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An Iterative Estimation Procedure for Mixed Poisson Processes
via EM Algorithm and Its Application to Queueing Systems
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Abstract. This paper proposes an iterative estimation procedure for mixed Poisson
processes. Based on the EM (expectation-maximization) algorithm, we develop an
efficient iteration method to derive the MLE (maximum likelihood estimate). The
result is applied to estimating some performance measures for M/G/1 queueing
systems.

1 Introduction

The mixed Poisson process [1] can be regarded as a natural extension of the homogeneous Poisson
process. Let {Np(t); ¢ > 0} be a homogeneous Poisson process with arrival intensity A (> 0). The
probability mass function at time ¢ is expressed by the following Poisson distribution:

(A"

Pr{Np(t) =n} = 1 exP(=At). (1)

Let {Np(t); t > 0} denote a mixed Poisson process with random arrival intensity A (> 0). The
probability density function of A is given by g(\;8), where @ denotes a set of parameters. Then, the
probability mass function of the mixed Poisson process is
o o]
Pr{Nu(t) =n} = / Pr{Np(t) = njA = A}g(X; 8)dA
0
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which is the mixed Poisson distribution. When the probability density function g(-) is the Erlang
distribution with shape parameter m and scale parameter g, i.e. for @ = (m,B),

s
(n—1)!

Pr{Nu(t) = n} = ("”7':"1) (ﬂﬁt)m (ﬂit)n )

and that N (t) obeys a negative binomial distribution. This special stochastic process is called the
Pélya-Lundberg process [1]. For example, the density function g(-) is an inverse Gaussian distribution,
a beta distribution, an uniform distribution, etc. Table 1 presents typical examples of g(-) and the
corresponding mixed distributions [1].

g;m,B8) = A™=Lexp(—BA), (3)

it can be verified that

2 An estimation procedure

In this section, we propose an estimation procedure for the mixed Poisson process. To give flexibility
for the estimation algorithm, we widely extend the stochastic process under consideration not to the
homogeneous Poisson process, but to the non-homogeneous Poisson process. That is, the arrival time
distribution is assumed to be F(-; ), §), where A (> 0) and € denote an arrival intensity and a parameter
set of the others. Then, the total number of arrivals before time ¢ follows the non-homogeneous Poisson
process having the probability mass function;

Pr{Np() = n} = IBEELO g ) (5)
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Table 1: Typical examples of mixed Poisson distributions.

types mixed Poisson distributions

Erlang distribution (gamma distribution) | negative binomial distribution

shifted gamma distribution Delaporte distribution

generalized inverse Gaussian distribution | Sichel distribution

inverse Gaussian distribution inverse Gaussian—Poisson distribution
beta distribution beta—Poisson distribution

uniform distribution uniform—Poisson distribution
truncated normal distribution truncated normal-Poisson distribution
lognormal distribution lognormal-Poisson distribution

where 7(-; M €) =1-F(:; A €). In a fashion similar to the homogeneous Poisson process, if the stochastic
process {Np(t), t > 0} is a mixed non-homogeneous Poisson process with random parameter A, we
obtain _
F(t
n!

Pr{Nu(t) = n} = / (Zlog F(BX )" 54 3, £)g(r; 8)dA. (6)
0
If F(t; A) = exp{—At}, the process in Equation (6) can be reduced into the mixed Poisson process.
Consider an estimation problem under the assumption that all the occurrence times of events on m
independent mixed Poisson processes are observed, namely, the following data set is available:

D' = (x3,...,%y,) fori=1,...,m.

