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SPIN REPRESENTATIONS AND CENTRALIZER
ALGEBRAS FOR Spin(2n+1) »
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DEPT. OF MATH.  AOYAMAGAKUIN UNIVERSITY

BILSERAFBTEE NofE

1. INTRODUCTION

These consecutive two articles are expositions of my manuscripts ([6],
[7]. The references are in the last of the second exposition.)

Let G be Spin groups (Pin groups), namely the simply connected
simple Lie groups of Type B, or Dy, in other words, the double cover-
ing groups of SO(2n+1) or SO(2n) (O(2n+1) or O(2n) respectively).
Then its charcter theory tells us that every irreducible spin represen-
tation of G ( a representation not coming from that of SO(2n + 1)

k

or SO(2n)) can be realized in the tensor space A R QV for some k,
where A is the fundamental spin representation of Gand V =CVis
the natural representation of O(N). We consider the centralizer alge-

k k
bra Endg(A ® ® V) of G on the tensor space A X V and give two
kinds of explicit. basis for CSy. This algebra CSy is a natural anal-
ogy of the Brauer centralizer algebra and contains the ordinary Brauer
centralizer algebra from its definition. Finally we give an analogy of
the Schur - Weyl duality in this case. L _
This is only the remaining case of realization of the irreducible repre-
sentations of the classical groups in the tensor spaces, which are treated
in the H. Weyl’s book [The Classical Groups] ([9]). From now on,
we state arguments over the field C, or R, but these work well over the
filed Q or the filed Q(v/2) for Spin or Pin groups.

2. HISTORY AND MOTIVATION

Let us recall the classical situation.
Case 1. GL(n,C) (ref. 1901 L. Shur, 1939 H.Weyl, [9], Chap IV )
Classical Schur - Weyl duality (or reciprocity)

k
EndGL(n)(® V) =< C[Gk] >

k
Endg, (Q V) =< GL(n) >)
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Here V = C" is the natural representation of GL(n) and & is the
symmetric group of degree k, which acts on this space by the per-
mutations of the positions of the tensor products. The bracket < >

k
denotes the enveloping algebra in End(® V).
Then we have

k
RV = > A6 @AL(n)-

A:partitions of size k
£A)Sn

k

The projection from @V to a specified irreducible representation

AGL(n) is given by a Young symmetrizer defined by a standard Young
Tableau of shape \.

The underlying fact that all the irreducible polynomial representa-

k
tions occur in the space @ V' comes from the following decomposition
rule.

Aerm)@Werm)y = X poLw
O Up)Sn
IB/A=1
In this case, we have a g-analog introduced by M. Jimbo. The quan-
tum group of GL(n) and Iwahori-Hecke algebra of type A act on the
k

space @V as a dual pair.
Case 2. O(N, C) and Sp(2n,C) (ref. [9] Chap V, Chap VI)

We only state the case of O(N, C). For Sp(2n, C), the parallel argu-
ment goes well.
A natural analog of the argument of GL(n) is to consider the cen-

k
tralizer algebra wi¥ = Endon)(@Q V), where V = C¥ is the natural
representation of G = O(N). If we could know about the representa-
tion theory of w well, we would tell about the representation theory
of G = O(N) just as in the Case 1 above. But this algebra is not so
easy to be handled as H. Weyl called this algebra ‘somewhat enigmatic
algebra’ in his book. So he took a short-cut to obtain the irreducible
representations of O(N).

Before to state it, we introduce the Brauer centralizer algebra. R.
Brauer defined in 1937 ([2]) the source algebra of the centralizer alge-
bras of O(N), which is called now the Brauer centralizer algebra. We
first define the Brauer diagrams. They are, by definition, the diagrams
consisting of two lines of dots with & dots in each row, in which dots are
connected with each other by edges and the edge multiplicity of each
dot is exacty one. We denote the set of the above Brauer diagrams by
»k

10
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[ X =

FIGURE 1. Brauer diagrams of k =2

Then the linear space Br(Q) over C(Q) ( @ :indeterminate) is de-
fined by the formal sums of the formal basis elements consisiting of all
the Brauer diagrams BE.

We make the above Br(Q) the algebra over C(Q) by introducing
the product rule as follows.

N . OO

; W} 626, = @9

N L N

\

(

%

FIGURE 2. an example of the product rule of basis ele-
ments of a Brauer algebra

Generally as is given in the Figure 2, we connect two diagrams and
in the conjunct diagram, let us denote the number of internal cycles by
+(82,6,). The result of the product is the scalar multiple by Q79281 of
‘the diagram obtained by connecting the top row with the bottom row
in the conjunct diagram’.

The action of the Brauer algebra Bri(Q) on Q" V is given as follows.
Let dimV = N and we put @ = N. To illustrate the action, We write
down the action of §; in the Figure 2 on the space ®7 V explicitly. Let
G = O(7) and let ( , ) be the defining non-degenerate symmetric
bilinear form of G and let < ey, ea,... ,en > be a base of V = C¥ and
< el,es, ..., ey > be its dual base. ;

(1 QU ® - ) = (v2,v3)(U5,v7)Zv4 Ru e Qe De€; ®e; Vs
1, : -

In the above, the operator which takes the inner product of the tensor
components is called the contraction and for example, the operator
corresponding to the inner product (vg,v3) is denoted by Coj3. Also
we denote the operator which embeds the invariant symmetric bilinear
form ", e; ® €} in the prescribed tensor positions k, £ by idy (x¢. For
example, idy (3 ¢} denotes the embedding > - ®-® & ®-Q-® e; ®-.

