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INTRODUCTION

Let G be a finite group acting transitively on a finite set X , and let H = G,
be the stabilizer of a point = in X. The permutation character 7 of G on X is
equivalent to the induced character (15)€ of the identity character 1y of H. We
say that the permutation character m = (14)C is multiplicity-free if it is decom-
posed into a direct sum of inequivalent irreducible characters. In this case, the
centralizer algebra (or the Hecke algebra) of the permutation group is commuta-
tive, and we also say that H is a multiplicity-free subgroup of G. A pair (G, H) of
a finite group G and a multiplicity-free subgroup H is sometimes called a Gelfand
pair. A commutative association scheme ¥ = (X, {R:}o<i<a) is associated with a
multiplicity-free transitive action of a finite group G on a finite set X , by taking the
relations Ry, Ry,..., Ry as the orbits of G on X x X. It is an interesting question
to know many examples of commutative association schemes and their character
tables. (The reader is referred to Bannai-Ito [4], Bannai (1] for the basic concept of
commutative association schemes and their character tables.) It should be noted
that knowing the character table of a commutative association scheme (associated
to a multiplicity-free transitive action of a finite group, i.e., to a Gelfand pair) is
equivalent to knowing the zonal spherical functions of the permutation group.
Many examples of Gelfand pairs or commutative association schemes are known
(see, e.g. Saxl [16], Inglis [9], Bannai [1], Bannai-Hao-Song [2], Bannai-Hao-Song-
Wei (3], Bannai-Kawanaka-Song [5], Lusztig [14], Lawther [13], etc.). In Inglis-
Liebeck-Saxl [10], it is stated that the following pairs (G, H) are Gelfand pairs:

(i) (G,H) = (GL(n,q?),GL(n,q)),
(i) (G,H) = (GL(n,¢%),GU(n,q)),
(i) (G, H) = (GL(2n,q), Sp(2n,g)),
(iv) (G, H) = (GL(2n,q),GL(n,q%)).

It seems that the structure of the double cosets H \G/H, the decomposition of the
permutation character 7 = 1§, and the character table of the associated commuta-
tive association scheme are known for the first three cases (Gow (7], Klyachko [12],
Bannai-Kawanaka-Song [5], Kawanaka [11], Bannai [1], Lusztig (14]). However, it

seems that they are not yet known for the last case (iv) of G = GL(2n,q) and
H = GL(n,q*). The decomposition of the permutation character 12{'&’,‘;3} is well-
known for n =1 (cf. Terras [19, Chapter 21]). When n = 2, it was determined by
the second author [18] by explicitly calculating the inner product (x, lgfg:;;)) for
all irreducible characters x of GL(4,q). Our purpose in this paper is to determine

the decomposition of lgfgi:‘q;’g for general n.
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1. PRELIMINARIES ON GENERAL LINEAR GROUPS AND MAIN RESULTS

1.1. First of all, we briefly recall a parametrization of the irreducible characters
of the general linear group G, = GL(n,q), following Macdonald [15, Chapter IV.].
Whenever possible, we use the notation of [15].

A partition is a non-increasing sequence A = (A1, A2, - . . ) of non-negative integers
)\; containing finitely many non-zero terms. The non-zero )\; are called the parts of
. We identify (A1, A2,...,Ar) with (A1, A2,---»Ar, 0,...,0). Sometimes we write
A= (1™,2m2 .. .)in place of A = (A1, A2,...), where m; is the number of j such
that A\; = i. The only partition with no non-zero terms is denoted by 0. For each
partition A, the length I(X) of A is the number of parts of A, and the weight |)|
of X is defined by |A\| = D ;5 Ai. We denote the set of all partitions by & . The
diagram of A € & is the set of points z = (¢,7) € 72 such that 1 < j < \;, and
the conjugate A’ of ) is the partition whose diagram is the transpose of that of
. For example, the conjugate of (2,2,1) is (3,2). The hook-length h(z) of X at

z = (i,j) € A (ie, 1 £ j < X) is defined by h(z) = A + X, —i—-j+1. For

\p € P, we define AU p to be the partition whose parts are those of A and g,
arranged in descending order. An even (resp. odd) partition is a partition with all
parts even (resp. odd). We let s) denote the Schur function (in countably many
independent variables) corresponding to A € &.

