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abstract
In this paper, we study three cases of constrained optimization problems in stopped Markov

decision processes (MDPs). We introduces the concept of randomization into stopping struc-
ture of stopped MDPs, which makes it possible to solve the problem through the correspond-
ing Mathematical Programming formulation in terms of occupation measures treated mainly
by Borkar[8]. The optimization problem for the case of finite states and finite actions is con-
sidered over stopping time 7 constrained so that E 7 < a for some fixed a > 0. Analyzing
the equivalent Mathematical Programming we prove the existence of an optimal constrained
pair of policy and stopping time and gives the characterization of constrained optimal pairs.
Subsequently, the results for one-constrained case are extended to the case of vector-valued
terminal reward and multiple cost constraints, where a Pareto optimal pair of policy and

~ stopping time is characterized by Mathematical Programming formulation and Lagrangian
approaches. In the latter half of this paper, the dynamic programming approaches to the
constrained MDPs with countable state and compact action spaces are studied. Introduc-
ing a randomized stationary stopping time, the existence of an optimal pair of stationary
policy and stopping time is proved utilizing a Lagrange multiplier. Also, using the idea
of the one-step look ahead(OLA, cf. Ross{31]) policy an optimal constrained pair is sought
concretely.

0. Introduction

The constrained optimization problem for Markov
decision processes (MDPs), which is called con-
strained MDPs, has been studied by many au-
thors (e.g., Altman[l, 2, 4], Beutler and Ross|(7],
Borkar[8], Derman(10], Frid[12], Hordijk and
Kallenberg [17] and Sennott[33, 34]). For solving
a constrained MDPs, there are two methods as
well-known, i.e., Linear Programming (LP) and La-
grangian approaches.

An LP approach was introduced by Derman and
Klein[11] and Derman [10] and further developed
by Kallenberg[25] and Hordijk and Kallenberg(17]
in the case of finite states. This approach converts
an original constrained problem to an certain equiv-
alent LP whose decision variables correspond to the
occupation measure. That is, the value of the origi-
nal constrained problem is equal to the value of LP
and there is one-to-one correspondence between the
optimal policies of the original constrained problem

and the solutions to the LP. The extension of an LP
approach to the case of countable state MDPs was
presented by Altman(l, 2, 3, 4].

On the other hand, a Lagrangian approach was
introduced by Beutler and Ross[7] for the case of
the average expected reward and one constraint. By
the correspond parametric dynamic programming
equation, Beutler and Ross|7] showed that there ex-
ists an optimal constrained stationary policy requir-
ing randomization between two actions in at most
one state under some ergodic conditions. This La-
grangian approach was used to reduce the problem
to an unconstrained problem and to characterize
the constrained optimal policy. This appfoach was
generalized to the countable state case by Sennott
33, 34].

This paper is also concerned with an optimal
stopping model with a stopping time constrained
for a stochastic process which is first studied by
Nachman[29] and Kennedy[26]. They have charac-



terized the constrained optimal stopping time by a
Lagrangian approach.

In this paper, we treat with a combined model
of MDPs and stopping problem, called stopped
MDPs, which was first introduced by Furukawa and
Iwamoto [15] and Hordijk[16] independently. Fu-
rukawa and Iwamoto[15] showed the existence of an
optimal pair of policy and stopping time associated
with some optimality criterions. Hordijk[16] has
considered this model from a standpoint of potential
theory introducing the Lyapunov function method
for MDPs. Stopped MDPs was further devel-
oped by Iwamoto[22], Furukawa[13] and Rieder|[30).
Rieder[30] treated with the non-stationary and un-
bounded model, in which several results obtained in
(Furukawa and Iwamoto[15] and Hordijk[16]) were
extended and completed. Also, the general utility
treatment for stopped MDPs was studied by Kadota
et al.[23, 24].

In this paper, we study constrained optimization
problems in stopped MDPs as follows:

We introduces the concept of randomization into
stopping structure of stopped MDPs, which makes
it possible to solve the problem through the corre-
sponding Mathematical Programming formulation
in terms of occupation measures treated mainly by
Borkar[8]. The optimization problem for the case
of finite states and finite actions is considered over
stopping time 7 constrained so that ET < a for
some fixed a > 0. Analyzing the equivalent Math-
ematical Programming we prove the existence of
an optimal constrained pair of policy and stop-
ping time and gives the characterization of con-
strained optimal pairs. Subsequently, the results
for one-constrained case are extended to the case
of vector-valued terminal reward and multiple cost
constraints, where a Pareto optimal pair of policy
and stopping time is characterized by Mathemati-
cal Programming formulation and Lagrangian ap-
proaches. In the latter half of this paper, the dy-
namic programming approaches to the constrained
MDPs with countable state and compact action
spaces are studied. Introducing a randomized sta-
tionary stopping time, the existence of an optimal
pair of stationary policy and stopping time is proved
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utilizing a Lagrange multiplier. Also, using the idea
of the one-step look ahead(OLA, cf. Ross[31]) policy
an optimal constrained pair is sought concretely.

