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Stochastic optimal weighting problem
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1 Introduction

In this paper, we consider a class of optimal weighting problems. R. Bellman [1, p.136] has
proposed a threshold probability optimization problem. We study the problem and its related
problems through final state approach in dynamic programming [1, p.82], [11, p.71], [6-9].
Introducing weighted sum and weighted minimum for Bernoulli sequence, we optimize expected
value, variance and threshold probability over the total unit sum.

In section 2, we consider the optimization problem of expected value and variance for the
additive statistics. In Section 3, we solve the corresponding threshold probability problem.
Section 4 discusses the minimum criterion. We transform the three stochastic problems into
equivalent deterministic ones. Further the stochastic problems are solved by one-dimensional
state-expansion in dynamic programming. The last section concludes that the final state ap-
proach is valid for corresponding problems on Markov chain. '

2 Expected value and variance

A sequence of random variables Y7, Y,..., Y,,... is called Bernoulli, if it is independent and
identically distributed with

Then the expected value and variance are :
E[Y,] = p, V[Ya] = pq.

Given a finite Bernoulli sequence {Y;, Y2,..., Yn}, we consider expected value, variance
and threshold probability of two weighted statistics — additive and minimum — :

Vi +zYo+ - +28Yn, T YIAZYoA---AzZyYy

where £ = (z,%3,...,Zy) is a weight. The weight z is called feasible if it satisfies the two
constraints :

(1) T+ zTo+---+zy=1
(i) =z,€[0,1] n=1,2,...,N.

The problem is to find a feasible weight which optimizes a criterion function (expected value,
variance or threshold probability). We show that dynamic programming method supplies such
an optimal weight.



2.1 Maximizing expected value

First we consider an optimal weighting problem as follows :

Max E[IL'lYl +zYo 4+ + .’BNYN]
E(l) s.t. (l) I +I$2+"'+.’L‘N=1
(i) z,€[0,1] n=1,2,...,N.
The linearity of expectation and condition (i) imply
Ele.Y1+---+zyYn]=D.

Thus any feasible z = (z,... ,zy) yields the value p. Therefore, the maximum value is p and

all feasible points are maximum point.
Let us now consider dynamic programming approach. Let f,(d,) be the maximum value of

E.(d,) st. ()n Tn+ZTpy1+--+zN8y=dy
(ii)y zm€[0,1]] m=n,n+1,...,N

0<d, <1, 1<n<N.

Thus the maximum value of E(1) is given by f;(1). The sequence of maximum value functions
{fn} satisfies the backward recursive formula :

fn(d) = pd - 0<d<1 “
fa(d) = ol\élfé[px+fn+1(d—x)] 0<d<1 1<n<N-1. (1)

Let m;(d) be the maximizer in (1). Then the sequence 7* = {=%} is an optimal policy. In
fact, solving (1), we have the sequence of maximum value functions {f,} and an optimal policy
m*, where

fn(d) =Pd 1<n<N, W;(d) =any € [0’ d] (2)

The pair of sequence of maximum value functions and an optimal policy yields the optimal
solution (maximum value and maximum point) of expectation problem E(1) :

fi(l) =p, z*is any feasible point. (3)

2.2 Minimizing variance
Second we consider the optimal weighting problem for variance :

min V[.’L‘1Y1+.’L‘2Y'2+'“+$NYN]
V(l) s.t. (l) 1+ 22+---+zy=1
(ii) z, €[0,1] n=1,2,...,N.