The well-known method to estimate the model parameters £ and @ is the maximum likelihood (ML)
estimation. For the mixed non-homogeneous Poisson process, the likelihood and the log-likelihood
functions are given by '

m oo Mi i.;A, .
rgom,...om =T [ ] S S Fehin a0 0 @

i=1 \Y0 j=1

log L(&, 6/D",..., D™ = 3 [ 1og /0°° LA or
i=1

=T (2 A, €)g(X;0)dA ) 8
Heie 55X, €)9(X; 0) (8)

respectively. In general, the maximum likelihood estimate (MLE) can be found as the value maximizing
Equation (8). However, in the case of the estimation for the mixed non—homogeneous Poisson process,
since both the likelihood and the log-likelihood functions are not always simple forms, it is difficult to
maximize them directly. This motivates us to develop an iterative estimation procedure based on the
EM algorithm.

The EM algorithm is an iteration method for statistical estimation problems with incomplete data.
Let X and Y = u(X) be the unobserved random variable with probability density fx(-; ) and the
observed random variable, respectively. Given the observed experiment y, we estimate the parameter
set a. The (n + 1)-st step in the EM algorithm consists of finding a,+; which maximizes the expected
log-likelihood function for the complete data, provided that the incomplete data is observed. That is,

dn 1 = argmax {E[log fx (X; ) u(X) = v; &nl} (9)

where @, is the estimate for the n-th step in the EM algorithm and E[- ; a] denotes the mathematical
expectation operator with respect to the probability density fx(-;a).

Let us now return our concern to the estimation problem for the mixed non-homogeneous Poisson
process. If the complete data like

('D",/\i)=(a:’i,...,a:f,i,)\i) fori=1,...,m,
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where ); is a sample for the density g(-; 0) is given, the log-likelihood function is then derived as

m n; m n;—1
log L(&,61D%, ..., D™ Ay, dm) = 303 log f(zhi 2, 8) = 3 2 log F(z; A, €)
i=1 ;1n=1 i=1 j=1
+ ) _logg(A;;0). (10)
=1

Since the samples, A;,..., A\, cannot be observed, we consider the expected log-likelihood function
under the incomplete data D* (i =1,... ,m) and find the parameter set maximizing the expected log-
likelihood function. Therefore, at the (n + 1)-st step in the EM algorithm, the estimates of parameters
can be computed as follows.

m n;

€ = arg?ax{EZE[logf(x;‘-;Ai,e)w*;e‘"’,o‘"’l

i=1 j=1

m ni—1
-3y E[log?(z;i;A,-,e)lv";d"),o(")]}, (11)

i=1 j=1

o = g { St siasomen, 00, )

i=1

where ¢ and ™ are the estimated parameter sets at the n-th step in the EM algorithm. We derive
the useful formula to calculate the expected log-likelihood function. For any measurable function h(-),
the following equation holds: '

E[h(Aq) (D, 0] = J0_POVIT5E: £(=5: X, €)/F(a}; X, ) F(ah,; X, £)g(3; 6)dx

Joo (ITj%: F(=5: X, ) /F (2 X, €)) F(gh; A, €)g(; 0)dA

The similar argument to the above can be also applied to the case of the counting data observed. Consider
the case where the number of arrivals during a constant period [0,%;) (i =1, ..., m) is observed, i.e.

(13)

D‘=(n,-,t,-), fori=1,...,m.

If the complete data (D%, \;) is observed, the log-likelihood function is obtained as

m m
log L(ex 0|D17 LR Dm, AL, ... ’ Am) = Znt IOg(— logﬁ(ti; i, e)) - Zl‘)g(nt')
i=1

i=1
m m

+logF(zh; A, ) + Y log g(As; ). (14)
i=1 =1

In this case, since the arrival intensities, Ay,...,\,,, are unobservable, we derive the expected log-
likelihood function and find the parameter set maximizing it. Then we have the following iteration
algorithm;

gy = argénax{ZmEuog(— log F(t;; As, £))|D*; £, 6]

=1
+ Y Ellog F(z}; A;, £)|D%; £, o‘"’]}, (15)
=1
m
0"*) = argmax { > E[log g(Ai; 0)|D%; €™, o<">]}. (16)
6 i=1