In Section 1, after describing the model, rele-
vant notations and definitions are given. To solve
constrained optimization problems in this paper,
randomized stopping time(RST) is introduced by
enlarging a sample space (cf. Assaf and Samuel-
Cahnl[5], Chow et al.[9], Irle[21] and Kennedy[26]).
Another representation of RST coined by Irle [21],
called F-representation, is presented and several
types of RSTs are defined. Also, the constrained op-
timization problems treated in this paper are given.
Moreover, a sufficient class, which is a subclass of
all pairs of policies and RSTs and is sufficiently rich
so that a optimal pair exists in it, is given.

In the subsequent sections (Section 2-4), con-
strained optimization problems in stopped MDPs,
which are studied in Horiguchi[l8, 19] and
Horiguchi, Kurano and Yasuda[20], are treated.
Section 2 is devoted to consider the optimization
problem for a stopped MDPs with finite states and
actions over stopping times T constrained so that
E7 £ a for some fixed & > 0. The problem is
solved through randomization of stopping times and
Mathematical Programming formulation by occu-
pation measures. For the case of fixed entry time,
Altman(2] has formed an equivalent infinite Linear
Programming for the total cost criteria and by ana-
lyzing the corresponding LP formulation has shown
that there exists an optimal constrained station-
ary policy. However, we follow a somewhat differ-
ent approach by converting the original constrained
problem to Mathematical Programming formula-
tion (parametric LP), since the stopped Markov
decision model is controlled over not only policies
but also stopping times. Two types of occupa-
tion measures, running and stopped are treated,
but stopped occupation measure is shown to be ex-
pressed by running one. The properties of the set
of running occupation measures which is achieved
by different classes of pairs of policies and RSTs
are introduced. Analyzing the equivalent Mathe-
matical Programming problem formulated by run-
ning occupation measures corresponding with sta-



tionary policies and RSTs, the existence of an opti-
mal constrained pair of stationary policy and stop-
ping time requiring randomization in at most one
state is proved. Also, numerical example is given.
In Section 3, a optimization problem for stopped
MDPs with vector-valued terminal reward and mul-
tiple running cost constraints in the framework sim-
ilar to Section 2 is considered. The optimality is de-
fined by the concept of efficiency based on a pseudo-
order preference relation <k induced by a closed
convex cone K in RP. Then a Pareto optimiza-
tion with respect to the pseudo-order <k is consid-
ered(cf. Furukawa[l4], Wakuta[37]). Applying the
idea of occupation measures and using the scalar-
ization technique for vector maximization problems
we obtain the equivalent Mathematical Program-
ming problem and show the existence of a Pareto
optimal pair of stationary policy and stopping time
requiring randomization in at most k states, where
k is the number of constraints. Also, introducing a
corresponding Lagrange function, the saddle-point
statements for the constrained problem are given,
whose results are applied to obtain a related para-
metric Mathematical Programming, by which the
problem is solved. Numerical examples are given
to illustrate the results. In Section 4, the con-
strained optimization problem similar to the for-
mulation treated in Section 2 is considered except
that the model consists of countable state space and
compact metric action space. In this section, the
problem formulation is referred to Hordijk[16]. The
problem is handled by solving a parametric dynamic
programming equation produced from a Lagrangian
approach. The concept of a randomized station-
ary stopping time, which is a mixed extension of
the entry time of a stopping region, is introduced
in order to prove the existence of an optimal con-
strained pair of stationary policy and stopping time.
The proof is executed by applying a Lagrange mul-
tiplier method developed by Frid[12], Beutler and
Ross[7] and Sennott[34]. Also, using the idea of the
OLA policy an optimal constrained pair is derived
concretely. The constrained Markov deteriorating
system is illustrated as an example.
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1 Stopped Markov decision pro-

cesses

1.1 Stopped Markov decision pro-
cesses

Let S and A be the finite sets denoted by S =
{1,2,...,N1} and A = {1,2,...,No}. The stopped
Markov decision model consists of five objects:

(S, A, {pij(a) : i,j € S,a € A},c,T) (1.1)
where S and A denote the state and action spaces
respectively and {pi;(a)} is the law of motion, i.e.,
for each (i,a) € Sx A, pij(a) 2 0and 3, s pij(a) =
1 and ¢ = c(4, a) is a running cost function on S x A
and r = r(i) is a terminal reward function on §
when selecting “stop” in state i. When the system
is in state i € 9, if we select “stop” the process ter-
minates with the terminal reward r(¢). If we select
“continue” and take an action a € A, we move to a
new state j € S selected according to the probabil-
ity distribution p;.(a) and the cost c(i, a) is incurred.
This process is repeated from the new state j € S.

