ in λ -plane, then this proposition does not hold, as the simplest example $tD_tv = \frac{1}{\log t}$ shows $(m = 1, L + \epsilon = 0, \text{ no parameter } x)$. This proposition is the reason why we took ϵ .

7 Proof of the injectivity of the solution map

Assume that $\overrightarrow{\varphi_l} \in (\mathcal{O}_0)^{r_l}$ $(1 \leq l \leq d)$, $\sum_{l=1}^d \overrightarrow{u_l} [\overrightarrow{\varphi_l}] = \overrightarrow{0}$, and that there exists l such that $\overrightarrow{\varphi_l} \neq \overrightarrow{0}$. Take l_0 as $L_{l_0} = \min\{L_l : \overrightarrow{\varphi_l} \neq \overrightarrow{0}\}$.

For each l with $\overrightarrow{\varphi_l} \neq \overrightarrow{0}$, consider $(\overrightarrow{v_l})^{\flat(l_0)}$: the l_0 -th block of $\overrightarrow{v_l} := Q^{-1}\overrightarrow{u_l}[\overrightarrow{\varphi_l}]$. Then, we have by Lemma 6.2

$$(\overrightarrow{v_{l_0}})^{\flat(l_0)} = t^{A_{l_0}(x)} \overrightarrow{\varphi_{l_0}}(x) + (W^{(L_{l_0}+1+\epsilon)})^{r_{l_0}}$$
 .

On the other hande, if $l \neq l_0$, then $L_l \geq L_{l_0}$ and hence

$$(\overrightarrow{v_l})^{\flat(l_0)} \in (W^{(L_l+1+\epsilon)})^{r_{l_0}} \subset (W^{(L_{l_0}+1+\epsilon)})^{r_{l_0}}.$$

Thus,

$$\overrightarrow{0} = \sum_{l=1}^d (Q^{-1}\overrightarrow{u_l}[\overrightarrow{\varphi_l}])^{\flat(l_0)} = t^{A_{l_0}(x)}\overrightarrow{\varphi_{l_0}}(x) + (W^{(L_{l_0}+1+\epsilon)})^{r_{l_0}}$$
.

Namely, $t^{A_{l_0}(x)}\overrightarrow{\varphi_{l_0}}(x) \in (W^{(L_{l_0}+1+\epsilon)})^{r_{l_0}}$. It is easy to show that this implies $\overrightarrow{\varphi_{l_0}} = \overrightarrow{0}$, which contradicts the definition of l_0 .

8 Proof of the surjectivity of the solution map

Let $\overrightarrow{u} \in (\widetilde{\mathcal{O}})^m$ and $P\overrightarrow{u} = \overrightarrow{0}$. Decompose $A(t, x; D_x) = A_0(x) + tB(t, x; D_x)$.

- (I) By Proposition 6.1, there exists $L \in \mathbb{Z}$ such that $\underline{\overrightarrow{u}} \in (W^{(L+\epsilon)})^m$. By Lemma 5.2, we have $tB(\overline{u}) \in (W^{(L+1+\epsilon)})^m$.
- (II) By Proposition 6.4, there exists $\overrightarrow{v} \in (W^{(L+1+\epsilon)})^m$ such that $(tD_tI_m A_0(x))\overrightarrow{v} = tB(\overrightarrow{u}) = (tD_tI_m A_0(x))\overrightarrow{u}$.
- (III) Since $(tD_tI_m A_0(x))(\overrightarrow{u} \overrightarrow{v}) = \overrightarrow{0}$ and $\overrightarrow{u} \overrightarrow{v} \in (W^{(L+\epsilon)})^m$, there exists $\overrightarrow{\varphi_l}[1] \in (\mathcal{O}_0)^{r_l}$ such that $\overrightarrow{\varphi_l}[1] = \overrightarrow{0}$ if $L_l < L$, and that

$$\overrightarrow{u}-\overrightarrow{v}=\sum_{l=1}^dQ(x)\{t^{A_l(x)}\overrightarrow{\varphi_l}[1](x)\}^{\sharp(l)}$$
 .

by Lemma 6.3.

(IV) Set

$$\overrightarrow{u}[1] := \overrightarrow{u} - \sum_{l=1}^d \overrightarrow{u_l} \left[\overrightarrow{\varphi_l}[1] \right] \in (W^{(L+1+\epsilon)})^m$$
 .

Then, we have $P(\overrightarrow{u}[1]) = \overrightarrow{0}$, $\overrightarrow{u}[1] \in (W^{(L+1+\epsilon)})^m$.

Now, we can return to the step (I) taking $\overrightarrow{u}[1]$ instead of \overrightarrow{u} , with order $L+1+\epsilon$ instead of $L+\epsilon$.

Repeating such arguments, we have $\overrightarrow{\varphi_l}[j] \in (\mathcal{O}_0)^{r_l}$ (j = 2, 3, ...) such that $\overrightarrow{\varphi_l}[j] = \overrightarrow{0}$ if $L_l < L + j - 1$, and that

$$\overrightarrow{u}[j] := \overrightarrow{u}[j-1] - \sum_{l=1}^d \overrightarrow{u_l} \left[\overrightarrow{\varphi_l}[j] \right] \left(= \overrightarrow{u} - \sum_{k=1}^j \sum_{l=1}^d \overrightarrow{u_l} \left[\overrightarrow{\varphi_l}[k] \right] \right) \in (W^{(L+j+\epsilon)})^m$$
,

and $P(\overrightarrow{u}[j]) = \overrightarrow{0}$.

By Theorem 1.2, we have $\overrightarrow{u}[M] = \overrightarrow{0}$ for sufficiently large M. Thus, we get $\overrightarrow{\varphi_l} := \sum_{k=1}^M \overrightarrow{\varphi_l}[k] \in (\mathcal{O}_0)^{r_l}$.

References

- [1] M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math. 26 (1973), 455-475.
- [2] T. Mandai, The method of Frobenius to Fuchsian partial differential equations, J. Math. Soc. Japan 52 (2000), 645-672.
- [3] T. Mandai and H. Tahara, Structure of solutions to Fuchsian systems of partial differential equations, to appear in Nagoya Math. J..
- [4] M. Miyake, On Cauchy-Kowalevski's theorem for general systems, Publ. RIMS, Kyoto Univ., 15(1979), 315–337.
- [5] S. Mizohata, On Kowalewskian systems, Russ. Math. Surveys, 29 (1974), 223–235.
- [6] H. Tahara, Fuchsian type equations and Fuchsian hyperbolic equations, Japan.
 J. Math. (N.S.) 5 (1979), 245-347.
- [7] _____, On a Volevič system of singular partial differential equations, J. Math. Soc. Japan 34 (1982), 279–288.