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Introduction

In this article, we prove non-uniqueness in an overdetermined Cauchy problem

0%u
(1) { EE - Au = 0,

0%U|p=z, = U(t) for any a,

where A is the Laplacian on R, n > 2. } |

This is an inverse problem to reconstruct the wave from observation at one spaée
point. This problem was first introduced by L.Ehrenpreis [E], who proved uniqueness in
this problem in distribution category, employing expansion by harmonic fuﬁctions. As
for uniqueness, F.John [J] also proved it globally with respect to general real analytic
time-like curves. For distribution solutions, another uniqueness result was proved by
M.Nacinovich [N] in a different way. In 1993, S.Tanabe—T.Takigﬁchi [TT] proved that
@) 52 Au = 0,

0%u|p=g, =0 for any

would imply that u = 0 in a neighborhood of = zo if u is a non-quasi-analytic (NQA’
for short) ultradistribution. In the same article, they introduced a counterexample
by A.Kaneko which yields that uniqueness in this Cauchy problem does not hold for
hyperfunctions.

For uniqueness in the Cauchy problem (1), the case where u is a quasi—analytic (‘QA’

for short) ultradistribution is left open, which we study in this article.
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Ultradistributions

In this section, we review the definition of ultradistributions. Let C R"™ be an open

subset and M,,p =0,1,---, be a sequence of positive numbers.

Definition 1. f € £(Q) = C*(Q) is called an ultradifferentiable Junction of class {M,}
(resp. (Mp)) if for any compact subset K C §2 there exist constants k and C (resp. for

any K and for any h > 0 there exists some C) such that
sup |[D*p(z)| < Chl*| M, for all o
zeK

holds. Denote the set of the ultradifferentiable functions of class {M,} (resp (Mp)) on
Q by EIMH(Q) (resp. £ (M>)(Q)) and denote by D*(R2) the set of all functlons in £*(2)

with support compact in 2, where x = {M,} or (M,).

For a compact subset K C Q let
Dk = {p € D*(R™) ; suppf C K},
and we define
DiMebh _ (5 ¢ DM} . 30 such that sup |D*p(x)| < Chl®IM;,}.

These spaces are endowed with natural structure of locally convex spaces.

For NQA class, we impose the following conditions on M,.
(M.0) (normalization)
My=M, =1.

(M.1) (logarithmic convexity)
Mz S Mp—lMp+11 p= 1) 27 Tt
(M.2) (stability under ultradifferential operators)

3G, 3H such that M, < GH? min MM, ,, p=0,1,---
0<q<p
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(M.3) (strong non-quasi-analyticity)

o0

M, M,
3 h that E - < G P p=1,2,---.
G suc a M, = pMM1 p

q=p+1

(M.2) and (M.3) are often replaced by the following weaker conditions respectively;
(M.2)' (stability under differential operators)

3G, 3H such that M, < GH?M,, p=0,1,---.

(M.3)" (non-quasi-analyticity)

o0

ZMA’/’I_I < 00

p=1 ~°

We note that if o > 1 then the Gevrey sequence

My, = (p1)°

satisfies all the above conditions. For more details about NQA ultradifferentiable func-
tions and NQA ultradistributions confer [Kol] and [Ko2].

In this article, we study QA ultradistributions. Let Np, p = 0,1,---, be a sequence
of positive numbers. We impose the following conditions ((QA) and (NA)) instead of
(M.3) or (M.3)';

(QA) (quasi-analyticity)

— N,
szp!ap=0,1a"'1 Z p-—1=oo.
p:

-

Let N, be a sequence of positive numbers satisfying (QA). If

. p!
liminf ¢/ =— >0
p—=oo \[ Np

then £{N»} is the class of analytic functions. We impose the condition that N, does not

. p!
A VTV;‘O‘

define the analytic class;
(NA) (non-analyticity)
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If the sequence N, satisfies (M.1) and (QA), the sets DV2) and DINe} are {0} (cf
[C]), however, we define the sheaves D*’ of QA ultradistributions of class *, where
£ ={N,} or (N,,).

For a sequence M, of positive numbers, we define its associated functions. For t > 0,
let |

k

~ t
M(t) := sup —,
() up A

tk
M(t) .= log —,
(t) sup log 37

. tkk!
M*(t) := sup ——.
(t) up S
Definition 2. f € D(My)’ (resp. f € D{Mp} ') if f is expressed by the boundary value

of the holomorphic functions,
f(z) = Fi(z +i0) + - - - + Fpp(x + i[},0),

where ¢ := /1, I}, j = 1,--- ,m are open cones in R* F;j e O{z e C*; z ¢
R" +iI}, [Imz| < 3e}), j = 1,--- ,m, for which, for any compact set K C R™ there

exist constants L and C (resp. for any L > 0 there exists C) such that

sup |Fy(z +iy)] < CM(L/y)).

Note that, in NQA case, this definition is equivalent to the one by the duality (cf.
[Ko1]).