Similarly, another control model formulated with

vector-valued terminal reward and multiple running
costs is given as follows:
(S, A, {p:ij(a) i,j € Sa € AL{dl =
1,2,...,k},7) (1.2)
where ¢ = d(i,a), | = 1,2,...,k, are running
cost functions on S x A, which will be related to
k constraints, and r = r(i) = (r1(3),...,rP(i)) is a
vector-valued terminal reward function on S when
selecting “stop” in state 1.

Let x:,a; be the state and action at time ¢ and
hy = (x1,01,...,%¢) € (S x A)*~1 x S the history
up to time t(t = 1). A policy for a controlling the
system is a sequence T = (71,72, . . .) such that, for
each t 2 1, 7, is a conditional probability measure
on A given history h; with m¢(A|z1,a1,...,2:) =1
for each (z1,a1,...,%¢) € (S X A)@X~1 x S. Let
IT denotes the set of all policies. A policy 7 =
(w1, 72, ...) is a Markov policy if 7 is a function
of only z;, i.e., m(:|Z1,81,..., %) = Te(+|z¢) for all
(z1,01,...,7¢) € (S x A)¥~! x S. A Markov policy

7 = (my,m2,...) is stationary if there exists a con-



ditional probability on A, w(-|i), given i € S such
that m(-|x;) = w(:|z;) forallz; € S and t > 1, and
denoted by w*® = (w,w,...), or simply by w. A
stationary policy w is called deterministic if there
exists a map h : § — A with w(h(i)|i) = 1 for all
¢ € S and such a policy is identified by h. The sets
of all Markov, stationary and deterministic policies
will be denoted by Ilp,IIs and IIp respectively.
Note that IIp C IIs C IIpy C II. The sample
spaces is the product space 2 = (S x A)®. Let
X¢, A¢ be random quantities such that X, (w) = x4
and A¢(w) = ay for all w = (z1,a1,%2,as,...) € Q.
For any given policy = € II and initial distribution
B on S we can specify the probability measure P
on {2 in a usual way.

Let H; = (X1,Ay,...,X;). We denote by B(H;)
the o-field induced by H;. Let F, = B(H,), (t = 1)
and F be the smallest o-field containing each
Fi,t 2 1. Let N = {1,2,...} U {o0}. We call a
map 7 : Q@ — N a stopping time w.r.t. the filtration
F={F.te N}if{r=t} € F forallte N. In
order to solve our problems described in the sequel,
we need to introduce randomized stopping time (cf.
Chow et al.[9] and Kennedy[26]). To this purpose,
enlarging Q to  := Qx [0,1], we can embed (€2, Fo)
to (Q, Foo X B;), where B, is Borel subsets of [0,1].
For a filtration 7* = {F},t € N} with F} = F,xB,
we can assume without loss of generality that for
eachte N

Fi C Fy. (1.3)
We call a map 7 : @ — N a randomized stopping
time (hereafter called RST) w.r.t. F* if {T =t} €
F! for each t € N. For simplicity, the upper bar of
RST 7 will be omitted and written by 7 with some
abuse of notation. The class of RSTs w.r.t. F* will
be denoted by S. For each initial distribution 8
and each policy 7 € II, we denote the probability
measure on Q by P, where P, = P; xA and X is
Lebesgue measure on B;.

1.2 F-representation of RSTs

In this section, F-representation of RSTs given by
Irle[21] will be extended to the case of the decision
process considered in this paper by which Markov
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or stationary RSTs are defined.

For any RST 7 € S and t € N, let
gt(w) = A({r=tlu) (v € 9), where {r =
t}o is the w-section defined by {r = t}, =
{r €[0,1]|(w,z) € {r =t}}. Note that g, is F;-
measurable for t 2 1. From this g; (t € N), we
define the set f = (f;),cx as follows:

Gt ~
ft = te N (14)
1= 0

where if the denominator is 0 in (1.4) let f; = 1.

Let F = {a = (@j)jew : 0 £ a; £ 1,000 =
land ifa; =1 a; =1 for i > j}. Then we have the
following lemma.

Lemma 1.2.1.

(i) f: Q@ — F and for each t € N f, is F,-
measurable.

(ii) For any initial distribution 3 and pair (7,7) €
xS andteN,

_ Py (r=t|H,)

fi=— =,
Py(r 2 t|H,)

P%-a.s. (1.5)

(iii) For any initial distribution 8 and pair (7,7) €
xS,

-1

E5(Y c(Xe, Ar) +r(X,)

t=1

= Z(Eg((l —f)--Q = fiul)fer
t=1

(3 e, Ag) +7(X)))).

k=1

(1.6)

The set f = (fi),c5 constructed from 7 € S
is called F-representation of 7, denoted by f™ =
(f Jrem-

Let f = (ft),cx be any function f : @ — F such
that for each t € N f; is Fi-measurable. From this
f, we define 77 : Q@ x [0,1] = N by

Tf(w x) = {t o ) [zi‘;}i gk(w)’22=l —g_k(w))v

oo for z € 322, 9,(w),1]
1.7)

where

9:=Q0-A)---Q-fi-1)fr, t21. (1.8)

Then, we have:



Lemma 1.2.2. (i) 7¥ is a RST w.rt. F* =
{F:,te N}

(i) 77 satisfies (ii) and (iii) of Lemma 1.2.1.