T ~
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Using these notations, §; is given by

. . 1 46
61 = ldV{4,7}ldV{3’6} (2 1 7) C2,3CS,7-

Here (; 11 g) denotes the partial permutation which sends the 1st

component to the 2nd position and the 4th component to the 1st and
the 6th component to the 7th.
We denote this representation of Bri(N) by

p: Bri(N) - End(é V)

Let us recall ‘The First Main Theorem’ and “The Second Main The-
orem’ of the polynomial invariants for the orthogonal groups.

Theorem 2.1 (H. Weyl The First Main Theorem 2.11A). Let K be a
filed of characteristic 0 and let V = KN be an N -dimensional vector

k " :
space over K. By P(@V), we denote the polynomial ring over the
k
linear space @V and by v;, we denote the ith component of the direct

summand.

. g

(i) The invariant polynomials P(@ V)°™) of O(N) is generated by
the defining symmetric bilinear forms (v;,v;) (1 < 4,5 < k) of
O(N).

- k k

(if) The relative invariant polynomials P() V):ON) (= P() V)So),
i.e. the invariant polynomials of SO(N)) of O(N) is generated by
the defining symmetric bilinear forms (vi,v;) (1 £ 4,5 < k) and
the determinants det(vy,, Vi, ..., viy) (is € [k]).

Since we have
k k k 2
Endov)(® V) 2 (Q VR V*)OW) = (Q V*+)OM),

2k
and can regard the right side of the above as the elements of P(@) V)°(%)
which satisfy the multi-linear properties on each component. Then
from the First Main Theorem, such elements can be written down as
a sum of the elements of the form

(viu Viz)(via? Vi4) tee (vizk—l’ vizk)-
Here {i1,4,,... ,i%} = {1,2,...2k}.

k
The action of this element on the space @V is :
(viy,Vi,) corresponds to idv (i, 5y for 41,49 £ k and Cj, 44,y for
i1,%2 > k and the partial permutation which sends the i, — kth compo-
nent to the ¢;th position for ¢; < k,i, > k.
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k
From the First Main Theorem, the homom. p : Bry(N) — End(® V)

must be surjective. v '
Moreover if we recall the Second Main Theorem, we can show that

p is injective in the case of N 2 k. '

Theorem 2.2 (H. Weyl The Second AMain Theorem 2.17A ). LetV and

k . ,
P(@V) be as in the First Main Theorem. o
(i) The relations of the invariant polynomials (vi,v;) of O(N) in the

k ‘
algebra P(@ V)ON) are generated by the following determinants.

(Vio’ Vjo) (Vio’ vjl) s (vim VjN)
(2 9 1) det (viwvjo) (Vinvji) e (vinvjN)
‘ (Vizw vjo) (viN ) vjl) . (ViN ) vjN)

(ii) The relations of the invariant polynomials (vi,v;) and det(vi,, Viy; - -+ 5 Vi v)

of SO(N) are_generated by the above relations (2.2.1) and the fol- .
lowing relations: o ,

det(v,-ly, Vigy oo ,V,,N) det(S) d_et(le,ij-, . ,VjN) -

(Virs vjl) (viuvjz)‘ v (v, VjN)
(222) det (v‘iza v]1) (v‘i27vj2) st (viz)vjN )
(Vin> Vi) (Vinr Via) - (Vin s Vin)
and
(223) Y (=1)Fdet(Vig, Vi s Vi Vin)(Vigs Vi)-
k=0 ‘ ' ‘

Here S denotes the symmetric bilinear form corresponding to
the inner product ( , ) and ;7 € [k].

From the above, the minimum degree of the relations of the invariant
polynomials of O(N) is 2N + 2, so if 2k < 2N +2, ie, kS N,pis
injective.

Remark 2.3. For the group Sp(2n), in the definition of the products
of the base elements of Bry(2n), we consider the contractions and the
immersions by the defining alternating form of Sp(2n), so we must add
the signature to the product rules in the case of O(N) and the rest goes
well.

) k
Then O(N) and p(Bri(N)) act on the space Q®V as a dual pair,
namely we have

Endogv)(®*V) =< p(Bri(N)) >, Endp(Brk(N))(é) V) =< C[O(N)] > .
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However since the representation theory of p(Bri(N)) = wd is not
easy to be understood, Weyl took the following way. Let T2(V) be the
intersection of the kernels of all the contractions {Ciy}(15i<j<k)
in the full tensor space Tx(V) = ®* V of degree k.

Then on the space T2(V), O(N ) and the symmetric group & of
degree k act as a dual pair. we note that Bri(N) contains the group
Gt naturally as the transpositions of the tensor components.

So we have the decomposition

T(V) = > As, @Aom)-
A:partitions of size k
AL+ EN
swhere A} and X denote the lengths of the first and the second column
of A respectively. The Young diagrams satisfying the condition Al +
A2 £ N are called ‘permissible diagram’.