Let F, be a finite field with ¢ elements, and F, the algebraic closure of F,. For
each positive integer | there exists a unique extension Fyu of Fy in F, of degree l.
We denote the multiplicative group of F,: by M;, and the character group of M,

by M;. If | divides m then M is embeddgd in M,, by the transpose of the norm
map Ny : My — M. We let L = 1i_x+an be the inductive limit of the M;. The

Frobenius map F : v — 7 acts on L, and M; is the set of all F'-fixed elements
in L. We denote the set of F-orbits in L by ©. Then the irreducible characters of
G, can be parametrized by the partition-valued functions p : O — £ such that

(1) llwll =D d(@) lu(@)l =n

)
where d(ip) is the number of elements of . The irreducible character -of G, corre-
sponding to u is denoted by x.. The degree dy, of xu is given by

2) dy = ¥n(@) [] su (@' 95%---)
p€EO

= lp'n(‘]) H qg(“w)',) ﬁp(qp) (Q<p)—1
p€O

where q, = qd(‘Pj,
"/)n(Q) = H(qi - 1)1
=1
n(A) =D (i - DX,

i>1

and

Axgy) = [[ (5™ - 1)
TEA
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THE DECOMPOSITION OF THE PERMUTATION CHARACTER 1o

for A = (A1, A2,...) € &.

Let & be the identity character of M;, and if q is odd then let &_1 be the
quadratic character of M;. We put ¢; = {&}, p_1 = {£_1} € ©. For p =
{¢€,€9,... ,fqd_l} € ©, the reciprocal F-orbit ¢ of ¢ is defined by

. d-1

¢={£_1’§—q7"'7€ ? }'
Notice that ¢; and p_; are the only elements ¢ € © such that d(p) =1and @ = ¢.
Also for each partition-valued function g : © — 2, we define fh:0 — Pby
B(p) = u(@)
for all ¢ € ©. Then we can easily verify that the complex conjugate X of x,, is
given by x; (see for example (4.5) in [15, Chapter IV.]), from which it follows that

1.1.1. An irreducible character x, of G, is real-valued if and only if a=p.

1.2. We now present our main results. Let K5, be a subgroup of G, isomorphic
to GL(n,q?). It is known that

1.2.1. Theorem (Inglis-Liebeck-Saxl [10]). The permutation character (1x,_ )C2»
is multiplicity-free and every irreducible constituent of (1 Ki, ) G2 is real-valued.

In this paper, we determine the decomposition of the permutation character
(1k,, )2 explicitly. More precisely, we will prove the following:

1.2.2. Theorem. (i) If q is odd, then we have (1k,,)%* = 3" x,., summed over
i such that ||pf| = 2n, fi = p, and both u(p1)’ and p(p_,) are even.
(ii) If q is even, then we have (1, )% = Y Xu, summed over pu such that

lell = 2n, o = p, and p(p1)' is even.
(iii) In esther case, the generating function for the rank (i.e., the number of

the irreducible constituents of the permutation character (1x,, )2 ) is given by
(3) > rank(Gzn/Kzn)t™™ = [ (1 - ")

n>0 r>1
with the understanding that rank(Go/Ko) = 1. In particular we have

rank(Gan/K2a) = ) q'™
summed over all partitions A such that |A| = n.

1.2.3. Remark. In the notation of Green [8], our character Xu correponds to the
conjugate function p' : © — P defined by p'(p) = u(p) for all ¢ € 6. In
particular, in our notation the identity character of G, assigns the partition ()
to 1. See Springer-Zelevinsky [17, Remark 1.9.].

1.2.4. Remark. Let m(G,) denote the number of the conjugacy classes of G,,, then
the generating function for the 7(G,,) is given by

> o aGatr=J[a -t - g
n>0 r>1
Hence 1.2.2 (iii) implies that

rank(Gen/Kan) = ) p(i)m(Gn—s)

=0
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where p(i) is the number of partitions A such that |A\| = i. It is a reasonable guess
that there is a natural set of representatives of the double cosets Kon\G2n/Kon
which reflects the above equality. ‘

2. DEGREE FORMULA
2.1. The starting point of the proof of 1.2.2 is the following proposition:
2.1.1. Proposition. (i) If g is odd, then we have

Sde= (@ - 9@ - (@ - "T)

where the sum on the left is over p such that ||u|| = 2n, jt = p, and both p(p1)
and p(p—1) are even.
(ii) If q is even, then we have

=@ - 9@ - ). (@ - ")

where the sum on the left is over p such that ||u|| = 2n, b = p, and p(p1)' is
even. ‘ '

To prove 2.1.1, we need some preparations. In what follows, we assume that g
is odd. (The assertion (ii) is proved in exactly the same way as (1).)