Note that Lemma 1.2.1 and 1.2.2 show there is
one-to-one correspondence between S and the set
of F-representations f = (f),cn- Using this fact,
we define several types of RSTs. Let 7 € S. For
the corresponding F-representation f7 = (f{);en>
by Lemma 1.2.1, f{ is Fi-measurable (t 2 1). So,

7 is a function of Hy = (X1,A1,...,Xy).

Definition 1. If f7 is depending only on X, that
is, fT(H:;) = fI(X;) for all t 2 1, the RST 7 is
called Markov. A Markov RST is called stationary
if there exists a function § : S — [0,1] such that
fT(X:) = 6(X,) for all t 2 1, and denoted by 6.
When 6(i) € {0,1} for all i € S, the stationary RST
0% is called deterministic.

We denote the sets of all Markov RSTs, all sta-
tionary RSTs and all deterministic RSTs by Su, Ss
and Sp respectively.

1.3 Constrained optimization prob-
lems

For any a > 0 and initial distribution 3 on S, let

Ala,B) :=={(m,7) eI x S| EZT <a} (1.9

where E_g is the expectation w.r.t. I?Z. The pair be-
longing to A(a, B) will be called a constrained one.
In Section 2 and 4, we will consider the constrained

optimization problem(COP):

T—1
COP : Maximize Ep[»_ (X, As) + (X))
t=1

subject to (m,7) € A, B).

On the other hand, in Section 3, we consider the
vector-valued optimization problem with multiple
constraints as follows.

For any a = (a!,...,a*) € R* and initial dis-
tribution 3 on 8, let A¥(a,B) := {(m,7) € II x
S|Ep Y7o d(Xe, Ar) Sal forl =1,2,... .k} We
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shall define the vector-valued constrained optimiza-

tion problem(VCOP):

VCOP : Maximize TE_ZT(XT) = (E;TI(XT), ce
Egr®(X,))
subject to (m,7) € AF(a, B).

1.4 Markov policies and Markov
RSTs

In the following, we say that the set of IIps X Sm

is a sufficient class to our optimization problems.

Lemma 1.4.1. For any pair (w,7) € Il X S, there
ezist a pair (v,0) € Iy X Spr such that

Fg(xt=i,At=a,r>t)=TP’;(xt =i,A¢=a,0 >t),
(1.10)
forie S,a € A.

2 Finite MDPs with a constraint([18])

2.1 One-constrained problem

In this section, we will consider the stopped
Markov decision model

(Sv Av {pij(a) : 7’aJ € Sva € A},C, T)

introduced in (1.1) where S and A be finite sets de-
noted by S = {1,2,...,N1} and A= {1,2,..., N2}
and the constrained optimization problem as fol-

lows:

COP : Maximize J(3,7,T):=

7—1
Epld c(Xe, Ar) +7(X7)]

t=1
subject to (m,7) € A(a, B).

where A(a, 8) is defined in (1.9).
The constrained pair (7*,7*) € A(a, B) is called

optimal if

J(B,m,7) £ J(B,7*, ) forall (7,7)€ A, B).



2.2 Running and stopped occupation
measures

We introduce, in this section, two types of occupa-
tion measures and consider the properties of them.
Also, we formulate the Mathematical Programming
problem which is proved to be equivalent to COP.

Definition 2. For any initial distribution 3 and a
pair (m,7) with Eg[r] < oo, we define the measure
z(B,m,7) on S x A, called the running occupation
measure, by

[o o]
z(B,m T;i,a):= ZF;(Xt =i,0:=a,7>t)
t=1

(2.1)
forie€ S,a € A.

Definition 3. For any initial distribution 3 and a
pair (7, 7) with E;['r] < 00, we define the measure
y(B,m,7) on S x A, called the stopped occupation
measure, by

[o o]
y (B, 7, 754,a) := ZITD;;(Xt =1,A¢ =a, 7 =1t),

t=1
(2.2)
for i € S,a € A.

The state running and stopped occupation
measures will be defined by z(8,w,71;i) :=
Y aca Z(B,m,7ii,0) y(B, 7, 1;1) =
2 aca Y(B,7,7;4,a) forall i € S respectively. Then,
in the following lemma, the state stopped occupa-

and

tion measure is proved to be represented by the

running one.

Lemma 2.2.1. For any initial distribution  and
pair (7,7) € Il x S with EZ[T] < 0o we have the
following:

(i) z(B,m,1:i) < oo and y(B,m,T;i) < oo for
allie S.

