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Irregularities of nonlinear hyperbolic equations
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Abstract. We consider the well-posedness of semilinear hyperbolic
Cauchy problems for Gevrey functions. To obtain a general result,
we define the notion of irregularities, and we give a criterion for the
well-posedness.

1 Introduction

We assume m > landn > 2. If 1 < s < o0, R>0andw C R"is
open, then we define

E3(w) = {f(z) € C®(w); for 3C >0 and Va € Z7}
we have |97 f(z)]| < CR""at®}.

If s = oo, then

Ep(w) = {f(ac) € C®(w); for Va € Z% and 3C, >0
we have |02 f(z)| < Ca},

although it does not depend on R. We define £°(w) = limp>o E4(w) for

1 < s < 0o. The usual set £*(w) of Gevrey functions on w is defined by
£ (w) = @wlcw £3(w'), but for the sake of convenience we consider

£%(w) instead of &°(w). |

Our aim is to determine when a semilinear hyperbolic Cauchy prob-
lem is well-posed for such functions. M. D. Bronstein [1] and K. Ka-
jitani [5] gave a sufficient condition for this problem (See Theorem 1
below). However, their result is not satisfactory for some important
cases, especially in case of weakly hyperbolic equations. To recover
this defect, we give a more refined criterion (See Theorem 2 below).
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We denote 9, = 8/8z, and D = —/—18,. Let Viu(z) = (0%u(z); o
€ Z,", |a| < j). Let k(j) be the number of components of Viu. We
denote = = (r1,z') = (z1,--- ,z,) € R" and U™ = (Ua; |la] <m) €
R ™). Let F(z,U™) e E(wx ™), 0ew C R, Q™ C R¥M) and we
consider the equation F(z, V™u(z)) = 0, for real valued F(z,U™) and
u(z). Let m : R¥™ 5 U™ = (U,; |a| < m) —» U™ 1 = (Us; |a] <
m — 1) € R¥™-1) be the natural projection, and let Q™1 = x(Q™).
We assume that it is semilinear:

R { F@, V™) = ¥ aa(0)0fu(z) + f(z, V™ u),

1

laj=m

where‘aa(x) € &(w), f(z, U™ ) € &2(w x Q™).

To state the second assumption, we prepare a symbol class of pseu-
dodifferential operators in Gevrey category. Let k€ Z,, leZ,, Q€
R/, and let X € Q be a parameter. If 1 < s < 0o, we define

T (wx Q) = {a(z,X,¢) € C®w x 2 x R*™1); IR > 0,
V8 € Z,*, 3Cp > 0, Va € Z,", VT € Z,/,
02050 a| < CpRIAHTIQlTIa(1 4 |¢'|)+-1A1},
If s = 00, then we define '

T*wx Q) = {a(z,X,¢) € C®°(w x N x R™-1);

Va € Z,", V8 € Z,"!, VI € Z,, 3C,pr > 0,
|820%0f al < Capr(1+€'|)+-101).
We regard z; and X as parameters, and 7% (w x ) is Hormander’s

class Sf) for (z’,¢') with parameters (z1,X). If f(z) € S(R™) and
a(z, X, &) € T**(w x ), then we define

fl@1,€) = (2r) " [ e VT2€ f()dy,
af(z,X) = (a(z,X,D')f(z) =) A
= [ e/ ¢a(z, X, &) f (21, £')dE,

as usual. Note that such an operator does not contain D;. Our second



assumption is the hyperbolicity:

( There exist ej(z,£') € T (w x R*™), 1< j <m,
| such that e;(z, &) = ej(z, —¢'), and we have

A2

. | IZ aq(z)(vV—18)* — 1 [1 (&—ei(z¢))
al=m <j<m
e S greml-iwx R,
\ 0<j<m~1

Here we do not assume any further conditions for e;(z,£'). Some of
them may be the same, and some of them may coincide somewhere.
Let Viiu(z) = (0%u(z); a € Z4", |a| <4, ap < j) for 0 < j < i
Note that F is written in the form F(z, V™u) = 0 u+ F'(z, V™™ lu).