Let & denote the set of monic irreducible polynomials f(t) over Fg with f(t) #t.
We identify ® with the set of F-orbits in the multiplicative group M of the algebraic
closure F, of F,, by assigning to each f the F-orbit consisting of its roots in M.

Let f(t) = t* +a;t*~! +- - - +a be a monic polynomial in F, [t] of degree k with
ar 0. The reciprocal polynomial f of f is defined by

Ft) = ag b ) =t* + el WL L
. (/7 Qg
We call the polynomial f self-reciprocal if f(t) = f@).
Let

¥ = ® U {t} : the set of all monic irreducible polynomials in F,[t],
S={fed®\{t+1}| f: self-reciprocal},
N={fed\{t£1}]|f: non-self-reciprocal},

and let

U, ={f € V| degf =k}
Sk ={f€S| degf =k}
Nk={fEN|degfj—-k}

for k£ > 1. Notice that Sk is empty unless k is even.
First we observe the following two one-to-one correspondences due to Carlitz [6]:

2.1.2 ([6, §3.]). We have

T ¢ Sy U {93 | 9 € N}
for k > 2, and

¥ \{t 2} &35 8, U {gd | g € M1}

i



THE DECOMPOSITION OF THE PERMUTATION CHARACTER 1228";31

Proof. Let h(t) € F,[t] be a monic irreducible polynomial of degree k (k > 1)
such that h(t) # t + 2, then h(t) is decomposed into linear factors in F o [t] as

h(t) = (¢ -B)(t—-89)...(6—B7"). Let a € F,2« be a root of the polynomial
2 —Bt+1,ie,a+a"! = 4. Since B # +2 it follows that a # a~1, so that

k-1 k-1
-1 - -
a,a,...;a7 ,a '« 9. .01

are distinct. We define
f@) =t*h(t+t71)
=(t-a)(t—a?)...(t—a? Nt-aHit-a)...t-aTT),
then f(t) is a monic polynomial of degree 2k. Now, if a € F,2x \F,+ then we have
1 g%k \tq '
f(t) € So sincea™! =a? ,and ifa € Fg« then we have f(t) = g(¢)g(t) where

1

It)=(t-a)(t—a)...(t—a” ") e Ny,

as desired. O

Let oor = |S2x| and 2x = |{g9§ | g € Ni}| = 2INk| for k > 1. Then it follows
from 2.1.2 that

4) Z k(o2 + T2k) +2 = ¢V
k|N o

for N > 1. If N = 2M is even then we also have

(5) D @Ko+ > k(2ra) +2=¢" — 1.
k| M k[2M A
On the other hand, if IV is odd then we have
(6) D k@) +2=¢" - 1.
k|N

Let z = (z1,3,...) be an infinite sequence of independent variables. We shall
need the following four equalities:

2.1.3 (cf. [15, p.63, (4.3)]). Zsi = H(l —-z)! H(l — z;z;) "2, where the sum
A 3 i<j
on the left is over all partitions ).

2.1.4 (cf. [15, p.76, Example 4]). Zs,\ = H(l —z;)! H(l —z;z;)7L, where the
A i i<j
sum on the left is over all partitions ).

2.1.5 (cf. [15, p.77, Example 5(a)]). Z 8y = II(I—:):?)‘1 H(l—z,-zj)‘l, where

4 even i<j
the sum on the left is over all even partitions u.

2.1.6 (cf. [15, p.77, Example 5(b)]). Z Sy = H(l—x,-xj)—l, where the sum on
v’ even i<j
the left is over all partitions v with V' even.
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2.2.  Proof of 2.1.1. Our proof of 2.1.1 is inspired by [15, p.289, Example 5
of all, notice that the number of elements ¢ € © such that d(y) = 2k and ¢
equal to g9;. We shall compute the following:

