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Structure of the solutions to Fuchsian systems
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Abstract: To a certain Volevi¢ system of homogeneous singu-
lar partial differential equations in a complex domain, called a Fuch-
sian system, holomorphic solutions which have singularities only on the
initial surface are considered. All the solutions are constructed and
parametrized in a good way, without any assumptions on the charac-

teristic exponents.

1 Introduction
We consider a system of linear partial differential operators
P = tD,I,, — A(t,z; D,), (t,zr)eC xC™, (1.1)
where I,,, is the m x m unit matrix, and

A= (Ai,j(ta x; D“))IS:',jSm ) Ai,j = Z ai,j;a(t’z)D: ’

a:finite
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a; j.o are holomorphic in a neighborhood of the origin (0,0) € C™*!. Weuse D, = Ere

D, =(Ds,...,Dy), D; = without dividing by +/—1.

0
611,']' ’
P is called a Fuchsian system if P satisfies the following two conditions.
(A-1) There exists n; € N := {0,1,2,...} such that

ordp, A;i;(t,z; D) <ni—n;+1 .

(A-2) A(0,z; D,) =: Ao(z) is independent of D,.

The condition (A-1) is equivalent to each of the following condition ([4], [5)).

: 1 _
(A-1) 1I<I;a<_')$n (p resp Z ordp, A;, ‘r(k)) p(4) <1

1<i1 < <ip<m

(p(A) is called the matriz order of A.)

When this condition is satisfied, the system D;I,,—A(t, z; D) is called a kowalevskian
system in Volevié’s sense ([4]).
The polynomial '
C(z; A) := det(An — Ao(z))

of \ is called the indicial polynomial of P, and a root A of C(z;A) = 0 is called a
characteristic exponent or a characteristic index of P at x. |
The second author ([6], [7]) has shown the following fundamental theorems corre-
sponding to the Cauchy—KowaIevsky theorem and the Holmgren theorem. Let O )
denote the germ space of holomorphic functions at (0,0) € C x C™.

Theorem 1.1 ([6, Theorem 1.2.10])). IfC(0;5)%x0 (j € N), then for every
7 € (O(0,0))™, there erists a unique = (O0,0))™ such that PUY = ?(t, x).

Theorem 1.2 ([7, Theorem 2]). Let Q be an open neighborhood of 0 € R”
and T > 0. Let L € R satisfy that if C(z;)) = 0 (z € ), then ReA < L.
If 4(t) = d(t,z) € C'((0,T),D'(R))™ satisfies PZ = 0 in (0,T) x 9, and if
=L@ e C°([0,T], D'(Q))™, then @ = 0 near (0,0) in (0,T) x Q. Here, D'()

denotes the space of Schwartz distributions on §2.
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Now, we introduce the following notation.

O(Q2) : = { holomorphic functions on Q},

Br:={zeC": |z| <R}, Ar:={teC:|t|<T} (T>0),
Oo:=|J OBg) , Opg = |J O(ArxBg),
R>0 R>0,T>0

Soo,r : = R(Ar \ {0}) (the universal covering of Ar \ {0}) ,
SgT:={t€S°°,T:|argt|$0} s 5:= U O(SOO,TXBR) .

' T>0,R>0
Now, we consider solutions of P& = —O) which are singular only at ¢ = 0, that
is, @ € (O)™. Under the assumption that the characteristic exponents \;(z) (j =
1,2,...,m) of P do not differ by integers, that is, Xi(0) — X(0)§Z (iX j), the
structure of the kernel Ker 5ym P of the map P : (O)™ - (O)™ has been studied by
the second author([6]).
Our purpose of this talk is to construct a solution map, that is, a linear isomor-
phism
(Oo)™ > Kergym Pi={% € (O)™: P2 =T}, (1.2)

rather explicitly, with no assumptions on the characteristic exponents (Theorem 2.2).
In the case of single Fuchsian partial differential equations, the first author([2])
have constructed a good solution map. These single equations can be reduced to

our Fuchsian systems as follows.

Remark 1.3. Let P’ be a single Fuchsian partial differential operator with weight

0 ([1], [6], [2], etc.); that is, P! = (tD,)™ + 3, Pi(t,z; D) (tD,)™ 7, ordp, P; < j,

and Pj(0,z; D,) =: a;(z) is a function of . Then, by u; = (tD,)'u 1<j<m),



the equation Pu = f is reduced to

( (0 1 o ... 0)) (o)

0 0 1 ... 0 0
tD I, — | : SO v=|:

0 0 o ... 1 0
\ B B En o -B))

Since this system satisfies (A-1) with n; = j and (A-2), it is a Fuchsian system.