(i) Eglr] = ¥ies (8, m,754) + 1.

(iii) y(8,m,7;i) =
BGE)  + ZjeS,GEA z(B,m,7;j,a)pji(a) -
z(B,m, ;i) forallie S.
For any 6 : S — [0,1] and conditional distri-
bution w(-|¢) on A given i € S, we define by
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P°(w) the Ny x Ny matrix where (i, j)th element
is Taea pis(@ulali)(1 — 63)) = pig(w)(1 - 63))
or simply (P%(w));;. Let RM be the set of real Nj-
dimensional row vectors. With some abuse of nota-
tion, for any initial distribution 8 and (7, 7) € IIxS,
the row vector z(8, ,7) € RM is defined by

x(ﬂ’ , T) = (x(ﬂi T 1)1 ceey x(ﬂv ™75 Nl))

If the distribution B on S is degenerate as i € 3, it
is simply denoted by 1.

Lemma 2.2.2. Let (w,7) € lIs x Ss withE;’(7) <
0o for alli € S. Then the state running occupation
measure (3, w, T) is the unique solution to

z = f(1 -48) + zP%(w), z € RM (2.3)
where B(1 — 8) is in R™M whose i-th component
is B(i)(1 — (i) and 6 := f7 : S — [0,1] is F-
representation of T.

Next, we present that the objective function
J(B,m,7) of COP is written by running and
stopped occupation measures.

Lemma 2.2.3. For (n,7) € I xS with ﬁ;['r] < 00,
we have
J(B,m, 1) = EiES,QEA c(i,a)z(B, ™, 7;1,a)
+ Y ies T(@)y(B, m, T3 10). (2.4)
Let RN1XNz e the set of real N; x Ny matrices.
For any subset U C IT x S, let

x?g}a(U) = {I(ﬁ, T, i? a)iGS,aGA (7'[', T) €

U, Bglr] < a}. 2.5)
8

Note that st}a(U) C RM*N2_ We introduce the

Mathematical Programming(MP(I)) as follows.
> cli.a)z(i,a) + Y r(E)y(s)
i€S,a€EA €S

subject to z € X?S}Q(H x S), ye€ RM and

y&) =B@)+ Y. z(j,a)psla) - z(i),
JjES,a€EA

1 € S, where z(i) = Z z(i,a).
a€A

MP(I): Maximize

Then, we have the following theorem whose proof
follows easily from Lemma 2.2.3.

Theorem 2.2.1. COP is equivalent to MP(I),
t.e., a pair (7*,7*) is optimal for COP if and only
if the corresponding {x(B, n*,7*;i,a)} € X’{ag}a(l'lx
S) is optimal for MP(I).



2.3 Mathematical Programming and

optimal pair

In this section, we present another Mathematical
Programming formulation by which COP is explic-
itly solved.

For any U C I x S, let X{_, (U) be the set of
X‘{GS}Q(U ) which is defined by replacing EZ[T] fa

with E;[T] = in (2.5).
Theorem 2.3.1.

X{<)a(MIx8) = X{q,, (My xSn) = X{,,, (s xSs),
(2.6)
and

X{_yo(OxS) = X{_, (M xSm) = X{_, (T xSs).
(2.7)

Proof. 1t is sufficient to prove (2.7). From Lemma
1.4.1 the first equality of (2.7) is shown. To prove
the second part, for any running occupation mea-
sure {z(0,7,T;i,a)} € X?=}a(1'1 x 8), we define
w € IIs and 0 € Sg with § = f° by the following:

z(B,m, 11, a)

w(ali) := 2B ) forie Sanda€ A,
(2.8)

1-8(3) (B, m, ;%) for i € 5.
(2.9)

We note that

Po(Xe =4,72t) =Pp(Xy =i, 7 >t — 1)

= Z F;(Xt_l =7, At—l =a,7>t— 1)])_7',‘(0,).
JES,a€A
So, we get from (2.9) and (2.8)

z(B,7,1;1) = (1 — 8(3)) f:]l_”;(Xt =1i,7 2t)

t=1

=(1-8@)BE + Y. (B, 74 6)psa)

j€S,a€A

= (1= 8(&))(BG) +Y_z(B, 7,7 )(D_ psi(a)w(als)))

JjES a€A
= (1-8()80) + 3 2(8,m, 73 ) (P (w)) .
Jj€ES

Applying Lemma 2.2.2, we have

z(8,m,7;1) = z(8, w, o%; i), 1€ S,
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as required.g

In order to drive another Mathematical Program-
ming formulation, we need the definition of sev-
eral basic sets. For simplicity, we put (z;,) =
{-’Eia}iGS,aeA € RMXxN2 and § = {5(%)},53 € RM,
With some abuse of notation, z; = Za& A Tia for
(zia) € RN1XN2_ For any initial distribution 3 on S
and a(> 1), let