From the independence and Schwarz’s inequality we have

V[.’Bl),l +"'+1'NYN] > %



Therefore the minimum value @ is & = pg/N and the minimum point £ is £ = (1/N,...,1/N).
In fact, the linear-quadratic minimization problem

min zZ4---+3% st (i), (i),
is solved through dynamic programming [1-4]. Letting
fn(c) :=min[z? +-- -+ 2k |z1+ - +2Zv=¢, Tn 20 1 <n<N] ¢>0,N>1
Then we have the recursive equation

fn(e) = min [¢® + fya(c—2)] 20N 22 fil))= e’

Successively solving the equation we have the sequence of minimum value functions {f1,..., fn}
and the optimal policy (sequence of optimal decision functions) & = {é3,... , on}:

falc) =/n on(c) =c/n.
Hence V(1) has the minimum value fy(1) = 1/N. The minimum point £ = (£,...,%n8) =

(1/N,...,1/N) is calculated through the optimal policy 6 with the deterministic transforma-
tion T(c;z) = ¢ — z [4, p.13].
Finally we apply dynamic programming method. Let ha(dy) be the minimum value of

min V[z Yo+ - +z8YN]
Vo (d,) st. (i) Tnt+:--+an=dy
(i) Tm €[0,1] m=nn+1,... , N

0<d, <1, 1<n<N.

Then we have

hn(d) = pad? 0<d<1 ,
hu(d) = min [pas® + husa(d=2)] 0<d<1, 1<n<N-1 )
Then we have the minimum value functions {h,} and an optimal policy 7* = {=;}, where
pad’ . d
= — <n< = —
(@) N-n+1 1—n—N’ (@) N-n+1 (5)

This pair yields the desired optimal solution ; minimum value 4 = hq(1) and minimum point
z.

3 Maximizing threshold probability

First we describe the probability function of random variable
Z =25 :=11Y1+2Yo+ -+ TNYN.
Let us define the range Z takes
| 2:={z=my + - +zxyn | @1, »yn) € {0,1}V } C [0.1].



Then the probability function is defined by

P(Z=2)=) p"g'"™...p"g™™ ;€2
y:*

where y : x denotes the summation over all (y;,--- ,yn) € {0,1}" satisfying
iy +---+INYyn = 2.

Then for any given constant upper level value ¢ € [0, 1] we consider the threshold probability
problem as follows [1, p.136,137]:

Max P(z,Y1+zYo+---+z8Yn > ¢)
P(l) s.t. (l) 1 +z+---+zny=1
(i) zn€[0,1] n=12,...,N.

We remark that the threshold probability is expressed in terms of multiple sum :

P(Zy2¢)=) phg'™¥...pingl-w

Yirs
where y : ¥+ denotes the summation over all (y;,--- ,yn) € {0,1}¥ satisfying
T+ -+ TNy 2.

Further we note that the thresold probability depends on the weight z = (%1,... ,zN) which
corresponds to the sequence of decisions :

P(ZN > C) = Pz(ZN > C).
In particular, the two-variable problem

Max P(z,Y1+zYs>¢c)
st. (i) z1+z2=1
(i) z,€[0,1] n=1,2.

has the maximum value function g, = g»(c) and the maximum point z*(c) = (z3(c), z3(c)) as
follows :

P+2pq+¢®> if c¢c=0

(c) = P’ + 2pq if 0<c<1/2
929 =Y p2+pq if 1/2<c<1
p? if c=1.
0<A<1 if ¢=0

c<A<1l-¢ if 0<e<1/2
0<A<1-¢,c<2X<1 if 1/2<e<1
0<A<l1 if e=1.

(#3(c),z3(c)) = (\,1— A) where



Let us now consider the N-variable problem. We use a simple notation
Zny =1Y + 1Yo+ -+ ZNYN N >1.
First we introduce an additional state parameter d € [0,1] and define

fN(c,d) = Max[P(Zy >¢)|z1+ - -+2zv=d, T, 20 1<n<N]
0<c¢d<1, N>1

Then we have the recursive equation

fn(c,d) = Max [p: fyv-1(c—z,d— 1) +q- fn-1(c,d — z)]

0<z<d
0<¢d<1l N2>2 (6)
1 d ifec=d=0,
fi(e,d) = p - mwi(cd) = d ifd>c>0,
0 d ifec>d>0,