If £(A) = A £ NY2, Ao(n) denotes the irreducible representation
of O(N) with the height weight A\j€; + dyea +... + e, If M is a
permissible diagram and | > N/2, let us put the Young diagram
A= (N- ALy A%, ..., AL) and call the irreducible representation XO(N)
the associate of Aov)- Then we have Aov) = XO(N) & det.

The projection to an irred representation Ao(v) in the space T?(V)
is given by a Young symmetrizer. The decomposition of the tensor
product of Ap(n) and the natural representation V = C¥ is given by

o@Mo= X wo+ ¥ po

B“OA ADu
Iu/N=1, () <n 16/ml=1

0 0 0
0 d o

FIGURE 3. An example of the decomposition of the ten-
sor product of O(N)

This is a universal formula for O(N) and if N = 2n+1 and £(N) < n,
we have

/\SO(2n+l)®( 1)50(2n+1) = Z Kso(2n+1) + Z HSO(2n+1)-
BOA ADp
I/ AI=1, &(u)En 16/ul=1

If £(A) = n, we have

Asoen+)@(1)so@n+1) = Asozat1) + > Kso@n+1) + )‘Z KS0(2n+1)-

BOA Dp
I/ Al=1, &) <n 16/nl=1

These formulas are the underlying fact that all the irreducible poly-

k
nomial representations occur in the space RV.

® 0O = + + + j +

14
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We have ¢- analog in this case too and the quantum group of type
B,, and the ¢- analog of the Brauer centralizer algebra (Birman -Wenzl
(-Murakami) algebra) act on the space ®*V as a dual pair.

3. A SUMMARY OF REPRESENTATION OF Spin(2n + 1)

We generalize the above constructions to the case of Spin(2n + 1),
(Spin(2n), Pin(2n)).

We state the theorems for G = Spin(2n +1).

Let A be the fundamental irreducible spin representation of Spin(2n-+
1) with the highest weight (1/2,1/2,... ,1/2). and for a partion J (
2(8) £ n), let [A,8]spin(an+1) be the irreducible representation with
the highest weight (1/2 + 61,1/2 + 83,...,1/2 + 6,). We call these
[A, 8] spin(zn+1)’s the irreducible spin representations of Spin(2n + 1)

We summarize the facts on the irreducible representations of Spin(2n+
1), which follow from its character theory.

Theorem 3.1. (i)
(3.1.1) A2=¢ey+e +e+...+eq

Here e; denotes the exterior represéntation /\iV of degree i of
the natural representation V. = C**1. Namely e; = (1Y) s0(2n+1)
(i=1,2,...,n) and we have AV AT Y.
(ii)
(3.1.2)
(A, 8] spin(an+1) (L) s0(2n+1)

= [A, 6]3pin(2n+1) + Z [A, ﬂ]Spin(2n+1) + Z [A, N]Spin(2n+1)- k

poo Ou
ln/dl=1,L(n)<n : [6/ul=1
(iii) For a partition A (£(X) £ n), we have
(3.1.3) AQAso@n+1) = /\Z [A, 1] spin(an+1)-
p

A/ p:vertical strip

Therefore the irreducible representation A occurs in the space
A @ Aso@n+yy if and only if A = (1¥), (1 S k = n). At that
time the multiplicity is one and the ezact decomposition is given
as follows.

A®(1%)s0@n+1) = SimolA, (19)]spin(zn+1)
From the above, we can conclude that every irreducible spin repre-

k ;
sentation occurs in the space A @ @ V. So we define the centralizer
algebra CSy by

k
CSyk = Endspin(an+1) (AQRV)
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and call this algebra the spin centralizer algebra.
More generally we define the linear space CS¥ by

k l
CS:‘ = Homsp,'n(gn+1) (A®® V, A®® V) .

Let us introduce the generalized Brauer diagrain. The generalized
Brauer diagrams.are by definition, the diagrams of two lines dots with

k dots in the upper row and ! dots in the lower row ,in which dots are

connected with each other as in the usual Brauer diagrams except for
admitting isolated points. Namely they are graphs with no loops in
which the number of edges connected to each dot is either 0 or 1. We
denote the set of the above diagrams by GBk. :

FIGURE 4. an example of
the generalized Brauer dia-
grams with k=6 and [ =5

When n 2 k, we will introduce two kind of basis, both of which are
parametrized by GBX = GBy and one of which is the base coming
from the invariant elements and the other of which is the base coming
from the representation-theoretic manipulation. To distinguish them,
we denote the base coming from the invariant elements by attaching
the suffix ‘inv’ to the base element GBy and the base coming from the
representation theory by attaching the suffix ‘rt’to the base element
GBy. '

We will give the transformation rules between the above two basis
and the decomposition rules of products of the base elements.

Ifweput2n+1=N=Q (Q: indeterminate) in the decomposition
formulas of the products of the base elements, we can define the generic
algebra CSk(Q) of the centralizer algebra CSy and CS,(Q) D Bry (@)
holds naturally.

