Fourier ultra-hyperfunctions as the boundary values of smooth solutions of heat equations

上智大学理工学研究科 諏訪 将範 Sophia University, Masanori Suwa

1 Introduction

1987, Matsuzawa characterized the space of hyperfunctions with compact support K (denote by $\mathcal{A}'(K)$) as the boundary value of \mathcal{C}^{∞} -solutions of the heat equations:

Theorem 1.1 (Matsuzawa [4]). Let $u \in \mathcal{A}'(K)$ and $U(x,t) := \langle u_y, E(x \cdot y,t) \rangle$, $E(x,t) = (4\pi t)^{-\frac{n}{2}} e^{-\frac{x^2}{4t}}$ (heat kernel). Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^{n+1}_+)$, $\mathbb{R}^{n+1}_+ := \{(x,t); x \in \mathbb{R}^n, t > 0\}$ and $U(\cdot,t) \in \mathcal{A}(\mathbb{C}^n)$, $\mathcal{A}(\mathbb{C}^n)$ is the space of entire functions, for each t > 0. Furthermore U(x,t) satisfies the heat equation:

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x, t) = 0 \quad in \ \mathbb{R}^{n+1}_+, \tag{1}$$

where $\triangle = \sum_{j=1}^{n} \frac{\partial^2}{\partial x_j^2}$ (Laplacian).

For every $\varepsilon > 0$, we have

$$|U(x,t)| \leq C_{\varepsilon} e^{\frac{\varepsilon}{t}} \quad in \ \mathbb{R}^{n+1}_{+}. \tag{2}$$

We have for any $\delta > 0$,

$$U(\cdot,t) \to 0 \tag{3}$$

uniformly in $\{x \in \mathbb{R}^n : dis(x, K) \ge \delta\}$ as $t \to 0_+$.

We have $U(\cdot,t) \to u$ in $\mathcal{A}'(K)$ as $t \to 0_+$, i.e.

$$u(\varphi) = \lim_{t \to 0_+} \int U(x,t)\chi(x)\varphi(x)dx, \quad \varphi \in \mathcal{A}(\mathbb{C}^n),$$
 (4)

for any $\chi(x) \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$ such that $\chi = 1$ in a neighborhood of K.

Conversely, every C^{∞} -function U(x,t) defined in \mathbb{R}^{n+1}_+ satisfying the conditions (1), (2) and (3) can be expressed in the form $U(x,t) = \langle u_y, E(x-y,t) \rangle$ with unique element $u \in \mathcal{A}'(K)$.

Furthermore 1989, Matsuzawa characterized the space of distributions with compact support K (denote by \mathcal{E}_K') and the space of ultradistributions with compact support K (denote by $\mathcal{E}_K^{\{s\}'}$, $\mathcal{E}_K^{(s)'}$, s > 1) by the same way (for details of definitions of ultradistributions, we refer the reader to [3]):

Theorem 1.2 (Matsuzawa [5]). Let $u \in \mathcal{E}_K^{\{s\}'}$ ($\mathcal{E}_K^{(s)'}$) with s > 1 and $U(x,t) = \langle u_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^{n+1}_+)$. Furthermore U(x,t) satisfies the following conditions:

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x,t) = 0 \quad in \ \mathbb{R}^{n+1}_+. \tag{5}$$

For every $\varepsilon > 0$, $\delta > 0$, there exists a positive constant $C_{\varepsilon,\delta}$ such that

$$|U(x,t)| \leq C_{\varepsilon,\delta} e^{\left(\frac{\varepsilon}{t}\right)^{\frac{1}{2s-1}} - \frac{\operatorname{dis}(x,K_{\delta})^{2}}{8t}} \quad in \ \mathbb{R}^{n+1}_{+}, \tag{6}$$

where $K_{\delta} := \{x \in \mathbb{R}^n ; dis(x, K) \leq \delta\}.$

We have $U(x,t) \to u$ as $t \to 0_+$ in $\mathcal{E}^{\{s\}'}(\mathbb{R}^n)$ (resp. $\mathcal{E}^{(s)'}(\mathbb{R}^n)$).

Conversely, every C^{∞} -function U(x,t) defined in \mathbb{R}^{n+1}_+ satisfying conditions (5) and (6) can be expressed in the form $U(x,t) = \langle u_y, E(x-y,t) \rangle$ with unique element $u \in \mathcal{E}_K^{\{s\}'}$ (resp. $\mathcal{E}_K^{(s)'}$).