Let w € R" be a neighborhood of the origin. We consider the fol-
lowing Cauchy problem:

(1) F(z,V™u) =0, & 'u(0,2')=v;(z'), 1<j<m

for v;(z') € £°(w'), o = wn ({0} x R*7!). Note that v™1y(0) €
R¥(m-1) is naturally determined by these Cauchy data, i.e., 02u(0) =
8% va,+1(0). Of course we must assume V™~ lu(0) € Q™. The follow-
ing criterion for the existence of the local solution to (1) was given by
M. D. Bronstein [1] for linear case, and by K. Kajitani [5] for nOnllnear

case.

Theorem 1. We assume Al, A2, and V™ 14(0) € Q™. If1 <

s < m/(m — 1), there ezists a solution u € £°(w1) to (1) in some
nezghbo'rhood w1 C w of the origin. Here m/(m — 1) denotes 00 zf
= 1.

Let us consider the meaning of this result. We first consider a trivi‘a.l;‘

example.
Ezample 1. Let

F=0tu-07"u, 87'wu(0,2) =dv(z), 1<j<m.
The formal solution is given by u =Y j>0 217 89(5? Viy(z')/(mj)!. We
have

this is convergent <= |87 V(2| < CI*(mj)! for 3C > 0
= v(a:) e E™M-D(w) for Jw) C W'
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Therefore 1 < s < m/(m—1) is a sufficient condition for the solvability.

Furthermore from Example 1 it seems that the above criterion is
almost necessary for this case, and it may seem impossible to improve
it anymore. We next show that nevertheless there are some well-known
equations to which Theorem 1 does not give a good result.

Ezample 2. Let

@) F =0} u — 2302 u + zkc(z)(0,,u),
31u(0,2') = v ('), 1< j <2

Since m = 2, Theorem 1 means that (2) is solvable if 1 < s < 2.
However it is known that in fact (2) is solvable for any s. This equation
is called a regularly involutive equation and has been an important
subject of solvability problem in linear theory [9]. It is called a spatially
degenerate equation in nonlinear theory, and recently many people are
studying it. See [2, 10, 12] for example.

Ezample 3. Let F = 02 u — 2302 u + z¥71¢(z)(8,,u)". For this
equation the situation is the same as in Example 2 (See [2, 4, 6, 9, 12]).
This is called non-involutive in linear theory, and timely degenerate in
nonlinear theory.

Exzample 4. Let
B) F=08u—108,0,u, & u(0,)=0b,(), 1<j<3.

Theorem 1 means that (3) is solvable if 1 < s < 3/2. However a direct
calculation as in Example 1 shows that it is solvable for 1 < s < 2. This
is a hyperbolic equation with constant multiplicity, and H. Komatsu
gave a general theory for this case (See [7]). He considered a special
expression of a linear hyperbolic operator F' with constant multiplicity,
which he called De Paris decomposition. Using such an expression he
defined the irregularity ¢ of F. This is a rational number satisfying
1 <¢<mif ord F = m, and Komatsu proved that (3) is solvable if
1<s<¢/(t—1). Sincem/(m—1) < ¢/(t—1), this is a better criterion
than Theorem 1, for such a case. In the present example we have ¢ = 2,
and (3) is well-posed if 1 < s < ¢/(t — 1) = 2.

We shall extend the theory of H. Komatsu to the general case, and



our discussion will proceed in the same way as [7]. We have the follow-
ing

Theorem 2. We assume Al, A2, and V™" 1u(0) € Q""'. We can
define the irregularity it F € Q of F such that 1 < IrF<m. If
1 < s < Ir F/(Irr F — 1), there exists a solution u € £°(wy) to (1) in
some neighborhood wy C w of the origin.

We have Irr F = m,1,1,2 in the above Examples 1,2,3,4, respec-
tively. This coincides with the well-known results.

2 Pseudodifferential operators in Gevrey Classes

Let T°%(w x Q) = {a(z, X, D'); a(z,X,{') € Tk (wx )}, and T?(w X
Q) = Ukez T (w x Q). If a(z, X, D) € T (w x Q) \ T*F 1w x Q),

then we define orda = k. If a(z, X, D) € Nkez T**(w x Q), then

we define orda = —oo. For the sake of simplicity we assume that
k € Z, therefore orda must belong to Z U {—oo}. For example, we
have ord(1 + Y 2<j<n D)V =1.