From the definition, we have

k k k .
CSy = Endspin(2n+1)(A®® V) = (A"®® V*®A®® V)S}nn(2n+l).

To study the structure of the algebra CSy, we must give the following
isomorphism explicitly.

2 2i+1
(We note that for the group Spin(2n + 1), we have A* = A))

16
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First we give the actions of the Lie algebra Lie(Spin(2n + 1)) =
s0(2n+ 1, S) on the base elements of the spaces A and \'V explicitly.
Here S is the defining nondegenerate symmetric bilinear form of O(2n+
1). We take a basis < u, Uz, ... ;Un, U, Um,-- - UT = of V such that
the matrix expression of S on this base is the anti-diagonal matrix
S = (8i2n+2-i) and fix them hereafter. We introduce an order {1 <
9<..<n<0<T<...<T}in the index set of the base elements.

From the definition we have

s0(2n+1,5) = {X € M(2n+1,C); XS + §X =0}
and we take a set of the simple root vectors as follows.

a’d(Xk) = E‘k,kﬂ-\l - ‘Em,ia ad(Xn) = \/E(En,() - EO,ﬁ))
ad(Yy) = Exs1x — Brgp  2d(Ya) = V2(Bon — Enp),
ad(h;) = Ei; — E

g o S

Here k € {1,2,... ,n—1} and i € {1,2,... ,n}. For1Sksn—1,
we have [ X, Yi] = hx — his1 = Hay, (o = € — €x41) and [Xn, Y] =
2h, = 2H,,,.

We take a basis of A parametrized by all the subsets of [n] =
{1,2,... ,n} and denote the basis elements by {[I]}, where I = {i1, %, ... Jir}
1<4<ip<...<i Sn)

Namely we have A = €D C[I] and the action of Lie algebra so(2n+

1C(n] . : .
1,5) on this base is given as follows:

Lemma 3.2.

. . —[i1, .- yis1, b+ 1,1 ,...,"  'k‘=' dk+1<1
Xk[il,’l,g,.. ,Zr]——-{ [Zl -1, £+ L %sps ZT] 'lf 15 an + 1<

0 otherunse,
and o .
R . _[i11i2)i31"' air—l] 'Lf’Lr =n
Xn[Z17121‘7'37"' 77'1'] = ‘ ] Tep
0 otherwise,
and ,
Yili. i L1 —[7,1, 7is—17kais+1a--- ,’LT] ) ka+1:Zs andk>i3_1
k[7'1322>"' 77“!']— : - .
0 otherunse,
and
Y.lir. do.4 .1 —[’il,iz,ig,...,ir,n] zfzr#n
'n[2137‘27z37"' 77'1‘] - _ .
0 otherunse,
, where the sequence i1,12,1s, ... , iy are in the increasing order.
. . __2'[213Z2a237"' )ZT] ‘ kae {7'177’27"' ,7'1"}
hk[zla12)237"' 97'7‘] = 1

—2'[’i1, ’1:2, ’1:3, e ,i-,-] otherwise.

17
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Therefore [0] is the highest weight vector of A. For convenience sake,
we introduce the following convention. For any sequence 1, i3, 13, . .. , I,
of positive integers, we define the corresponding element [z, 35, 13, . .. , i)
in A as follows.

[i17i2’i37' .. ,ir] = {

0 if they are not dist
€(9)[io(1), ta(2), b0 (), - - - i if they are distinct

Here o is the permutation of {1,2,...,r} defined by the condition
to(1) < o2) < o(3) < ... < iy(y) and €(c) denotes the signature of the
permutation o.

The compact real form 50(2n + 1) of s0(2n + 1, 5) are generated
over R by the elements v/—1h;, (i=1,2,...,n) and v=1(X; + Y)),
Xi-Y, (G=12,...,n).

Then the invariant hermitian metrics of V and A under the action of
50(2n+1)p are given such that the base < UL, U, - -+ Un,y U, Usg, - -« , UT >
of V and the base [I];c[, of A become orthonormal basis respectively.

4. AN s0(2n + 1)-EQUIVARIANT EMBEDDINGS FROM A*V To
A*®A
We denote the natural base of the exterior product NV by {<
’I:l,iz,...,i,- >=Ujy ANuj, A ... ANu; i € {1,2, ,yn,0,m,. .. ,1}}
Here we have

; .
U;, A U, A...A u;, = F E G(U)Uia_l(l) ® uio—l(z) R...® U,‘G_l(r).
Ueer

For I C [n] = {1,2,...,n} with I = {i, 82, ,3:} (61 < 4y <
... < i), we define the sequences by I, = {i1,%,...,i} and L =
{iryir—l)"' 1il}' o _

Similarly we define the sequences by L = {i1,%2,... ,%,} and L=
{i_r-) ir—l’ v ’H}

For any mutually disjoint sets I, J,W C [n], we define the basis of the
exterior algebras by

{<I,8,8,J><1, ¥,,0,d, J >} Here in the bracket, the -
Juxtapositions of the index sets are considered a sequence as a whole.

We use the same convention for the basis {[i1,is,...,i,]} of A.
Namely we admit any sequence of positive integers in the bracket.
Then {[ L, K] ® [J, K]*} becomes a basis of A@ A*, where I, K, J
run over all the mutually disjoint subsets of [n]

We give an explicit embedding theorem of A’V in the space A*Q A.