[ ((%ia), 8) € RN*N2 5 RN

(i) s = B(E)(1 - 6(3))

+ Y ziepi(a)(1-6(:), i€ S
jES,a€A

Qi<ya =4 b
© () 0S o0 SLies
(i) Y zwfa-1
1€S,a€A
[ (iv) i 20, i€S,ac A )
(2.10)
Let

Q<)o = {(@ia) € RN*N2 2 ((210), 6) € Qg)a

for some 6}. (2.11)

We denote by Q{___}a the subset of Q{g}a obtained
replacing (iii) in (2.10) by ;g ;e 4 Tia = @—1 and
by Q(=}« the set defined in (2.11) replacing @{g}a
by Q{=}a.

Lemma 2.3.1. Both Q(<jo and Q(=}o are com-
pact and convezx.

Proof. Compactness is obvious. To prove the con-
vexity, we show that, for z! = (zl),2? = (z2,) €
Q(sja and ¥ € (0,1), 7 = (Tia) € Qgyq Withzie =
V23, +(1=7)z},,i € S,a € A. Since z', 2% € Q(<}q,
there exist 6! = (61(3)), % = (62(i)) such that

:L‘f = ﬁ(")(l _Jk (7‘)) +Zj€S,aeA x.,;ap.’“(a)(l °6k(i)),
forie S,k=1,2. (2.12)
Now, define § = (6(3)) as follows:

1-6(5) =
vz} + (1 = y)z?

¥(B() + Y zapsi(a)) + (1 = 1)(BGE) + Y 22,p5i(a)
j.a Ja

(2.13)

for i € S where if the denominator is zero, 0 <
(i) £ 1is chosen arbitrary. From (2.12) and (2.13),



it follows that 0 < 6(¢7) £ 1 and

T = BE)(1-6G)+ D zjapsi(a)(1-8(3), i €S,
jE€S,a€A

which implies z € Q(<q. Also, if zk e Q(=}a (k=

1,2),z € Q(=}a- Thus, Q(—}. is convexg

Theorem 2.3.2. Q(<;, = Xfé}a(l'ls x Ss).

Proof. From Lemma 2.2.1 (ii) and Lemma 2.2.2,
the right hand side is clearly contained in the left.
To prove the converse, let T € Q(<}o- Then, there
exists & = (§(i)) such that (z,0) € Q(<}qo- Define a
stationary policy w, for any a € A and i € S, by

ﬁ, if x; > 0,
w(alt) = Ti

any prob. distrib. on A, if z;=0

and consider the pair (w,7) € Hg x Ss with
6 = f7. From the definition of Q{g}a, we have
zi = BE)(1 — §(3)) + X5 T Pfi(w). Hence, from
Lemma 2.2.2, z; = z(8, w, 7;1). Also, by the defini-
tion of w, we get

Tia = T2 = 2(8,w, 73i) 22 = 2(B,w, 3, a),
I; I
which implies z = {z(8,w, 7;i,a)} € X'?é}a(ﬂs x
Ss)a
From this theorem, we have the following corol-
lary.

Corollary 2.3.1. ng}a(l'ls x Sg) is compact and
convez.

Now, define another Mathematical Programming
formulation(MP(II)) for COP:

MP(II) : Maximize

i€S,a€A i€S

subject to (z,9) € Q{g}a,
yi = B3 + Z zjapji(a) — Z Tia, 1€ S.

JES,a€A acA

From Theorem 2.3.1 and 2.3.2, the following corol-
lary easily follows.

Corollary 2.3.2. COP and MP(II) are equiva-
lent.

Z c(i,a)Tiq + Z 1)y
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Let Iy = {w € Ig
domization between two actions in at most
one state }, and Sg := {r € Ss|f7(i) €
{0,1} except at most one state i € S}. For any
compact convex set D we denote by ext(D) the set
of extreme points of D.

w requires ran-

Lemma 2.3.2.

ext (X{_,,(Tls x S5))

C {z(B,w,7): (w,7) € g x Ss}. (2.14)

Proof. By the entire analogy to the proof of Theo-
rem 3.8[4], we can show that

ext (X{_),(Ils x Ss))

C {z(B,w,7): (w,7) € II5 x Sg}. (2.15)

Let (w, 7) € I xSs. For simplicity, let § = f7. Sup-
pose that there exists i1,i2 € S(i; # i2) with 0 <
8(i1) < 1,0 < 4(iz) < 1,Pg(X; = i, for some t >
1) > 0 and P5(X; = iz for some ¢t > 1) > 0. We
consider 6! = (6'(3)), 62 = (6%(1)) satisfying the fol-
lowing (2.16) and (2.17):

6k (i) = 6(i) ifi #141,i2 foreach k=1,2,
0 < 6(i1) < 8(31) < 6%(51) < 1,
0 < 6%(i2) < 8(i2) < 6'(i2) < 1