71

Further, this system has the same indicial polynomial C(z;) as P’, where the

indicial polynomial of P’ is defined by

C[P'|(z; ) := A™ +‘Zaj(x))\'""j = [t""P'(t’\)] lt=0 -
Jj=1
2 Construction of the solution map

Let 1y (I = 1,...,d) be all the distinct roots of C(0;\) = 0, and let r; be the
multiplicity of y;. There exists Q(z) € GL,,(Op) such that

0 Az) O
* Q(z) ' A(2)Q(z) = Ai(z) ® - - - ® Au(z) == _ o - ,
(0] .. 0 Aix)

o A e M, (Op) (I=1,...,d),
o det(\I, — AO))=A-pw)" (=1,...,4d).
Corresponding to the blocks of Q(z)~1A4,(z)Q(x), we denote the I-th block of
ETALeY '
by @'® € C™, that is, ¥ = : . Conversely, for an r;-vector ¥ € C™, we
-,71»(.1)
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denote by 7*) € C™ the m-vector
(o)

v = | 9| (I th block

\ 0/
with the entries 7 in the I-th block and the entries 0 in the other blocks.
Set

Ap:={ﬂ1-j€021$l$d,j€N}. : (21)

TakeeZOasRem—eé{Zforalll. Forea.chl,ta.keLIGZast+e<Rem<
Li+e+1.

Lemma 2.1. (1) For each l, there exists a domain D, in C enclosed by a simple

closed curve I'; such that
(8 meD (1<i<d),
(b) DiNDy=0 (IxV), where D denotes the closure of D.
(0 DinAp={m} for everyl.
(d) EC{/\EC:L¢+6<ReA<Lz+e+1}foreveryl.
(2) There exists Ry > 0 such that
(€) C(x;2+35)X%0 foreveryz € Bg,, every X € Ui, [, and every j € N.
The main result is

Theorem 2.2.  For every | and every @, € (Oo)™, there exzists a unigque V=
VLB 20 € 0{(0,00} x (UL, T))™ such that

P(PV) = £Q(z) 3V () (2.2)



in a meighborhood of {(0,0)} x (Ui, T)-

1
Set w[@)(t, z) := t"v 1, 2}(t, z; \) dX\. Then, the ma
et ui[pi](t, x) /T 1, B (¢, z; \) D
@
©)™> | i | =D uilel] € Kergym P (2.3)
@ =1 :

is a linear isomorphism.

3 Expansion of the solutions

Expand the operator A and the vector 7 as follows.

A(t,z; D,) = Ao(z) + > _t'Bi(z; Ds)

=1

VI, @,z 0) = f:tﬂ'x_/ﬁ-(z; A) .

Then, the equation (2.2) for V is equivalent to

(M — A0()) Vo(z; ) = Q(2) B (=) (3.1)
(O Dm— A@)V, @0 = S Bl@m D@ N G=1) . (32)

From these equations, we can determine Vj by Lemma 2.1 (e), and we get an ex-

pansion of u}[@}] as follows.

o0
wl@lt,z) =Y Pujte) ,
=0

1
u(t,z): = 27r\/__1/rt)‘vj(a:;/\)d)\ .

Especially, the leading term of 4[] is

h(t, z) = t2EQa) Pl (2) = Q) {t*@Ri(@) P . (33)
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4 Sketch of the proof of the existence of 7

We change the letter A to (. Then, the system P(tcv) = KQ(z)PM(z) is
equivalent to another system

BV := ((tD, + QI — At z; D,))V = Q@)@ (z) .

This is also a Fuchsian system in (¢, z, (). Note that we consider (z,¢) as the space
variables. Further, the indicial polynomial of Pis

C[P|(z, ¢ ) = CIPI(z; A +C) -

Since C[P](0, ¢;7)%0 (( €Ty, j€ N) by Lemma 2.1 (e), we can use Theorem 1.1
to this new system. Thus, there exists a unique V= I_}[I, 21(t, z;¢) € O(0, 0)} x
I')™ such that PV = Q(z)FM ().