Second let us define
gn(c) :=Max[P(Zy 2 ¢)|z1+---+azv=1, 2 20 1<n<N] N>1
Bellman [1, p.137] derives the recursive equation :

cC—Z Cc
gn(c) = 01\54:?'5)(1 [P'QN—l (1_x) +q-9nv-1 (l—x)]
0<c<1 N2>2 (7

() = 1 ) = 1 ifec=0,

A ) 1€) = 11 ifo<c<l.
4 Minimum criterion

Let us consider the following three stochastic optimization problems :

Max P(z1Y1 AzaYaA---AznYn 2 c)
P(1) st. (i) zi+z2+--+zNy=1
(i) z, €[0,1] n=1,2,...,N,

E(1) Max E[zYi AzoYaA---AzyYn] st (i), (i),

V(].) min V[:L‘lyl Az2YoA--- A :L'NYN] s.t. (i), (ll)

4.1 Deterministic problems

In this subsection we reduce the three stochastic problems to equivalent deterministic ones.
First of all we describe the probability function of random variable

W:=W*:=5,YiAzYa A--- AzyYy for z=(z1,...,2Zn).



When z satisfies z, = 0 for some n (1<n < N), W=0 w.p. 1. Otherwise

: 1,1,...,1
W: .'171/\$2/\ AxN for (K,}’;,,,,,YN): (7 b ) b )
0 otherwise.

Thus we have for any z satisfying z, > 0 for all n

PW=zA---Azy)=p", PW=0)=1-p". (8)

4.1.1 Expected value
First we consider the expectation problem E(1). The expected value is

0 g some z, =0
(1 Az A--- Azy)pY all z,, > 0.

-

Thus E(1) is reduced to the deterministic optimization problem :

Max (zyAz2A---Azy)pV
E(l) st. (i) T1+z2+---+zy=1
(i) zn€[0,1] n=12,...,N.
N 1

. : P ehtzr= (L 1Yo
This has the maximum value N at the equal weight z* = ( N N) [2-4].

4.1.2 Variance

Second we consider the variance problem V(1). The second-order moment is

0 for some z, =0
(ZyAz2A--- Azy)?pN all z,, > 0.

EW) = {

Since V[W] = E[W?] — E?[W], V(1) is reduced to :

Max (z1Aza2A---Azy)’pV(1 -p")
V(1) st. (i) z1+z2+---+zy=1
(i) z,€[0,1] n=1,2,... N.

N 1 —pV
Therefore, the variance problem V(1) has the maximum value I%Vz_l’_) at the equal weight
1

1
= NN too [2-4]. On the other hand, the variance problem has the minimum

value 0 at any feasible weight £ with £, =0 for somen (1<n< N ).



4.1.3 Threshold probability

Third let us consider the threshold probability maximimization problem P(1). When ¢ = 0,
any feasible point z attains the maximum value 1.
Hereafter we assume that 0 < ¢ < 1. We note that

P(z Y1 AZYa A--- AZyYn 2> )
= P(z1Y1 > c)P(z2Y2 >c) - P(znYn > ¢) |
= p(z1)p(z2) -+~ p(zN)
where p(zy,) := pc(z,) is defined by

>
e = Pz = {f oo {72 -<9>

Therefore, the threshold probability problem P(1) is :

Max p(z1)p(z2)-- -p(zn)
P(1) st. (i) z1+z2+---+zNy=1
(i) z,€[0,1] n=12,...,N.

Let us consider the following two cases :

1.0<c¢c<1/N:
Then we can take any feasible z* satisfying z;, > c for all n. This implies that p(:cl) cep(xy) =
p. If any feasible z satisfies z,, < ¢ for some n, then -
p(xl) .p(zy) = 0. Thus z* attains the maximum value p".

2.1/N<ec<1: v
Then any feasible z satisfies z, < ¢ for some n. Hence p(z;)---p(znx) = 0. Therefore,
any feasible point yields the maximum value (and minimum value) 0.