D= s(ghg % )t x Y su(gt,q72,. . )t

v even : p even .
g H{Z sx(@ . q ",...)t2’°l«\1}”2’°
k>1 |
g el
k>1
_H t2 —i— -7) X H 1— , IH(I—(tzq—i—j))-l
1<j i
x TI{TI( - e 102 - (tzq—z_j)zk)fl}"’z,,
k>1 % . i<
x H{H (tg=%)2%)~ -1 H(1 3 (tgq_i_j.)k)ﬂ}rzk
k>1 i oy

where t is an indeterminate.
Let

=1og [T{TI(: - (b)) 7},

. k>1 i>1
Y; = log H{H(l _ (tq—i)2k)‘—1}‘rzk,
k>1 21
=log [J(1 - (t¢™)?)
i>1
Then we have
(tq 1,) t2kr 1
X, = zmzz SO DL pLapn
k>1 i>21r2>1 k21 r2>1 q
ko

;4:«1 N(qu —1) kzl,:v 2%

Similarly, we have

=) AN =T N(q2N ) ANy D ke

N>1 k|N

and

2N

=2 N D N(g*N —-1)

N2>1
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GL(n,q3;
Therefore, it follows from (4) that
7 X1+ +2
(7 Xi+Vi+2Z = NZ>:IN(‘12N Nz>:1N(‘1N+1)
t2 - (g
— (—1)k=1g=*N = §(_p)*-1 ‘
Let
-&ﬂ%nﬂnherWPF?
k>1 i<j
v, =log [I{I] (1 - ?¢~*-) "} ™,
k>1 i<
Zs =log H(l —t2q—* )2,
i<j
Then we have
(t2 t—])2kr t4kr q—4ikr
Xz—zazkzz —Z”%E 2kr _ |
k>1 i<j r>1 B>1 1 o4 T
(2’6)0‘2,, —4iM
2P S (:4; )a

Similarly, we have
B=Y Y ror (mem
i>1 N>1 k|N

and

Z Z _1) —2iN.

i>1 N>l
Therefore, it follows from (5) and (6) that

®) Xo+Ye+Zo=) Y (g —1)g 2V
i>21 N>1 N(q 1)

Sy 3 G

21 N>1

2:)N

Hence from (7) and (8) we obtain

logD =X +Y1+Z1+ X2+ Yo + 2,
t2q—2l+1)N

— logH(l _ t2q—21+1)—1

>1
so that

D= H(l t2 —2l+1)—~1 Zt2m m/(pm(q )

>1 m2>0
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where o (t) = (1 —t)(1 —t3)...(1 = t™).
Finally, on picking out the coefficient of ¢2» and multiplying by ¥2n(q), we get
the desired result.

3. BRANCHING LEMMAS

In this section, we prepare two lemmas which enable us to prove 1.2.2 by induc-
tion on n. We do not need to assume in this section that g is odd.

3.1. First, we recall a result of Zelevinsky [21]. Let n > 2 and let Hn be the
subgroup of G, consisting of the matrices of the form

-3 )

where £ € G,,_;. Let Ua,—1 be the abelian normal subgroup of H, defined by

— 1 Y ~ mn—1
({3 12} o

where .1,,-1 is the identity matrix of degree n — 1. We identify Gn—1 with the

following subgroup of Hy:
10
{6 2)feom}

then we have H, = Un_; X Gn—1, the semidirect product of Up—1 with G—1. The
irreducible characters of H,, are determined by applying the method of little groups,
and they are parametrized by the partition-valued functions v : © — £ such that
llv]] < n (cf. [21, §13.]). The irreducible character of H, corresponding to v is
denoted by C,(,"). Notice that the irreducible characters (,(,") of H, with ||v|| =n-1
are exactly those obtained by the irreducible characters x,, of Gn-1 = Hp/Un-1,
that is, they are constant on Upn_1. ‘ _
fp:0 — Pandv:0 — & are two partition-valued functions, we shall
write v - p if p(p), —1 < v(p); < p(p); forall p € © and i > 1 (i.e., the skew
diagram u(yp) — v(y) is a horizontal strip for any ¢ € 0). ‘ :

3.1.1. Theorem ([21, §13.5.]). (i) Let u : © — 2 be a partition-valued function
such that ||| = n. Then we have

X Vo= ¢
summed over v such that ||[v]| < n end v - p. |
(ii) Let v : ©@ — P be a partition-valued function such that ||[v|| < n. Then

we have ,
¢ G =D xa
summed over A such that ||A|| =n—1 and v 4 A.

The following theorem was first proved by Thoma [20], and is easily derived from
3.1.1.