5 Function spaces to estimate the order

Definition 5.1. ([2, Definition 5.1]) For a € R, we set

W(a) = U {¢ € O(Soo,T X BR):

R>0, T>0

sup |¢(t,z)| - 0 (ast — 0 in Spr) for every 6 > O}
lz|<R

Lemma 5.2. ([2, Lemma 5.2]) (1) o’ <a => W@ c w@),

(2) tx W@ c wiet), 8(W@) c w1,

(3) If B(t,z; D,) is a partial differential operator in = with O(0,0) coefficients, then
B(t,z; D,)(W®) c W,

6 Keys to the proof of the theorem

The first key is the temperedness of the solutions in (5)"'



Proposition 6.1.  There ezists a € R such that if & € (O)™ and PW =
then @ € (W@)™,

The second key is an estimate of the remainder terms of our solutions u [Pt x).

Lemma 6.2. For @, € (O)", we have

[Pt 7) = Q)P F ()} + -7 [@il(t @)

and 7} (] € (WEHO)™. Note that tA@ () € (WEI) and (7] € (W)™,

The third key is the two facts on the Euler system (tD; — Ay(2)) e = ?(t,x)

with holomorphic parameters x.

Lemma 6.3. If 4 € (O)™ and (tDIp — Ao(:z:))7 = _6), then there exists
P € (0p)" (1<1<d) such that

| ) tM@F (x)
=) Q@{t*@g(z)}' = Q(z)
' =1 4@ k()

Further, if L € Z and @ € WZ+9(9, R)™, then @, = 0 for all l such that Ly < L.

Proposition 6.4. For any L € Z and any __c? € W(L""), there ezists U € WL+
such that (tDI,, — Ao(2)) ¥ = 7(t z). |

If a root A(z) of C(z;\) = 0 touches the line ReA = L + € in A—plane, then this
1
proposition does not hold, as the simplest example tDyv = Eg—t shows (m = 1,
L + € = 0, no parameter x). This proposition is the reason why we took .

7 Proof of the injectivity of the solution map

Assume that @} € (O)" (1 <1 < d), Z_;)[ﬁ ?, and that there exists [

1=1
such that ?ﬁ?és 0. Take lp as L;;, = min{ L;: w,#ﬁ)}
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For each I with @ % O, consider ()" : the lo-th block of 3} := Q~'u![7].
Then, we have by Lemma 6.2

(flTl:)b(lo) — tAlo(z)(E;(x) + (W(Llo+1+€))rlo .

On the other hande, if I X ly, then L; > L, and hence
(0)"®) € (Wkrti+ay c (Wlkioti+ayng

Thus,

d
T =3 (Q RAN® = t4@5 () + (Wkot+9)
I=1 '

Namely, t40®)p)(z) € (WTo+1+9)i Tt is easy to show that this implies =10,
which contradicts the definition of I,.

8 Proof of the surjectivity of the solution map

Let ¥ € (O)™ and PW = I Decompose A(t,x; D;) = Ao(z) + tB(t, z; D,).

() By Proposition 6.1, there exists L € Z such that @ € (W(E+oym,

By Lemma 5.2, we have tB(W) € (W(L+1+9)m

(II) By Proposition 6.4, there exists ¥ < (WTH1+9)m guch that (tDtIm -
Ao(2)) ¥V =tB(R) = (tD.l,n — Ao(z)) 2. |

(III)  Since (tDefm — Ao(z)) (@ —F) = © and @ — 7 € (W)™, there exists
aile (Oo)™ such that @}[1] = 0 if L; < L, and that

U =7 =3 QE@){t g 1)(z) .
=1

by Lemma 6.3.
(IV)  Set . _
d
)= - u[@]] e wkitaym
=1

Then, we have P(2[1]) = 0, Z[1] € (WE++a)m,



7

Now, we can return to the step (I) taking o [1] instead of U, with order L+1+e¢
instead of L + e.

Repeating such arguments, we have ali] € (O)" (G = 2,3,...) such that
@l = 0 if Ly < L+ j—1, and that

J d

L) =2 - 1) - Zu, Al ( 7-33"% '<E’[k]) € (WHitaym

k=1 I=1
and P(2[j]) = 0
By Theorem 1.2, we have ﬂ[M ] = ﬁ for sufficiently large M. Thus, we get
M

@i =Y pilk] € (Oo)™.
k=
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