Further, the expected value in Equations ( 15) and (16) can be derived by

i e o1 Jo B (=1ogF(ts; X, €)™ /nalF(ts; A, €)g(X; 0)dA
E[h(A;)|D%;€,0) = =2 T log T h ) T x S00 800

(17)
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For example, it is assumed that

£(5X) = Aexp{=At}, (18)
9(X; B) = Bexp{—PA}. (19)
From Equation (4), the probability mass function is the following geometric distribution;
Pr{Nuy(t) =n} = (—ﬁ—) (—t—)n (20)
M B+t)\B+t) -

Find the iteration algorithm for estimating the parameter 3 under two kinds of observed data;
Di = (¢1,...,%n,) and D= (n,t;) fori=1,...,m.

For the first data set, at the (n 4+ 1)-st step in the EM algorithm, we have

3(n+1) _ m _ . 21
= S Bl A )
From Equation (13), the expected value can be derived as
E[A:|Di; ] Jo? At exp{— Az, } B exp{—BA}dA
D I~ A exp{—Azn, } B exp{—BA}dA
n; +1
= ) 22
P (22)
Consequently, the estimate can be computed by the following iteration scheme;
Bt = ™ (23)
f: n;+1
im1 T T p™
Next, consider the iteration algorithm under the data set Di (i =1,...,m). In this case, the algorithm
for estimating the parameter (3 is represented as
. m
B — S (24)
> ElAi|Dg; ]
Then, Equation (17) yields
i ni + 1
|Di- 8] = . 2
EIAIDS ] = T (25)
Therefore, for the counting data set, the iteration algorithm is given by
At = T (26)
f: n;+1
s bt A

3 Application

Consider an M/G/1 queueing system with arrival rate A and service density function g(-;0). Let {Xn;n >
0} denote the queue length at departures. For any n = 1,2,..., it can be seen that

Pr{X, — Xn-1+1=k|X,_1 >0} = / (—/\ni')— exp{—At}g(t; B)dt, (27)
0 .

and
Pr{X, = k|Xp_1 = 0} = / OO exp{-At}glt; 0)dt. (28)
0 n:

In this section, we treat the estimation problem for the service parameter set 6 when both the arrival
rate and the queue length at departures are observed. Given that

D = (Xo = 20, X1 = Z1,-- -, Xm = Tm),
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the estimation problem to obtain @ can be reduced to that for mixed Poisson processes under the data
set; '
D= (m,- —xi1+ 1{,,'._1>0}) for i = 1,... ,ym,
where
1 _J 0 forz; =0
=>0 =Y 1 forz; >0.

Therefore, from the result in Section 2, the estimates can be calculated as follows.

E-Step:
’ ElA(X)|D%; 0] = S MOQ)™ exp{-A}o(t,0)ds (29)
VT [ Ot exp{=At}g(t; 0)dt
M-Step:
en+1) — arg max { > Ellog g(X:; 0)|D*; 6™)] } (30)
i=1

where n; = z; — Zi—1 + 1{z,_,>0)-

For example, if g(-; u) is an exponential distribution with parameter u (> 0), the underlying queueing
system is an M/M/1 system. Without any loss of generality, when A = 1, we have the following iterative
estimation algorithm for the data D':

n(n+1) _ L.. 31
Y &)
=1 1 + ﬂ(n)

In this case, it is easy to verify that the above estimate converges to

m

_—
D m
i=1

Since the arrival rate is fixed as 1, the first moment of service time is equivalent to the traffic intensity.
Therefore, the estimate in Equation (32) satisfies our intuition.

al=) = (32)

4 Conclusion

In this paper, we have developed the iterative estimation procedure for mixed Poisson processes. The
iteration method has been derived based on the EM algorithm. Since we have considered a mixture of
non-homogeneous Poisson processes, our method proposed here can be widely applied to the estimation
problem for the mixed Poisson process. In addition, for the parameter estimation in an M. /G /1 queueing
system, we have presented the iteration algorithm for estimating the service parameters on the queue
length data at departures.
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