(216)
and
Zx(ﬂ, w, . i) = Zx(ﬂ, w, PLE )=a-1,
i€S i€S
(B, w, ") # (B, w, 7).
(2.17)

Note that the existence of such 6% (k = 1,2) is eas-
ily shown. For simplicity, let % (i) := z(8, w, 7°'; i)
and :z:‘sz(i) = z(B,w,7%;i), i€ S. Let be (0,1)
be such that

1-6() =
bz® (i) + (1 — b)z® (3)

B(E) + (Ekes(bx® (k) + (1 — b)z® (k) (P(w)):)
(2.18)

for all i€ S(i # i2).
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By the definition of ' and 62 we observe that such sponding COP is given as follows:

a b exists. Using this b € (0,1), we define § = (8(3))

as follows: Maximize — 1.6x7 —0.2z9 + 0.223+ 0.5z4 + 2.75

subject to

z1 = (0.25 + 0.37; + 0.4z + 0.2x3 + 0.3z4)(1 — (1)),
T = (0.25 + 0.4z1 + 0.1z + 0.3z3 + 0.3z4)(1 — 6(2)),
5 = (0.25 + 0.1z, + 0.2z + 0.4z3 + 0.1z4)(1 — §(3)),
x4 = (0.25 4 0.2z1 + 0.3z2 + 0.1z3 + 0.3z4)(1 — 5(4)),

1—68(iz) =
bz (iz) + (1 — b)z?” (i2)

B(iz) + (Tres (b2 (k) + (1 — b)z® (k) (P(w))ki)’
(2.19)

and §(3) = 8(4) if i # iz

Then, applying Lemma 2.2.2, by (2.18) and (2.19),
we get

2(8,w,7%) = bz(B,w,7°) + (1 - b)z(B,w, 7%).

(2.20)
By (2.20), > ;e (8, w, 7'3; i) = a — 1, so that from
(2.19), we can assume that 6 = 6. Thus, z(8,w, %)
is not an extreme point. The above discussion
shows that ext({z(3,w,7): (w,7) € (Il x Sg)}) C
{z(B,w,7) : (w,7) € I x Sg}. which implies, to-
gether with (2.15), that (2.14) holds.

Theorem 2.3.3. For COP, there erists an optimal
pair in II x Sg.

Proof. There exists an optimal pair (w*,7*) €
s x Sg from Corollary 2.3.1. For o/ := ]E}‘," [r*] £
o, (w*,m*) € X?z}a,(ﬂs x Ss). Hence, since the ob-
jective function of MP(II) is linear, from Lemma
2.3.2 the theorem follows. g

Example. Here, we give the following numerical

example:
s = {1,2,3,41,A = {1},a = 3,8 =
(0.25,0.25,0.25,0.25),
0.3 04 0.1 0.2
04 0.1 0.2 0.3
i']- = ’
(Pi5(1)) 02 03 04 0.1
0.3 03 0.1 03

c(1,1) = 0.6,¢(2,1) = 0.1,¢(3,1) = 0.5,¢(4,1) =
0.4,r(1) = 4,7(2) = 3,r(3) = 2,7(4) = 2.

Letting z; = z;; (¢ € S), the Mathematical
Programming formulation (MP(II)) for the corre-

T1+To+z3+74 52,
zi,T2,T3,T4 g 0, 1 z 6(1)?6(2)1 6(3)’ 6(4) g 0.

After a simple calculation, we find that the op-
timal solution of the above is z} = 0,23 =
89/156,z% = 113/156,z; = 55/78,8%(1)
1,6%(2) = 129/574,6%(3) = 6*(4) = 0 and the
optimal value is 611/195(= 3.13). Note that the
value is 75/82(= 3.06) for 6(1) = 4(2) = 1 and
5(3) =6(4) =0.

Thus, by Corollary 2.3.2 and Theorem 2.3.3, the
pair (w*,7*) € Iy x Sg with w*(i) = 1 for all
ieSand f(1) =6*1) =1,f(2) =62 =
129/574, f7"(3) = 6*(3) =0, f™ (4) = &*(4) =0 is
optimal for the corresponding COP and the opti-
mal reward J(8,w*,7*) = 611/195.

3 Finite MDPs
constraints([19])

with multiple

3.1 Multiple-constrained problem

The aim of this section is to establish a Math-
ematical Programming method for finite state
stopped MDPs with vector-valued terminal reward
and multiple running cost constraints. In Section
2, we consider a optimization problem for étobped
Markov decision processes with a constrained stop-
ping time. The problem is solved through ran-
domization of stopping times and Mathematical
Programming formulation by occupation measures.
Here, we consider the vector-valued and multiple
constrained case. The optimality is defined by
the concept of efficiency, based on a pseudo-order
preference relation <k induced by a closed convex
cone K in RP, where R? denoted the set of real



p-dimensional row vectors . Then a Pareto opti-
mization with respect to the pseudo-order <k is

considered.