4.2 Dynamic programming

In this section we solve the preceding three stochastic optimization problems through dynamic
programming approach. This dynamic programming approach is final state model [1,6-11].
First of all we introduce the sequence of random variables {An} and the sequence of sets {A,}

defined by _
Ap =i Y1I AZYo A - ATp 1Y

and

An == D] dn=21i A+ AZpoiYnr Ti € [0,1],
v, =0,1€[0,1] i=1,...,n—1}

forn=2,3,...,N + 1, respectively. Then we have

Y Az Y A AznYy = Ay
An+1-—A /\IIInY 2STLSN—1
An=[0,1] 2<n<N+1.



On the other hand we introduce the sequence of variables {d,} defined by
dy=zZp+2Zpy+---+zy n=1,...,N, dny41 = 0.

Then we see that the system of simultaneous constraints (i), (ii) is equivalent to the sequential
one

dn+l=dn_mn
d =1, n=1,2,...,N, dy,;=0
=1, I v

In particular, we note that z, € [0, d,] for n = N becomes zy € {dy} or zy = dy.

4.2.1 Expected value

Thus the expectation problem is transliterated to the dynamic programming problem with
terminal function :

Max E[Ay41]
dy=dy — 7, dny1 = dp — Tn
DE(1) st. (1) SA2=x:Y7 , Ay =M AZTY, n=2,...,N
) € [0, dy] T, € [0, dy]
()" dyas =0

where d; = 1 is the initial state at time n = 1. Thus we have an alternating sequence of states
and decisions as follows :

d1=1 _::1_) (dz,/\z) _zz__) (d3,’\3) i’* (d47’\4) oo
il N (dn, An) I, (dn+1, Ant1) =y

We note that the first state is d; = 1 and the n-th decision is z,,. Both are one-variable. All the
remaining states {(dn, An)} are two-variable. The terminal condition dy,; = 0 requires that
only the final decision zy has no choice at (dy,Ay) : it must be the first component dy. Any
other decision has a continuous choice : z, € [0,d,] 1<n< N-1.

First let u;(d;) be the maximum value of DE(1). Second let u,(d,, \n) be the maximum
value of

Max E[Anii]
fl."”’l =dmn — Tm
DE.(dn, A\n) st (i) {Apy1 = A AzpYin m=mn,..., N
Zm € [0, dp)

()" dys1=0
for (dn, An) € [0,1]2, n=2,...,N. Finally let uyy;(dn41, An41) be as follows :

unt1(dn+1, AN+1) = Avpr dnga € {0}, Anya €[0,1).



Then we have the recursive formula

(uns1(0,0) = A 0<A<1
un(d,\) =p- (AAd) 0<d,A<1
{ un(d, N) = ol\s/lfs}fi[p ‘Unp1(d—z,AAZ)+q- Un41(d — T, 0)] (10)

0<d <1, 2<n<N-1

\'Uq(].) = (}\S/Ia?gl[p u2(1 - :L',/\/\III) +q- U2(1 - T, 0)]

Let 7%(d,)\) be the maximizer in (10). Then the sequence 7* = {=};} is an optimal policy.
In fact, solving (10), we have the sequence of maximum value functions {u;} and an optimal
policy 7*, where ‘

N

. ~ p ‘

UN+1(0, A) = A, Un(d, A) = pN +1 ()\ A —N—:—TL_—!—I) 2 S n S N, ul(l) = % (11)
AN =—%  2<n<N, w1 == (12)
TGN =N_"or1 “="t= MWER

Thus we see that the pair of sequence of maximum value functions and an optimal policy yields
the optimal solution of the expectation problem E(1) :

N
p ., (11 1
ul(l) = ']Va T = ('N-') ﬁ)' ot a—ﬁ) . (13)

4.2.2 Threshold probability

Second, let us now consider the threshold probability maximization problem P(1) :

Max P(zYiA---AznYy 2c)
P(1) st. (i) zy+ze2+---+zNy=1
(i) z,€[0,1] n=1,2,...,N.