Theorem 4.1. For k (1 £ k £ 2n + 1), there ezsits an so(2n + 1)-
k
equivariant embedding ¢y of the space AV into A* X A given as fol-

lhasna
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R _1)|W—WNK|
or(< Ly, W, W, I >)= Z ’Q(F}T)Jlmﬁ[l)&] ® [ L K]
[n]-3-1DK
o 1\ [K—KnW|
o< B WO I = Y LKl e (LK)

[n]-3-12K

Moreover the above ¢y becomes an isometric embedding with respect
to the invariant metrics.

From the above, the isomorphism A @ A* & @, A* V is given by

0P ... Pdan : Pr NV — ARQA*.

We compare the same weight spaces in the both sides. For simplicity,
we omit the ¢x. Let I = {4;,43,...,%,} and J = {j1,J2,... ,Js} be
mutually disjoint subsets of [n]. ’

By €; — €1, we denote the weight ¢; —€e; = €, +¢€j, +... +¢€;, —€; —
€, — ... —€,. Then the base of the weight space with the weight €5 — €1
in the space @, A\*V is given by {< _J,, W,, , I >}if [J|+|I| =0
(mod 2) and given by {< J,, ,,0, 3, I >}if [J|+|I| =1 (mod 2)
respectively. Here W runs over all the subsets of [n] —J — L.

Also the base of the weight space with the weight €; — €; in the space
A @ A* is given by {[I,, K] ® [],, K]*}, where K runs over all the
subsets of [n] —J — I.

Since the above two basis are the parts of the orthonormal basis of
n 2

the spaces @ AV and A ® A* respectively, the transformation matrix
=0

1
components are all real, so it becomes an orthogonal matrix. Therefore
the matrix

Hy1pn = ((=1)W¥*), ¢ (W,K C [n] — J — I) becomes an Hadamard
matrix of size 2["=7-I. (The Hadamard matrix is ,by definition, a
matrix satisfying the conditions that all its components consist of +1
and that each row is orthogonal to all the other rows. For example an
Hadamard matrix of size 2 is given by (_11 }
of this matrix is given by its transposed matrix.

Therefore if |J| + |I| =0 (mod 2), we have

((—1)M-""K), ¢ between them is a unitary matrix and its

) . ) The inverse matrix

_ 1)\IW—-WNK| .
Lxlelakr= Y s < L wET>

[n]—3-12OW

19
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and if |J| 4+ |I| =1 (mod 2), we have

—1)IK—Knw| .
Lslelysr= ¥ U<l w0 mTs.

[n]—-3—12w

5. AN INVARIANT THEORETIC PARAMETERIZATION

We will be back to the Invariant theory. Since

k 2k 2 2
Endspin(2+1)(AQQ V) = (A*QARQR V)rnCnt1) — (P A VR V)Srin(zn+1)

it is enough to obtain an explicit base of the invariant polynomials in
the space ’

(/'\ V*®® V*)50@n+1) (¢ &és Y*)soen+1) P('és’ V)S0G@n+1)),

We can assume r + s = 0 mod 2. Those basis elements are multi-
linear in each variables and has the alternating properties in the first

r+s
r variables, regarded as the elements of P(@ V)50@n+1),
The degree of the determinant polynomial is 2n + 1 and its par-
ity is odd, so its multiplicity must be even as the element of the

r+s r+s .
(@ V*)59Gn+1) (c P(@V)), since r +s = 0 mod 2. The formula
(2.2.2) of the Second Main Theorem 2.2 tells us that the invaiant poly-
nomials are generated by (u,v).

. T 8
First we write down the elements of (A V* @ V*)S0@n+1) (r 4 5=

. S
mod 2). If s <, @V can not contain AV, so this space must be 0.
Let us assume that s > r. .
Let t = {t1,t5,... ,t;} (f1 <t2<...<t,)and m = {my,...,my}
and 1 = {l;,...,1,} be ordered index sets (or sequences) such that
as sets, they are mutually disjoint and satisfy the condition [s] =tu

m Ul By {m,l}, we denote the u = ST pairs of indices {m,1} =

{{mlall}a {m27l2}7-'° ’{mualu}}' .
From the definition, t must satisfy [t| < 2n + 1. So the invariant
polynomials can be written as sums of the following polynomials:

1 u
Tt,{m,l} = F Z 6(0) (xa‘1(1)7 ytl)(xa‘1(2)) ytz) .. (xo"l(r)a Ytr) XH(ymj) YI,')-
" 0€B, j=1
Here x; (j = 1,2...,7) denotes the variables of the first 7 tensor

r+s
components in the space @V and y; (j = 1,2...,s) denotes the

variables of the last s tensor components.

k l
Lemma 5.1. Let CS}‘ = Homsp,-n(z,,_,_l)(A@@ ‘/, A ®® V). If s =
k+1=0 mod 2, we allow only the t’s satisfying the conditions that
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t| < 2n+1and [t| =0 mod 2. Ifs=k+1=1 mod 2, we allow only
the t’s satisfying the conditions that |t| < 2n +1 and |t| =1 mod 2.
Then the above invariabt polynommls T¢,{m,2) span linealy the space