T*(R" x Q) is an algebra in the usual sense, i.e., if
a(z, X, D) € T**(R" x ), b(z, X, D) € T*(R" x Q),

then we have

a(z, X, D")b(z, X, D) € T*FR" x Q),
a*(z,X,D') € T**(R" x Q).
Similar operators are defined in [3, 11] . Sometimes they define a

slightly different classes of pseudodifferential operators. For example,
[11] defines

S**(w) = {a(z,&) € C®(w x R*1); 3R >0, Ve, V3,
|agag'a(x,§')| < Rleal+HB+10158M5(1 4 1€ )k},

§*(w) = kyz S (w),

R (w) = {a(z,&) € C®°(w x R"1); |
JR >0, 3 >0, V@', ICp > 0, Va, ;
|828f a(z,€&')| < CpRIMat*(1+ |€'|)"P1exp(—€|€'])}
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for 1 < s < co. The operators corresponding to S*(R") + R*(R")(C
T°(R")) make an algebra in the above sense. The difference is not
important, but we employ 7°(R") instead of S*(R") +R*(R") because
it is more general and simpler. Anyway note that we cannot say that
the operators corresponding to S*(R") make an algebra. It is proved
in [11] that even if a(z,¢') € S**(R™), b(x,¢') € S*(R"), then the
symbol of a(z, D’)b(z, D') belongs to S*¥*!(R™) 4+ R*(R"), and perhaps
not to S***/(R™) in general.

3 Irregularities of F

To define the irregularity we need to discuss about the expression of F
or its linearization .
Let
F(z,U™8 = ¥ 8y, F(z,U™)(V=18)".
laj<m

The principal part of F is linear, and F does not depend on U,, |a| =
m. Therefore we can write F' = ﬁ(m, U™-1 €). If F is linear, F does
not depend even on U™"! at all. Note that ¥ /v/—1" is a monic polyno-
mial of & of degree 1. Therefore we have F (z, U™ 1,¢) € (V-1&)™ +
> o<i<m (V=1&)T*™i(w x Q™ 1). Finally let ?‘J(:z:, U™-1, D) be the

corresponding linearized pseudodifferential operator.

If 0 < ¢ < m we denote by S, the set of g-tuples pu = (y, g, - - - » q)
such that py, p2,--- , g € {1,2,--- ,m} are mutually distinctive. Here
we distinguish different arrangements of the same set of numbers. Al-
though Sy does not make sense, we assume that it consists of only
one element, which we denote by u’. We define S = Jocg<m Sq»

and $' = Uogg<m-1 Sg- If p € S;, then we define lu] = ¢, and

E¥(z,D) = E, (z,D)--- E, (z, D). Here E;(z,D) = 8,, — ej(z, D),
and E* = 1. Let o € Sm. By a Lascar decomposition subordinate to
o we mean an expression of the following form:

g [ F=P@D)+ S "M, 0,0m, D)5, D),
4 peS'’
au(z, U™, D) € T*w x Q™ 1) 4 z,Tom~i~1(yy x Qm-1),



Here we consider negative powers of z; formally. The reason for using
negative powers will be explained below. It is easy to see that an
arbitrary operator has at least one Lascar decomposition, and mostly
has infinitely many Lascar decompositions.

Ezample 2 "S. Let us consider

F=0u-— 2302 u + zke(z)(0z,u)"

again. For the sake of simplicity we assume n 2 3. Thecase n =2 is
similar, but we need a slight modification. We have F=F (z,U*, D)
for Ul = (Uy; |a| < 1) € R¥D. However in this case the only
component appearing in the lower order term f(z,U 1) is U, for a =
(0,---,0,1), and let us denote this component U, by U;. Then we have
f(z,Uy) = zkc(z)Uik, and

(5) Pz, Uy, D) = 82, — 2202+ lzkU} "c(x)0s,-
We have Ej(z,D) = s, + 250s,, Ex(z,D) = O, — 250, and by a

Lascar decomposition subordinate (1,2) € S; we mean an expression
of the following form: "

(6) ¥ = Ey(z,D)Ei(z, D) + 27 a1(z, Uz, D) Er(z, D)
+ z7'ay(x, Uy, D')Es(z, D) + z72ao(z, Ur, D'),

where a1, as € T**(w x R), and ag € T*°(w X R)+2:T*'(w X R). Note

that (5) is a Lascar decomposition subordinate to (1,2) as it stands. In
fact substituting ap = lz2z5Ul 1c(2)0,, € 21 T*(w X R), a1 = a2 =0
in (6) we obtain (5) (We assume that w is bounded). We also have
another expression:

¥ = BE, — z7ta(z, Uy, D) Ey + 27 'a(z, Uy, D) B,

where a = lz;U te(z)/2 € T*%(w x R). We have still other expres-
sions, but they are not important. Lascar decompositions subordinate

(2,1) € Sy are similar. Later we shall judge which expression is the
best.