3.1.2. Theorem ([20]). Let u : © — P and A : © — P be partition-valued
functions such that ||| = n and'||A|| =n — 1. Then the multiplicity of x, in the
induced character xx 15-_, s equal to the number of v : © — & such thatv 4 p
and v 1 A.
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3.2. Let V;, be the vector space of column 2n-vectors with components in F,,
and let {v;,v2,...,v2,} be the standard basis of Van, that is, v; is the vector with
1 in the i-th component and zeros elsewhere. We fix an element o € F,2 such that
a ¢ Fy, and denote by f(t) =2 + at + b € F,[t] the minimal polynomial of a over
F,. Let go be an element in G5, such that gg +ago + bl2, = 0. Then go determines
a vector space over Fg2 on Va,, of dimension n, such that av = gov for v € V,,,.
The centralizer Ka, = Cg,, (g0) of go in Gy, is isomorphic to GL(n,q¢?).

Let U be the subspace of V,, over F, spanned by vs,vs,...,vs,. Clearly, an
element g € G, belongs to Gon_; if and only if gU = U and gv; = v;. The
subspace U contains a subspace W of Vs, over F,2 of dimension n — 1 (over Fg2),
defined by

W ={ueU|gou€U}.
It is easily seen that
Gon-1NKopn = {k € Kop | kW =W, kv, = v},
that is, G2n—1 N K3, is isomorphic to GL(n — 1, q?).
Now for any z € G2, we have
_ |Gan_1| |K2a|
IGan-12Kan| = |G2n-1 NTKonz1|
_ 1Gan_1| |Kaa|
|GL(n - 1,¢%)]|

1
= _|G2n|
q

since zKzn,z™! = Cag,, (zgoz~) = GL(n, q?) and g, is chosen arbitrarily. Hence it
follows from Mackey’s theorem that

3.2.1. Lemma. (1x,,)% |3 =g- (1x,,_,)Gm-2 {521

2n— 2n—-2"

3.3. For the sake of simplicity, in what follows we assume that go is of the form

G 0 --- 0
0 o -~ O
o=1. . . .
0o 0 --.. gj,

where gy = (‘1) :z), so that ve; = avzi_; (1 < i < n). Then it follows that
3.3.1. For g = (gi;) € G2n, g is contained in K, if and only if
92k—1,21-1 = GG2k,21—1 + Gak,21
and '
92k—1,21 = —bgak 211
for 1 <k,l<n.
We identify the subgroup Hs,_; of G2,,_; with

1 00
0 1 y||z€Gonz },
0 0 z
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and so on. Clearly, the subgroup K, _s = Ga,—2 N K3, of Ga,_2 is isomorphic to
GL(n - 1,4¢%).

3.3.2. Lemma. Let (1g,, )% = Zi;l Xp, and (1k,,_,)022 = 22:1 Xx;- Then
we have

S Y w=Y ¥ o

=1 ||v||=2n-1 i=1||v||=2n-1
v, A v

3.4. Proof of 3.3.2. First of all, notice that an element g in G2, belongs to Ha, if
and only if gv; = v;. Hence we have

Hy, N Ky, = ]F;‘;l x GL(n —1,¢%),
from which it follows that |Han Kan| = |G2nl, that is,
(9) G2n = H2nKon = Uzn-1G2n—1K2n.
Let C[G2n] be the complex group algebra of G2,,. For any subgroup K of Gap,

we define
Dk
lK et

then e% = ex and the left C[G2,]-module C[G2,]ex affords the induced represen-
tation (1x)C2n. ;
By virtue of 3.1.1 (i), in order to prove 3.3.2 it is enough to show that

3.4.1. The left C[G2pn—1]-module ey, I(C[ng]ex% affords the induced representa-

tion (].Uz,,_ng,._:;)Gznml = (1U2‘n—2K2‘n.—2)H2n ! T Z: i

From (9) it follows that ey, _,C[G2nlek,, is generated (as vector space) by the
elements ey, _,Tek,. , £ € Gan—1. Moreover, we have

(10) (U2n-1K2n) N Gan—1 = Uz2n—2K2n—2.