Theorem 1.3 (Matsuzawa [5]). Let $u \in \mathcal{E}_K'$ and $U(x,t) = \langle u_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^{n+1}_+)$. Furthermore U(x,t) satisfies the following conditions:

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x,t) = 0 \quad in \ \mathbb{R}^{n+1}_+. \tag{7}$$

There exists a nonnegative integer N = N(u) such that

$$|U(x,t)| \leq C_{\delta} t^{-N} e^{-\frac{\operatorname{dis}(x,K_{\delta})^{2}}{8t}} \quad in \ \mathbb{R}^{n+1}_{+}, \tag{8}$$

We have $U(x,t) \to u$ as $t \to 0_+$ in \mathcal{E}'_K .

Conversely, every C^{∞} -function U(x,t) defined in \mathbb{R}^{n+1}_+ satisfying conditions (7) and (8) can be expressed in the form $U(x,t) = \langle u_y, E(x-y,t) \rangle$ with unique element $u \in \mathcal{E}'_K$.

1993, K.W.Kim, S.-Y.Chung and D.Kim characterized the space of Fourier hyperfunctions with compact support K in \mathbb{D}^n (denote by $\mathcal{F}'(K)$) by the same way ([2]):

Theorem 1.4 (K.W.Kim, S.-Y.Chung and D.Kim, [2]). Let $u \in \mathcal{F}'(K)$ and $U(x,t) = \langle u_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^{n+1}_+)$ and satisfies

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x, t) = 0 \quad in \ \mathbb{R}^{n+1}_+. \tag{9}$$

For any $\varepsilon > 0$, there is a constant $C \geq 0$ such that

$$|U(x,t)| \leq Ce^{\frac{\epsilon}{t} + \epsilon t + \epsilon|x| - \frac{dis(x,K_{\delta} \cap \mathbb{R}^n)^2}{8t}} \quad in \ \mathbb{R}^{n+1}_+. \tag{10}$$

We have $U(x,t) \to u$ as $t \to 0_+$ in $\mathcal{F}'(K)$.

Conversely, every C^{∞} -function U(x,t) defined in \mathbb{R}^{n+1}_+ satisfying conditions (9) and (10) can be expressed in the form $U(x,t) = \langle u_y, E(x-y,t) \rangle$ with unique element $u \in \mathcal{F}'(K)$.

For $\mathcal{S}'(\mathbb{R}^n)$, the space of tempered distributions, the following result is known:

Theorem 1.5 (Matsuzawa [6]). Let $u \in \mathcal{S}'(\mathbb{R}^n)$ and $U(x,t) = \langle u_y, E(x-y,t) \rangle$. Then $U(x,t) \in \mathcal{C}^{\infty}(\mathbb{R}^{n+1}_+)$ and satisfies

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(x, t) = 0 \quad in \ \mathbb{R}^{n+1}_+. \tag{11}$$

There exists constants $C \geq 0$, $\nu \geq 0$ and $k \geq 0$ such that

$$|U(x,t)| \le Ct^{-\nu}(1+|x|)^k \quad in \ \mathbb{R}^{n+1}_+.$$
 (12)

We have $U(x,t) \to u$ as $t \to 0_+$ in $\mathcal{S}'(\mathbb{R}^n)$.

Conversely, every C^{∞} -function U(x,t) defined in \mathbb{R}^{n+1}_+ satisfying conditions (11) and (12) can be expressed in the form $U(x,t) = \langle u_y, E(x-y,t) \rangle$ with unique element $u \in \mathcal{S}'(\mathbb{R}^n)$.

Besides many authors research generalized function by the same way. For example, 1999, M.Budinčević, Z.L.-Crvenković and D.Perošić characterized the spaces of Beurling and Roumieu type tempered ultradistributions (for details, we refer the reader to [1]).

2 Main theorem

Now, we can obtain the same result for Fourier ultra-hyperfunctions. First, we give some notations:

Notations

$$\mathbb{C}^{n} = \mathbb{R}^{n} + i\mathbb{R}^{n}.$$

$$z = x + iy, \quad \zeta = \xi + i\eta.$$

$$z = (z_{1}, z_{2}, \dots, z_{n}), \quad z_{j} = x_{j} + iy_{j}, \quad j = 1, 2, \dots, n.$$

$$\zeta = (\zeta_{1}, \zeta_{2}, \dots, \zeta_{n}), \quad \zeta_{j} = \xi_{j} + i\eta_{j}, \quad j = 1, 2, \dots, n.$$

$$< \zeta, z > = \sum_{j=1}^{n} \zeta_{j} z_{j}. \quad \text{In particular, } z^{2} = < z, z > .$$

$$E(z, t) = \frac{1}{(4\pi t)^{\frac{n}{2}}} e^{-\frac{z^{2}}{4t}}, \quad z \in \mathbb{C}^{n}, \quad t > 0.$$