For a function defined on R", its Fourier-Laplace transform is

f(¢) = /R ] f(x)e™**dz, (eC™

The Paley-Wiener theorem for NQA ultradistributions are proved by H.Komatsu (Thé—
orem 1.1 in [Ko2]). We extend this theorem for QA ultradistributions which are not
hyperfunctions. Note that the Paley-Wiener theorem for hyperfunctions are known

(Theorem 8.1.1 in [Ka]).
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Proposition 3. (the Paley-Wiener theorem for ultradistributions) Assume that a se-
quence M, of positive numbers satisfies (M.0), (M.1), (M.2)" and (NA). The following
conditions are equivalent.

N . (M) {M,}’ ol
i) f is the Fourier-Laplace transform of f € Ex (resp. f €& © ), where & s
the set of ultradistributions of the class * whose supports are contained in K.

ii) There exist L > 0 and C > 0 ( resp. for any L > 0, there exists C > 0) such that
ol < CcM(LIE), EeR
and for any € > 0 there exists C. such that

IFOI < Ceexp(Hi () +el]),  ¢€CT
where

Hig(():=supIm z -A(,
z€K

is the support function of K.
iii) There ezist L > 0 and C > 0 ( resp. for any L >0, there exists C > 0) such that

Q) < CM(L|¢)e <O, ¢eCm

The proof of this Proposition is obtained by modifying the proof of Theorem 1.1 in
[Ko2]. For this modification, we apply the Paley-Wiener theorem for hyperfunctions
(Theorem 8.1.1 in [Ka]) and an estimate . L

M(ZiC)) = sup"- ;}f'k < Csup p & 'lg!')»k < Cesll.

Uniqueness of a function with analytic parameters

In this section, we review the results of the following problem.

Problem 4. Let f be a function defined on R™. Assume that f contains z” as analytic
parameters at x = 0, where z = (z',2") € R" and that the restrictions to z = 0 of f

and all its derivatives in =" vanish;
agl/ f|{$=0} =0 for all o.
Under these conditions, judge whether f = 0 in some neighborhood of x =0.

The answer to this problem depends on the class where f belongs and is élosely‘
related to the uniqueness in (1), which we introduce in this section. ’

If f is a NQA ultradistribution, the answer to Problem 4 is positive (cf. [B1], [TT]).

Applying this result, S.Tanabe-T.Takiguchi proved uniqueness in (1) in NQA ultradis-

tribution category.
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Theorem 5. (Theorem 6.2 in [TT]) Assume that u is a NQA ultradistribution satisfying
(2). Then u =0 in some neighborhood of {z = z0}.

The proof of this theorem is too short and easy to omit, which we introduce.

Proof. Since all conormals to {z = 0} are non-characteristic with respect to the wave
operator, u contains z as analytic parameters at z = 0. Therefore the answer to Problem

4 proves the theorem. [

It is also known that uniqueness is proved for NQA ultradistributions even if the
parameter z” is weakened to QA one (cf. [B2]).

The answer to Problem 4 is negative when f is a hyperfunction. This case there
is a famous counterexample by M.Sato (cf. Note 3.3 in [Ka]). J.Boman proved that
the answer to Problem 4 is negative when [ is a QA ultradistribution by modifying
M.Sato’s counterexample (cf. [B3]). .

The idea of J.Boman’s extension is the following. Assume that N, satisfies (M.0),
(M.1), (M.2)', (QA) and (NA). Let

E:={z€C; |z|] <1, Imz # 0}.

Take such polynomials py(z) which approximate 1/z uniformly in the wider sense in E
that
of T
|F(r,2)| < C,M (m)
for Vr > 0, 3C,, where

F(r,2) := i I%Tk € O((C\ (—00,0]) x C)
k=0 :

F is a defining function of a QA ultradistribution J of class {Np},
f(r,z) = F(r,z + i0) — F(7, — 0),

containing 7 as a holomorphic parameter. It is not difficult to construct a counterex-
ample in (Np) class applying the inclusion relation between {Np} and (IV,) classes.
A.Kaneko proved that there exists a hyperfunction u(t,z) # 0 in a neighborhood
of {z = 0} satisfying (2), applying Sato’s counterexample (cf. [TT]). We modify
A.Kaneko’s idea and prove that uniqueness in (1) does not hold in the QA ultradis-

tribution category neither, in the proof of which, we utilize J.Boman’s counterexample.
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Ultradistribution solutions to partially

hyperbolic partial differential equations

In this section, we study solvability of partially hyperbolic partial differential equa-
tions in ultradistribution category. This solvability is one of the main tools to prove
non-uniqueness in the Cauchy problem (1) in QA ultradistribution category.

We denote z = (z1,7') = (z1,2",2"") € R", where z” = (22, ,Tk+1), " =
(Zk42, -+ yTn)- Let P(D) be an m-th order linear partial differential operator with
constant coefficients and p,,(D) be its principal part. We assume that {z, = 0} is
non-characteristic with respect to P. We consider the complexification z = z + iy of

z € R™ and apply similar notations for " and z"’. We put
Q4 := {z" € R*; |2"| < A},
Up:={2" eCtF1; |2 < A},
Ts:={z: €R; |z1] < A}.