In fact, if z € G2,_1 is written as x = uk for some u € Ua,—1 and k € K2n, then k&
is contained in H,, N K5,. Since v, is fixed by k, so is ve. That is, k is of the form

1 0 =z
k=10 1 w
0 0 ko

where kg € K2,_o, from which it follows that

1 0 0
=10 1 w)] €Up_2Kon_s.
0 0 ko

Conversely, if z is written as above, then by 3.3.1 there exists z = (21, 22, ..., 22n—2)

such that
1 0 =z
01 w) €K
0 0 ko

and therefore we have z € Us,_1 K2, as desired.
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GL(n.q3)
It follows from (10) that for z,y € Ga,_1 we have
(11) €Uzn_1T€K,, = €Usn_1 Y€K, & TU2n—2Kon 2 = yUsn—2Kan—2.
Hence, if 1 = 12, Z2,...,T; are representatives of the left cosets zUs,_2 K252 of

Usn_2Kon_2 in Gzn_l(C ng), then we have

t
eUzn—1C[G2ﬂ]eKzn = @ VJ

J=1
as vector space over C, where
Vj =C- €Uzn-1Tj€K2n -

Clearly, Gan—1 acts on {V;}1<j<: transitively. Moreover, Uzn_2K2n_2 is the sta-
bilizer of V; in G2,_1, and V; affords the trivial representation of Us,_3 Koy _2.
Thus, ey,,_,C[Ganek,, affords the induced representation (lp,,_,x,._,)¢*"-1,
which proves 3.4.1, and hence 3.3.2.

4. PROOF OF THEOREM 1.2.2

In this section, g is assumed to be odd, as in §2. (When q is even, the proof is
similar and easier.) :

4.1. We prove 1.2.2 (i) by induction on n. If n = 0, then this is clear. It follows
from the induction hypothesis that
4.1.1. If 0 < m < n, then we have (1k,, )%™ = Y. X, summed over pu such that
llell = 2m, = p, and p(p1)' U p(p-1) is even. .

Let (1k,, )% = E:.;l X, > then from 1.2.1 it follows that fz; = u, for all i. Since

as mentioned before ¢; and (_; are the only elements ¢ € © such that d(yp) =1
and ¢ = ¢, therefore it follows from 3.3.2 that

4.1.2. If v : © — P satisfies ||v|| = 2n — 1 and v 4 pu,; for some i, then one of
the following holds:

(a) v(p1)' Uv(p-1) is even and ¥ # v,
(b) v(p1) Uv(p_1) has ezactly one odd part and v = v.

Moreover,

k
(12) Z Z Xv

i=1 |jy|j=2n—1
vHp,

is multiplicity-free.
From 4.1.2 we immediately have

4.1.3. If an irreducible character x, of Gan with i = p is contained in (1k,, )92,
then one of the following holds:

(@) u(p1)' U p(p-1) is even,
(b) U(p(p1) Up(p-1)) = 2.
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Let p, : © — 2 be a partition-valued function such that ||p.|| = 2n, i, = Ky,
p.(p1) = (12*) and p, (p—1) = 0. For two partitions X, p € P such that [(MUp) <2
and || + |p| = 2k, we define p, ,: © — P by py (1) = A, By ,(p-1) = p, and
B, (0) = p. () for all other ¢ € ©. Then it follows that

(13) ’ d#o,(zk) > d#o,(zk—m) > d#o,(zk—z,z) >
In fact, from (2) it follows that
Gyss, a0) = g?*-1. ¢ 1
dﬂ-o,(zk—1,1) q2k_»1 -1
Then since

@ g-1) - (@ -1)=¢""(q-2+1>0,
we have dyg o, > Guo ar1.1)° Next, for 1 < j < k — 1 it follows that

d“o,(zk—j,j) 2k—2j—1 (qzk"zj“ - 1)(f1j+1 -1)

d, =q ) (q2k—j+1 _ 1)(q2k-—2j—1 — 1)‘

0,(2k—j—1,+1)

Since
q2k—-2j—1(q2lc—2j+1 _ 1)(qj+1 _ 1) _ (q2k—j+1 _ 1)(q2k—2j—} _ 1)
> q4k—3j(q - q-—j _ 1) _ q2k—j -1> q4k—3j _ q2k-—j -1
- q2k—j(q2k—2j —- 1) — 1 > 0’

we have dyg o, ; o > Qg i 1,41y 38 desired.

4.1.4. Let \,p € P be as above, and suppose that X, is contained in (1x,,.)%".
Then
(a) if X #0 then xu, , i3 contained in (1k,, )% if and only if NUpis even,
(b) if A = 0 then ezactly one of the following occurs:
(b1) X, , is contained in (1k,. )%~ if and only if p is even, '
(b2) Xu,, is contained in (1k,, )G2~ if and only if p is odd.