CSk. Namely,
CSk Z CT¢ (m,y-

tUmll=[s]
Moreover if s = k+1 < 2n'+ 1, the elements T (m1) (tumUul=s]
) are linealy independent, i.e.,
CSk= @ CTiimy-

tUmUI1=(s]

There exists a natural correspondence between the generalized Brauer
diagrams GB¥ and the polynomials Tt (m,)- That is, the part {m, 1}
corresponds to the ordinary Brauer diagram whose edges are given by
the pairs in {m, 1} and the part {t} corresponds to the isolated points.
We denotes these elements by adding the suffix 'inv’ to the diagrams
GBY. (We can write down the action of this element on the tensor
space explicitly.)

6. A REPRESENTATION THEORETIC PARAMETERIZATION

Let us recall the formula A @ /\ V= 21—0 (A, (1 ‘Y] spin(2n+1) in The-
orem 3.1.

Hence we have dlm(Homspm(gnH)(A X /\ V,A)) =1 and dim(Homgpin(n+1) (A2, A @ /\ V)
1. Then the so(2n+ 1)-equivariant projection Pry ! A ® /\ V> Aand

the so(2n + 1)-equivariant 1nJect10n ka A - A X /\ V can be given
as follows (up to constant)

Definition 6.1. |
pr([L]® < I, W,, §, J >)

0 - | fIZT,
= T 1)WWKl 1T +13D)/2 CfICT
e(l) i())( ) 5] FIET
and
pre(( )@ < L, 1,0, 7, L >)
0 fI1¢T,
=1\ (i ls) (- L K] T,
Here we put K =T —1 and € (J‘) ) denotes the signature of the
1 X

permutation which sends T, to I, K.
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Definition 6.2.

injk([—T-)]) = :
> (i; Jf»)( D, (LR K@ b < 3, 4, 3,
KeTo1 vetam,
[i+zl+21v=k :
+ Y (LNt g K@k < Ly, W, 0,3, L >).
IC([n]-T)
wC([n)-1-J)

|I[+]T)+2[W]+1=k

For an index set T = {t1,t5...,t,} (1St <ty <...<t, Lk), we
define the projection Py : ARQR* VAR ® PV as follows.
We prepare a notation.

Definition 6.3. Let Alty be the alternating operator on the tensor

k
components which sit in the positions indezed by T in the space @V .
That 1is,

Altz; (1 @12 ® ... Q) =

1
17 E o) ®... Uty 1y ® - - BV 1 ® .- ® Uty 1y @ -+ @ Vg
" o€,

For any index set T, we define the operator Alty such that it has
the alternating properties on the index set T. Namely for any o € S,
and for any sequence of positive integers T = {t;,¢,... , tp}, we define
Alta(-l-) = Alt{t,-l(l), - 6(0’) Alt-r

to-1(2)sto-1(p)}

Definition 6.4. Let pry : AQQ®*V — AQ®" ™V be the pro-
jection map obtained by the composition of the map Alty and pr,, t.e.,
pry = pryoAlty. Here pr, acts on the alternating tensors sitting in

the positions indezed by T, in the space A ®®k V.

k k—p
From the definition, we have pr ; € Homgpin2n+1)(AQ X V,AQ ® V)
and it has the alternating property on the index set T.
Similarly we define the so(2n + 1)-equivariant embedding inj 1 €

k-p k
Homspin2n+1) (A@ @ V,ARQ Q V) as follows.

k—p k
Definition 6.5. Letinj; :AQ @V - AQ RV be the immersion

P
obtained by the composition of the map inj,: A — AQAYV and the
linear embedding of the resulting tensors in the positions indezed by I,.
Namely the embedding is the map which sends the first componernt of
the alternating tensors < J,, W,, M, I > to the tith position in the

space AQ@ ®* PV and the second component to tyth position in the
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space A®®k_p+1V and so on. We denote this embedding of the
alternating tensor < J,, Wy, W, L > by < J,, W, M, I >,

From the definition, inj 1, has the alternating property on the index

set T t0o. We define the elements of CSF parametrized by the gener-
alized Brauer diagrams GBJ, coming from the representation theory
as follows. We fix an element of the diagrams GBY. and let T, be its
isolated points in the upper row and T, be its isolated points in the
lower row.

Then the action represented by the isolated points in the upper row
corresponds to the projection Pry, and the action represented by the
isolated points in the lower row corresponds to the immersion inj 1

Namely the total action represented by the isolated points corressponds
to the composition map

kv, Py k-py, My .
AQR'V HARR TV —AQQV.

Finally we define the action corresponding to the points which are not
isolated just in the same way as those of the ordinary Brauer diagrams.

We denote these elements by adding the suffix ’rt’ to the diagrams
of GBF. ‘ - \

Whether these elements span linearly the space CSF or not, or
whether these elements become a base or not is not clear at present.
We show in the next section that if £ < n and | £ n, we give the
explicit relations between two parametrizations and that they become
a base in this case.