Let Mp, p = 0,1,---, be a sequence of positive numbers satisfying (M.0), (M.1)
and (M.2)'. We denote by D*’ O(Q 4 X Uya) the space of ultradistributions of the class
+ defined on R*¥ x C*—%-1 containing 2" € U, as holomorphic parameters. For the
definition of hyperfunctions and holomorphic parameters, confer [Ka]. In the same way,
we define D*'O(T4 x Q4 x Ua) on R x R* x C*—k-1. We apply the same notions for
EXO.

Our main purpose in this section is to prove the following theorem.

Theorem 6. Let P be a partial differential operator defined above. Assume that the
sequence M), satisfies (M.0), (M.1), (M.2) and (NA). Then the following conditions
are equivalent.

i) For any A > 0 there exist such 0 < a, 0 < B < A that the initial value problem
P(D)u(z) =0,

{ 3£1uiz1=0 =uj(z",2"), j=0, 1, e ,m—1,
where u; € £*'O(Qa x Ua), allows an ultradistribution solution u(z1,z"”,2"") with sup-
port compact in " of class x = (Mp) ( resp. {Mp} ) defined on T, X Qp x Up which
contains 2" € Ug as holomorphic parameters.
ii) There exist constants 3, v, C,l ( resp. there ezist B, v and for any l there exists C
) such that

[tmGy| < Bltm¢"| +~I¢"| + MUC"]) + C,
for P(¢) = 0.
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Remark 7. i) The counterparts of Theorem 7 for distributions and hyperfunctions
are proved in [LK] in a stronger form, our proof is a modification of their theory. In
E.G.Lee-A.Kaneko’s theorems they do not assume that initial values and solutions are
compactly supported in z”. For NQA ultradistributions, this extension is possible since
D*'O is partially soft when * defines N QA class. For QA case, we have to prove partial
flabbiness of D*'O for this extension.

ii) In the proof of Theorem 6, we apply Proposition 3 to estimate the support with
respect to z”.

iii) What we claim in Theorem 6 is that we have a solution with holomorphic pa-
rameter in ultradistribution category, especially in QA ones. Since the symbol of P is
a polynomial it is not the case that the term M (1|¢"]) is valid, however, our theorem
holds for a general convolution operators. Therefore we state our theorem as Theorem

6.

The main theorem

In this section, we prove that uniqueness in (1) does not hold in QA ultradistribution
category, to prove which, Theorem 6 and J.Boman’s counterexample pla.y 1mporta.nt

roles.

Theorem 8. Assume that the sequence N, satisfies (M.0), (M.1), (M.2), (QA) and
(NA). There erists such a QA ultradistribution u(t,z) of class (Np) or {N,} satisfying
(2) that u(t,z) # 0 in any neighborhood of z = Zg.

Pmof For simplicity, let us assume that zo = 0. Cons1der the Cauchy problem

2,
a——A'u,—
ou
|

(3) ot? |
ulzl=0 = ‘P(x.,’ t)’ . 3—:1:1 z1=0 = 1/’("’_"'0 = Oa

where £ = (z;,2’) € R® and ¢ is J.Boman’s countei'example with holomorphic param-
eter z’. By the construction, ¢ is compactly supported in t. By virtue of Theorem 6,
the Cauchy problem (3) has a local QA ultradistribution solution u(t, z) near Ty = 0.
By (1),

07 u= Zcﬁaﬁ 8,111.+E:c.7 A
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where cg, ¢y =1 or —1. We have
o 07 ' ‘ 'Y’ 7[1 ‘
6z’tu|9;1=0 - E cn’axl’t(p - E C’y"»y"at az; (,0-
gl v

Restricting both sides to {‘:1:’ = 0} gives us
02 sulomo = 87 (01, Plar=0) =0,

because 81:1g0|,,r=0 =0. O
Theorem 8 completes the study of uniqueness in the Cauchy problem (1).

Remarkk 9. Even in NQA ultradistribution category, runiqueness does not hold if initial
values are restricted to finite order. More strongly, we construct a counterexample in
distribution category. Let m € N. We have a local distribution solution u(¢,z) # 0 to
the Cauchy problem

‘ 0%u

a2
0%U|p=g, =0 for |a] < m.

— Au =0,

In fact, for simplicity, we assume that zo = 0. Consider the Cauchy problem

2
Q—E—AuzO,

ot?
(4) 5y

Uler=0 = (T2~ a) " g(2), b?llan:o =y(z',t) =0,

where g(t) is a distribution of one variable. By Theorem 2 or 3 in [LK], (4) has a
distribution solution u(t,z) near z; = 0. It is easy to show that dgu|z—0 = 0 for

la] < m.

In smoother classes where the counterpart of Theorem 6 holds, the counterpart of
Remark 9 is proved. For example, C®, ultradifferential and analytic classes are those
ones. Note also that the argument in this article applies to a general linear partial
differential equation with analytic coefficients and a real analytic submanifold whose

conormals are non-characteristic.
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