In Example 2, we can cancel out all the negative powers of z; with
positive ones. We next consider the case where negative powers are
indispensable.
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Ezample 3Ys. If
F =02 u— 2302 u+ 25 1c(z)(8;, u),
then we have
F(z, Uy, D)= - 23?2 + lz¥ U e(2)d,,.

We have Ei(z, D) = 9, + z}9;,, Ez(z,D) = 8,, — 2%,_, and again
this is a Lascar decomposition as it stands. We also have another
expression, using negative powers:

F = BB, — «'a(z, Uy, D')Ey + z7%a(z, Uy, D') By
where a = U} 1¢(z) /2.

In (4), Fis decomposed into three parts. Firstly, E° denotes the
principal part. The lower order terms are formally written in a form like
an element of some T*(w x Q™~1)-left module generated by E*, u € S'.
For the sake of convenience, let us call E* the generator part, and
z; mHp 'a,, the coefficient part. Roughly speaking we have

~J

F = principal part + lower order part
= principal part + (coefficient part x generator part).

If we calculate the amount of the lower order part (= coefficient

part X generator part), we can prove Theorem 1. However we should
be able to determine the Gevrey orders for which the Cauchy problem
is solvable, by the amount of the coefficient part alone (which is smaller
than the whole lower order part). Of course less amount gives a better
result, and such an idea leads us to Theorem 2. However, the coefficient
part depends on Lascar decompositions, and we must next compare
infinitely many decompositions .

For each Lascar decomposition (4) we define k € Q by

(7) % =max(1, max{(m — |u])/(m — |u| - orda,); € 5).

Clearly we have 1 < x <m. Let us consider the meaning of (7). In
(4) we assumed that orda, < m — |u| — 1. Increasing this number by
one, we consider that the order of a, may be at most m — |u|, and
there remains a capacity of m — || — ord a,. Therefore the fractional
number in (7) is the reciprocal of the vacancy rate, which is equivalent



to the occupancy rate. Anyway, it represents the congestion of the
coefficient part. This number depends on the decomposition, and if &
is small, we may say that the corresponding decomposition is concisely
written. For each o € S,,, we define Irr, F' as the minimum value of
k among all the Lascar decomposmons subordinate to o. Although
there may be infinitely many decompositions, the minimum value is
well-defined. In fact we have k € {p/q; 1 < ¢ < p < m} by definition,
and there are only finitely many possible values. Finally wé define
Irr F = maxgegs,, Irrg F. '

Let us consider the previous Example 2 once more.  We con51der
Lascar decompositions subordinate to (1,2) € S;. We have

(8) ?(m, Ui, D) = FEyFq + .’171_20,0
(9) ’ | = EF) + (Ei_lallEl + :bl_la%Ez'

where a9 = Iz325Ulc(2)ds, and —a} = a; = lz,Ul ez )/2 In (8)
we have m = 2, ordag = 1, and this term ag corresponds to u® € Sy
in (4). Therefore we have (m |1°) /(2 — |u°| — ord ag) = 2 for this
term, and it follows that & = 2 for the decomposition (8). In (9) we
have orda}j = ordaj = 0, which correspond to u € S;. Therefore we
have (m — |pn|)/(2 — |u| = orda}) = 1, j = 1,2 for these terms, and it
follows that & = 1 for the decomposition (9). This means that (9) is
a better expression than (8), and in fact (9) is the best expression for
the present operator. We have Irr, F = 1for o = (1,2) € Sy, and the
same is true also for 0 = (2,1) € S;. Therefore we have Irr F' = 1.

By a similar calculation we obtain Irr F' = m, 1, 2 for Examples 1,3,4,
respectively.

The irregularity was defined by [12] for a linear microhyperbolic oper-
ator. We call the above expression (4) a Lascar decomposition, because
R. Lascar considered such an expression in [8] to study linear regularly
involutive operators.
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