7. RELATION BETWEEN TWO PARAMETERIZATION

Since the difference between two parametrizations are only in the
actions corresponding to the isolated points, we give the relations be-
tween them. Let T, (|Tu| = p) be the isolated points in the upper row
and let T, (|T;| = ¢) be the isolated points in the lower row.

We denote the homomorphism AQ@ X’V — AQ RV, deter-
mined by the invariant polynomial by v,b;j , or simply by P if the
isolated points are tacitly understood. Here the invariant polynomial
which we consider in the above is given by

Y €(0) (Xo-11), Y6 ) Kom1(2)s Y) - - - (Xo=1> Y, )-
0'661'

T ‘ o (1y)
For any 0 € G and 7 € 6;,’ we have vTFO 1/&2 oo = wr(w“‘ i So
it is enough to give the explicit description for w[ﬂ in terms of the

representation theoretical operators, where [p} = {1,2,... ,p} and [¢] =
{1,2,...,q}. : ‘ 4 ¥ ,
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So we consider this element as the invariant polynomial in the space
. ptg pt+q .
(AV@AV.
The relation of the above two actions are given as follows.

Theorem 7.1. Ifp < n and ¢ £ n, then we have

(7.1.1) :
min(p,g) . (TEH’B)
B _ S e-iei) Wo(i+1,a)) \91, %)) ) Pririvam)
Vg = ZO:( )9l d;éqe(a)é(f) (q_z.)‘!’, B (p_i)’;
T€S, -
and
(7.1.2)
. . 7([1,4])
min(p,q) {r(fi+1)) .
. 1 ’¢¢r 1 ( 1, )
nigepy = 3 (-1 3 clo)efr) Heliial @ WD)
i=0 gEG, e ) )
TES,

Here o([i+1,q)) = {o(i +1),0( + 2),.. ,0(9)} and 7([i +'1,p]) =
{rG+1),7¢ + 2)', .. ,T(p)}‘ and (;gﬁ’ﬂ;) denotes the partial per-
mutation which sends the T(u)-component (u = 1,2,...1) of the upper
row AQ QP V to the o(u)th component of the lower row A® ®?V.

Hence if k < n and | < n, the elements {D,,} DeGBk coming from

the representation theory also become a base of CSk.

Ifp>n,orifqg>n, (wealways assume that p+q < 2n+1.) we
have have similar theorems to the above.

Remark 7.2. The righthand of the formula (7.1.1) can be considered
as the composition of the homomorphisms, but the righthand of the
second formula (7.1.2) is not the composition of homomorphisms and
it ezpresses a homomorphism as a whole, so we put the tensor symbol
® n the middle.

We give an example of the transformation between two parametriza-
tion.

8. RELATIONS BETWEEN Spin(2n + 1)- EQUIVARIANT
HOMOMORPHISMS

In this section we give the explicit relations between the Spin(2n +
1)- equivariant homomorphisms pr, inj, contraction operaters and the
immersion of the invariant symmetric bilinear form S. Using these
formulas we can deduce the product formulas of the generalized Brauer
diagrams. By Cy; ;;, we denote the contraction by S of the ith and jth
tensor components and by idy (; j; denote the immersion of the invariant
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-l 1IN

mu rt

el X
HEE

1nv : :

FIGURE 5. an example of the transformation jbétween
two parametrization when n 2 2 )

t

Tt

form S to the ith and jth components. Then we have the following
formulas. : '

Theorem 8.1. (i) If p £ n, as a homomorphism from ARRPV
to A ( where we consider the tensor @V sits in the positions
{g+1,q+2,...,p+4q}. ), we have

(8.1.1) PT{[1,q4p)) © Miggy = (20 + 1 = P)g Pr{gs104p]} -

Here (2n+1—p), denotes the lower factorial, namely for any x
and any nonnegative integeri, (z); = z(z—1)(z—2) - - (z—(i-1)).
and we put [1,p] = {1,2,...,p} ( as a sequence ).
Moreover if p = 0, we consider pr = identity map of A. .
(ii) If p £ n, as a homomorphism from A to AR’V ( where we
consider the tensor QP V sits in the positions {¢+1,9+2,... ,p+
q}. ), we have ' ‘

(8.1.2) PIyi1,q) © igrgy = (20 + 1 = Ploinj(igrigus) -
(iii) Ifp £ n and ¢ £ n, as a homomorphism from A to ARQRV,
we have
(8.1.3)
(11,01} © W {lg+104p)} = |
rnin(p,q) 1 . . .
3 (-)mHE) 3T e0)elr) [Tt 19 fo () r(a+w)} Do (li+1.a) r(latitLata)}
i=0 0€G, ! (g —3)!(p —9)!
7€Gpq]

Here Gy|q] denotes the symmetric group acting on the set {q +
1,g+2,...,q+p} ando(i+1,q]) = {o(i+1),0(+2),...,0(9)}
and 7(f[g +i+1,p)) = {r(g+i+1),7(g+i+2),... ,7(g+Dp)}.
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(iv) IfpSnandqg<n, asa homomorphism from A Q@ ®11V to

A, we have
(8.1.4)
Pl{{1,q)} © PT{lg+1,+p]) =
"‘in(p)Q) A r 1 C
Z (_l)qp+qi+(;) Z e(o) €(T)p {o(b+1,a)(a+i+10+eD} [ Ly {o(u)r(gtu)}
= o, (g—12)(p—9)! 1!

