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Fourier ultra-hyperfunctions as the
boundary values of smooth solutions
of heat equations
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Sophia University, Masanori Suwa

1 Introduction

1987, Matsuzawa characterized the space of hyperfunctions with com-
pact support K (denote by A’'(K')) as the boundary value of C*-solutions
of the heat equations:

Theorem 1.1 (Matsuzawa [4]). Letu € A'(K) andU(z,t) :=< uy, E(z-
y,t) >, E(z,t) = (47rt)_%e_%% (heat kernel). Then U(z,t) € C*(R}t),
Rt = {(z,t);z € R*,t > 0} and U(-,t) € A(C*), A(C") is the space
of entire functions, for each t > 0. Furthermore U(z,t) satisfies the heat
equation:

(% - A) Uz,t) = 0 in R, (1)

where A = J}; 58;]5 (Laplacian).
For every € > 0, we have
\U(z,t)] < C.et in R (2)
We have for any § > 0,
U(,t)—0 (3)
uniformly in {z € R*;dis(z, K) > 6} ast — 0,4.

We have U(-,t) = u in A'(K) ast — 0y, i.e.

ue) = Jim [V Ox@e@ds, peAC), @



for any x(z) € C°(R™) such that x = 1 in a neighborhood of K .

Conversely, every C*-function U(z,t) defined in R}t satisfying the
conditions (1), (2) and (3) can be expressed in the form U(z,t) =<
uy, E(z — y,t) > with unique element u € A'(K).

Furthermore 1989, Matsuzawa characterized the space of distributions
with compact support K (denote by £4) and the space of ultradistribu-
tions with compact support K (denote by 6',{:} , ,(f) , § > 1) by the same

way (for details of definitions of ultradistributions, we refer the reader to
[3]):

Theorem 1.2 (Matsuzawa [5]). Let u € 8,{(”}1 (8}?)') with s > 1 and
U(z,t) =< uy, E(z ~ y,t) >. Then U(z,t) € C®°(R™'). Furthermore
U(z,t) satisfies the following conditions:

(% - A) U(z,t) = 0 in R} (5)
For every € > 0, § > 0, there exists a positive constant C.s such that

TooT _ dis(z.Kg)?
Bt

|U(z,t)| < Ce,ge(%) in R}, (6)

where K5 := {x € R*; dis(z, K) < §}.
We have U(z,t) — u ast — 0, in ELY(R) (resp. £6)(R")).

Conversely, every C*®-function U(z,t) defined in R}t satisfying condi-
tions (5) and (6) can be expressed in the form U(z,t) =< u,, E(x—y,t) >
with unique element u € S,{:} (resp. £ .

Theorem 1.3 (Matsuzawa [5]). Letu € £ and U(z,t) =< u,, E(z—
y,t) >. Then U(z,t) € C®(R}). Furthermore U(z,t) satisfies the
following conditions:

(gz - A) U(z,t) = 0 in R, (7

There erists a nonnegative integer N = N(u) such that

is(x, 2
U(z,0)] < CstNe ™% ip RoH1, (8)
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We have U(z,t) — u ast — 04 in Ek.

Conversely, every C®-function U(z,t) defined in R+ satisfying condi-
tions (7) and (8) can be expressed in the form U(z,t) =< uy, E(z—y,t) >
with unique element u € €.

1993, K.W.Kim, S.-Y.Chung and D.Kim characterized the space of
Fourier hyperfunctions with compact support K in D" (denote by F'(K))
by the same way ([2]):
Theorem 1.4 (K.W.Kim, S.-Y.Chung and D.Kim, [2]). Letu € F'(K)
and U(z,t) =< uy, E(z —y,t) >. Then U(z,1) € C®(R%) and satisfies
(% — A) U(z,t) = 0 in R (9)
For any € > 0, there is a constant C > 0 such that

dis(z,K, R™)2
|U(z,t)] < Ceitettell= ) RO (10)

We have U(z,t) — u as t — 04 in F'(K).

Conversely, every C®-function U(x,t) defined in R satisfying con-
ditions (9) and (10) can be expressed in the form U(z,t) =< uy, E(z —
y,t) > with unique element u € F'(K).

For S'(R™), the space of tempered distributions, the following result is
known:

Theorem 1.5 (Matsuzawa [6]). Letu € S'(R*) and U(z, t) =< uy, E(z—
y,t) >. Then U(z,t) € C°(R*™) and satisfies

<% — A) U(z,t) = 0 in ]R’};“. (11)
There ezists constants C >0, v > 0 and k > 0 such that
\U(z,t)| < Ct™¥(1+|z|)F in R} (12)

We have U(z,t) — u ast — 04 in S'(R*).

Conversely, every C®-function U(z,t) defined in RI! satisfying con-
ditions (11) and (12) can be expressed in the form U(z,t) =< uy, E(x —
y,t) > with unique element u € S'(R*).
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Besides many authors research generalized function by the same way.
For example, 1999, M.Budincevié, Z.L.-Crvenkovié and D.Perosié¢ char-
acterized the spaces of Beurling and Roumieu type tempered ultradistri-
butions (for details, we refer the reader to [1]).

2 Main theorem

Now, we can obtain the same result for Fourier ultra-hyperfunctions.
First, we give some notations:

Notations

C* = R*+R".

z = z+w, (={+u.

z = (21,22, ,2), zi=zj+ey, j=12,---,n.

¢ = (€ y6n), G=¢&+m;, j=1,2,---,n.
n

<(,z> = Z(jzj. In particular, 22 =< z,z > .
=1

1 £

E(z2,t) = (47rt)%e «, zeC', t>0.

Let K be a convex compact set in R*. Then we define supporting function
hk(zx) by

hx(z) =sup < &,z >.
ceK .

We denote “complex Laplacian” by A:

n
i
A=_a—z]?.

Let L be a closed set in C* and L be interior of L. We denote by H( E) the

spaces of holomorphic functions on L and by C(L) the spaces of continuous
functions on L.
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Definition 2.1. Let K and K’ be convex compact sets in R*. Then we
define Qu(R" + 2K, K') as follows:

Qo(R" +1K, K')

= {f € H(R" +1K)NCR" +1K): sup |f(z)e"<®| < +o0}.
z€R" 1K

Definition 2.2. We define the space Q) as follows:

Qo = (hﬂ Qb(Rn + ZK, K,),

K,K'CCR™

where lim means projective limit.

Definition 2.3. We denote by @ the dual space of Qo. The element of
@y}, is called Fourier ultra-hyperfunctions.

For details of Fourier ultra-hyperfunctions, we refer the reader to [7].

The following theorem is a main result:

Theorem 2.4. Let T € Q) and U(z,t) =< T, E(z — (,t) >. Then
U(z,t) is an entire function of z and C®-function of t, t > 0 satisfying
the following conditions:

(% - A) U(z,t) = O, (13)

U(st) — T, (t—0,), in Q% 14)
3R20, 320, 3C >0, s.t.
|U(2,t)] < Cet Zi-10+l;)* +R T, lejl+nR?t (15)

Conversely, for a function U(z,t), t > 0, entire function of z, C*-
function of t, satisfying (13) and (15), there exists unique T € Qg such
that < T¢, E(z — ¢, t) >=U(z2,t).

For details we refer the reader to [8].
At present:

Recently we obtained the same results for tempered distributions with
support in a proper convex cone. This paper will be soon appeared.
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