Proof. For two partitions 8,7 € & such that 1(B'Uy) < 2and |B|+]v] = 2k—1, we
also define vg , : © — 2 such that ||v|| = 2n—1 by vs (1) = B, Ve (p-1) =,
and vg,(p) = p,(p) for all other ¢ € ©. First of all, since Xu 5x_1,, 2PPEAIS
in (12) and v(yz-1)0 7 B@a2k)00 therefore neither Xu au—2 5, ROT Xpak-1y,) is
contained in (1k,,)%2". Next, since Xu z._s 4 , 2PP€aIs in (12) by 3.3.2, it follows
from 4.1.3 that Xu 24 5, MUSt be contained in (1k,,)¢?", and so on. a

4.1.5. Let1<k<nandletp,:0 — P bea partition-valued function such that
el = 20, B = o, (1) = (12%) and p,(9-1) = 0. Then Xy, is contained in
(1K2n)G2n M ! o

Proof. We prove 4.1.5 by induction on k, starting from k = n and ending with 1.
When k = n, this is trivial. Let 2 < k < n and assume that the assertion is true
for all I such that k <l <n. Let vy : © — & be a partition-valued function
such that ||.]| = 2n — 1, v.(p1) = (12*71) and vi(p-1) = 0. If the restriction
Xu ig::_l of an irreducible constituent X, of (1K2R)G2" to Gan—1 contains xu,,
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then by 3.1.2, 4.1.3 and 4.1.4 it follows that pu(p;) = (12%) or p(y1) = (12-2), and
m(p—1) = (25) for some j > 0. Hence, we have

(14) ((len)Gzn ig::_l)xu.)gzn_l S (ZX}J ~Lg::_laXU.)G2n_l

where the sum on the right is over u such that ||| | =2n, o = p, u(pr) = (12%)
or p(p1) = (12*2), and p(p_;) = (25) for some j > 0. |

Now, for any A : © — £ such that A1) = (1™) for some m > 2, we define
AT:0 — P by A (p1) = (1™2) and A~ (p) = A(yp) for all other ¢ € ©. Then
it follows from 3.1.2 that the right-hand side of (14) is equal to

G2n—2
(ZXM‘ J'G:zn-s’XV-—)Gzn-a
summed over u as above, which is also equal to
G n— G n -~ —_— G n= G "=
((1K2n—2) 2 2 'LG:"_:’XV:)GQ'.—S - q . ((1K2n—4) 2 4 TG:n-:’X":)G2n—3
Gan_
= q : ((1K2n—2)62u_2 TG:n—;,XV‘)G2n-1
= ((]-Kzn )G2n ’Lg::_x’xu')G’zn-x

where the first and the third equalities follow from 3.2.1. Hence, if 4, : © — 2
satisfies ||u,|| = 2n, &, = p,, p.(p1) = (12*2) and p,(p_;) = 0, then since

(Xu, ,Lg;’:_l,x,,,)gz n—1 > 0 for at least one such v, as above, therefore Xp, Mmust
be contained in (1g,, ). O

The proof of 1.2.2 (i) can now be rapidly completed. Let p+ : © —s 2 be a
partition-valued function such that ||u|| = 2n and 2 = p. Then 4.1.5 and 4.1.4
imply that if (1) 7 0 or I(u(p,)’ Up(p-1)) > 3 then x,, is contained in (1k,, )G2n
if and only if (1)’ U p(p-,) is even. Also, if #(p1) = 0 and I(p(p_1)) < 2 then
there are two posibilities. However, by virtue of 2.1.1 and (13), we can conclude
that in this case x,, is contained in (1 Kz.)®? if and only if u(p—1) is even. It also
follows from 2.1.1 that (1x,,)%* contains all irreducible characters Xu of G2, such

that fi = p and pu(p;) = p(p_1) = 0.

4.2. Finally, we prove 1.2.2 (iii). The left-hand side of (3) is by 2.1.2 equal to

H(l _ t2r)—2 . H(l _ t2r)—(|\l'1|—2) . H H(l _ t2kr)—|\ll,.l

r>1 r>1 k>2r>1
- II H(l — t2k1‘)—l‘l’kl — H(l - qt21‘)—1.
k>1r2>1 r>1

This completes the proof of 1.2.2.
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