T€6,[q]

MIfp2t20andp—t < nandg < n, as a homomorphism
from AQ PV to AQQ'V ( where we consider the tensor
QP V sits in the positions {g+t+1,q+t+2,... yg+p} ), we

have
(8.1.5)
min(p—t,q) . N
PT{lg+1,g+p]} ©1DJ{(1,q44) = Z (_1)(‘1-')(?—:)+zt %
=0

iy | N

(g (U)(2”+ 1—p—q+t+i—u))
(”'([Q+t+ I,Q+t+z‘]))
inj . o 1, . - i _
Z «(0) e(T)l J{a([hL'l ,'q])} ([| ) Pry ([qit+ il,'q-i'-p])}.
(@=9) v (p—t—1i)

7€S,

TE€EG,_¢[g+1]

Here the () in the paren denotes the ordinary binomial coeffi-
cient. Ift =0, then (2n+1-p—q+0+i—u)y =1, the sum in
the paren is equal to 2t

(vi) If p £ n and ¢ < n, as a homomorphism from AQ RV to
AQ Q" V ( where we consider the tensor sits @?V in the posi-
tions {p+q+1,p+q+2,...,p+2¢} ), we have

q
H Clip+a+i) j{[1,q+p) =
=1
mmz(mq)(__l)pq+(§)+i(p+q—l) Z e(o) e(7) inj{"’([q+i+l,q+P])} x
(8.16) <3 (p—2)!
= 0€6q(g+p]

TEG,[q]
(0([p+ ¢+Lp+q+ i]))
(g + 1,9 +1)) Pl{o(lg+p+i+1,29+p])}
! (g —i)! ’
(vii) If p £ n and ¢ £ n, as a homomorphism Jrom AQ XV to

AQQPV ( where we consider the tensor sits @7V in the posi-
tions [q] and the tensor @PV sits in the positions {p+qg+1,p+
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q+2,...,2p+q} ), we have

¥4
PT{(1,q+p]} H idV{q+i,p+q+i} =

i=1 :
minea) (p)’ (p+a+1) | I0j {7 ([p+q+i+1,e+2p))}
—1)(&)Hilpt+a+1 e(0) e(r) TR
(8.1.7) Z:g = ,,GZG: ) (b9

TE€G,[g+p)
( o) )
(p+q+Lp+qg+ i]) ) Pr{o(i+1),0(i+2),....0(@)}
! (g —3)! '

Remark 8.2. If we exchange 2n + 1 for an indeterminate X simulta-
neously in the above formulas, we can define the ‘generic’ centralizer
algebra of CSy just as in the case of the ordinary Brauer centralizer
algebras.

We give a few examples.

Example 8.3. In the following examples we always assume thatn 2 k
and we consider the base under the representation theoretic parametriza-
tion and we omit the subscript rt. First we calculate the product ysys ’
when k = 2.

Gm—y

Se———

: ] = (X-1) .+(X—1):

FiGURE 6. The product ysys

Here ys = inj; 23 C{1,2} and ys = injgpy (g) Pr{y- From the foemula
(8.1.2), we have pryyyinj 0y = (X —1)1injyy (here we put2n+1 = X.)

and the resulting homomorphism is injgy (g) (X — 1) inj 2 Cu2 =

(X —1) injgyy injgey Cqa,2y. From the formula (8.1.8), we have injy injyy =

injgy 9 +idy 1,2y and the final result is given by the Figure 6. :
Let us give a more complicated ezample of calculation of the product.

9. DUAL PAIR AND THE SPIN REPRESENTATIONS

In this section we define the subspace of the space ARR*V, on
which the symmetric group & and Spin(2n + 1) act as a dual pair.

From now on we always assume that n = k and and we consider
only the base under the representation-theoretic parametrization and
we omit the subscript rt.

By I,, we denote the linear subspace of CSy spanned by the gener-
alized Brauer diagrams, in which the number of the vertical edges (i-e.,
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T =X -2(x-3) -
« . f:}\ . \J5 5
e e D - HX = 2)(X - 3)(X - ) 3 (1),

i=1 j=1

Here y; denotes the upper row and z; denotes the lower row given as follaws.

(2} Y2 Y3 Ya
e o . IR U).. o\w.o
y5 ZI '22 . 23
24
25

FIGURE 7. The result of the product of a more compli-
cated example

the edges which connect the upper vertices to the lower ones) are less
than and equal to s. Then I, becomes a two sided ideal of CSy. Then
we have

CSi = R[G]® k-

We define the subspace TP of the space A ® ®* V by the intersec-
tion of all the kernels of the contractions Cijy (1£i<j£k)and of
the projections pry; ;, .y (r>0and 154 <ip<...<i, < k).

Then two sided ideal Ix_; acts on this space TP by 0, therefore on
the space 7, the symmetric group & and Spin(2n + 1) act as a dual
pair. Namely we have the following theorem.

Theorem 9.1. Ifn > k, then we have
(9.1.1) T = > A6, R[4, Alspingzn+1)-

A:partitions of size k
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