It is well known that any threshold probability is expressed as an expected value through
characteristic function :

P(ziY1A---AanYn 2 ¢) = Ex(mY1 A AznYy)] (14)

where x(-) is the characteristic function of interval [c, 00)

(w)— 1 c<w< oo
X 1o w<ec.

Thus the threshold probability problem P(1) becomes the expected value problem :

EP(1) Max E[x(z:YiA---AzyYn)] st (i), (ii)



10

The preceding analysis which generates an equivalent dynamic programming problem DE(1)
works well for the expectation problem EP(1). This problem is formulated into the dynamic
programming problem with terminal function :

Max E[ X(KN+1)]
fi2=d1—-’131 in+1=dn—xn
DP(1) st. (1) QA2=zY7 , {Appi =M AzY, n=2...,N
T, € [0, dy] Tp € [0, dy)

(ii)” dN+1 =0

where
dl =1.
Then we have the corresponding recursive equation as follows :
(o41(0,3) = x(3) 0<A<1
un(d,A) =p- x(AAd) 0<d,A<1
{ on(d, ) = Max(p- vns1(d = 5,AA ) + 4" tnsa(d ~ z,0)] (15)

0<d,A<1, 2<n<N-1

\vl(l) =OI\S/Iza.x§[p-v2(1 —ZT,AAZT)+q v2(l —z,0)]

‘Thus we have obtained the sequence of maximum value functions {v}} and an optimal
policy o*. The pair yields the optimal solution of thresold probability problem P(1) :

N *, e * 0 <c< 1 .
n(l) = p = (=1 .xN) . . C>w (16)
0 - | any feasible point » <c<1

where z* = (z3, ... ,z}) is any feasible point satisfying z* > ¢ for all n.
1 N n

5 | Markov chain

Now, as a summary, we consider a general problem. We have assumed that the finite sequence
{N1,Ys,...,Yn} is independent. We remove the independence. Insteads, we take a Markov
chain {Y,}¥*! with transition probability law p = {p(-|-)} on finite state space Y:

p(zly) 20 y,z€Y, Y op(zly) =1 yeY.
z€eY

Further we assume that a reward functionr : Y — R!, an associative aggregator o : R! x R! —
R!: '
(ros)ot=ro(sot)

and a utility function ¢ : R* — R! are given [5].
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We consider an optimal weighting problem for Markov chain as follows :

~ Max E[¢(zir(Y1) ozar(Yz)o---0 znT(YN))]
Gn(y1,1) st. () zi+x2+---+zy=1
(i) zn €1[0,1]
(iil) Yas1 ~ p(-gn)
The preceding dynamic programming method transforms G N(yl, 1) to the equ1valent sequential
optimization problem : :

Max EW(ANH)]
d2—'d1_x1 dnt1 =dn — T _
Po=zrly) JAwa=dnozrlin) - _p Ny
z1 € [0, di] z, € [0, dp)
Az~ p(-ly1) Ya+1 ~ p(|¥n)
(ii)" dy41 =0 S

DGN(yl,dl) . 8.t. (l)’

where
dl =1.

Here we take

Kn = 17r(Y1) o zar(Yz) 0 -+ - 0 Tpar(Y, 1)

2<n<N+1
An = {Ma|dn=m217(Y1) © Tor(y2) © + 0 Tp_17(Yn-1)
0z <1, ym €Y 1<m<n-1}
Thus we have the corresponding_recursive equation :
(wr11(y,0; ) = () A€ ANt
wy (y,d; A) = (A o dr(y)) yeY, 0<d<1, Ie€Ay
J wn(y,d;2) = Max, an+1(z d — z; X 0 zr(y))p(2ly) a”)
yeY, 0<d<1l, A€A; 2<n<N-1
w(y,1) = Max sz 2,1 — z; zr(y))p(2|y) yev.
\
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