Let K be a convex compact set in \mathbb{R}^n . Then we define supporting function $h_K(x)$ by

$$h_K(x) = \sup_{\xi \in K} <\xi, x>.$$

We denote "complex Laplacian" by \triangle :

$$\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial z_j^2}.$$

Let L be a closed set in \mathbb{C}^n and L be interior of L. We denote by $\mathcal{H}(L)$ the spaces of holomorphic functions on L and by $\mathcal{C}(L)$ the spaces of continuous functions on L.

Definition 2.1. Let K and K' be convex compact sets in \mathbb{R}^n . Then we define $Q_b(\mathbb{R}^n + iK, K')$ as follows:

$$Q_b(\mathbb{R}^n + \imath K, K')$$

$$:= \{ f \in \mathcal{H}(\mathbb{R}^n + \imath K) \cap \mathcal{C}(\mathbb{R}^n + \imath K) : \sup_{z \in \mathbb{R}^n + \imath K} |f(z)e^{h_{K'}(x)}| < +\infty \}.$$

Definition 2.2. We define the space Q_0 as follows:

$$Q_0 := \varprojlim_{K,K'\subset\subset\mathbb{R}^n} Q_b(\mathbb{R}^n + \imath K, K'),$$

where lim means projective limit.

Definition 2.3. We denote by Q'_0 the dual space of Q_0 . The element of Q'_0 is called Fourier ultra-hyperfunctions.

For details of Fourier ultra-hyperfunctions, we refer the reader to [7].

The following theorem is a main result:

Theorem 2.4. Let $T \in Q'_0$ and $U(z,t) = \langle T_{\zeta}, E(z-\zeta,t) \rangle$. Then U(z,t) is an entire function of z and C^{∞} -function of t, t > 0 satisfying the following conditions:

$$\left(\frac{\partial}{\partial t} - \Delta\right) U(z, t) = 0, \tag{13}$$

$$U(z,t) \longrightarrow T, (t \to 0_+), in Q'_0$$
 (14)

 $\exists R \ge 0, \ \exists b \ge 0, \ \exists C \ge 0, \ s.t.$

$$|U(z,t)| \le Ce^{\frac{1}{4t}\sum_{j=1}^{n}(b+|y_j|)^2 + R\sum_{j=1}^{n}|x_j| + nR^2t}.$$
 (15)

Conversely, for a function U(z,t), t > 0, entire function of z, C^{∞} -function of t, satisfying (13) and (15), there exists unique $T \in Q'_0$ such that $\langle T_{\zeta}, E(z-\zeta,t) \rangle = U(z,t)$.

For details we refer the reader to [8].

At present:

Recently we obtained the same results for tempered distributions with support in a proper convex cone. This paper will be soon appeared.

Reference

- [1] M.Budinčević, Z.Lozanov-Crvenković and D.Perošić: Representation theorems for tempered ultradistributions, Publications de L'Institut mathématique, Nouvelle série, tome 65, (1999), 142-160.
- [2] K.W.Kim, S.-Y.Chung and D.Kim: Fourier hyperfunctions as the boundary values of smooth solutions of heat equations, Publ. RIMS, Kyoto Univ. 29 (1993), 289-300.
- [3] H.Komatsu: Introduction to the theory of distributions (in Japanese), Iwanami Shoten, (1978).
- [4] T.Matsuzawa: A calculus approach to the hyperfunctions I, Nagoya Math. J. Vol. 108, (1987), 53-66.
- [5] T.Matsuzawa: A calculus approach to the hyperfunctions II, Trans. Amer. Math. Soc. 313 (1989), 619-654.
- [6] T.Matsuzawa: An introduction to the theory of partial differential equations, JSPS-DOST Lecture Notes in Mathematics, Vol.4, (1997).
- [7] P.Sargos and M.Morimoto: Transformation des fonctionnelles analytiques à porteurs non compacts, Tokyo J.Math. Vol.4, (1981), 457-492.
- [8] M.Suwa: Fourier ultra-hyperfunctions as the boundary values of smooth solutions of heat equations, Tokyo J.Math., (to appear).