Let K C RP be a nontrivial closed and pointed
convex cone (cf. Stoer and Witzgall[36]). We intro-
duce a pseudo-order relation <x on R? by z <x y
if y — z € K. For a nonempty subset U C R?, a
point z € U is called efficient with respect to the
order <k on R? if x < y for some y € U implies
z =y. Let e(U) denote the set of all efficient points
of U with respect to <x.

For any a = (al,...,a*) € R* and initial distri-
bution 8 on S, let
A¥(a,B) :={(m,7)elIx S |

Ep i (X, A) Satforl=1,...,k}.
(3.1)

We shall consider the vector-valued constrained

optimization problem (VCOP):

VCOP : Maximize
Epr(X,) == (Egri(X,), ..., EgrP(X,))
subject to (m,7) € A¥(a, B).

A pair (7*,7*) € A¥(a, B) is called Pareto optimal
if

E; r(X,-) € e({Ezr(X,)|(m,7) € A¥(a, B)}).
(3.2)
Note that if ¢ = 1 for [ = 1,2,...,k, the run-
ning cost constraints are reduced to EZT < d, where
d = min;<;<x @' + 1, whose case have been studied
in Section 2, so that works in this paper are thought
of as a generalization of those in Section 2.

Let K* denote the dual cone of a convex cone
KCRPie,K*={bcRP:(bz)>0forallze
K} where (-, -) means inner product in RP. The set
of interior points of K* is denoted by int K*.

The following result is well known (cf. Benson[6]).

Lemma 3.1.1. Let B C RP be compact and con-
vez set. Then x € e(B) if and only if there erists
b € (int K*)(b # 0) such that (b,z) > (b,y) for all
y€B.
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3.2 Mathematical Programming for-
mulation

Let RM1 XNz be the set of real Ny x N> matrices.
For any subset U C II x S, denote

XkU) :=
{.’L‘(ﬂ, T, i) a)iES,aeA : (7r9 T) eUn Ak(a’ ﬂ)}
(3.3)

Note that X¥(U') c RN1*Nz,

Here, we define the multi-objective Mathemat-
ical Programming problem(MMP(I)) related to
VCOP as follows: '

MMP(I):
Maximize _ r(i)y(i) := (}_ r'()y(i), ..,
t€S €S
> (i),
1€ES

subject to z € X*(I x S), y € R™ and
yG@) =BG+ Y. z(j,a)psi(a) — z(3), i€ S,

JES,a€A
where z(i) = Z z(1,a).
a€A
Then, we have the following theorem, which is
proved from Lemma 3.1.1 by the use of Theorem
2.2.1.

Theorem 3.2.1. VCOP is equivalent to
MMP(I), i.e., a pair (n*,7*) is Pareto optimal
for VCOP if and only if the corresponding occu-
pation measure {z(B,7*,7%1,a)} € XK(II x S) is
Pareto optimal for MMP(I).

Proof. From Lemma 3.1.1, an efficient point for

VCOP is given by solving the following maximiza-

tion problem for some b € (int K*):
Maximize (b, Egr(X.))
subject to (m,T) € A*¥(a, B). (3.4)

Applying Theorem 2.2.1 will complete the proof of
Theorem 3.2.1. g

3.3 Pareto optimal pair

In this section, we present another Mathemati-
cal Programming formulation by which VCOP is
explicitly solved.



To this end, we define several basic sets below.
For simplicity, we put (zis) = {Zia}icSaca €
RMxN2 gnd § = {6(i)}ies € RM. For any ini-

tial distribution 8 on S and a = (al,...,a*) € Rk,
let
(((#ia), 8) € RM*M X RY ‘
1) Y i = BE( - 6(0)+
a€A
> ziapsila)(1 - 6(i), (i€ 9)
A jE€S,a€EA
V=1 @0 <1, (e (-
(i) Y JGa)mieSd,
i€S,a€A
1=1,2,...,k)
\ (iv) Tia 20, (i€ S,acA) )
(3.5)
Q* := {(zia) € RM*M2 : ((244),0) € Q* for some 6}.
(3.6)

We introduce the following assumption.

Assumption (x). Foranywe€llg and (1 1 =
k),

max ¢ (ijw) >0 for each i € S (3.7)

15i5k
where c(ilw) = 3 c 4 ¢ (3, a)w(ali).

We have the following theorem, whose proof is
similar to ( Theorem 2.3.1, Lemma 2.3.1 and The-
orem 2.3.2) and omitted.

Theorem 3.3.1. Suppose that Assumption (x)
holds. Then

(i) Xk(H X 8) = Xk(HM X SM) = Xk(ns X Ss).
(ii) Qk = Xk(ns X Ss).
(iii) Q* is compact and convez.

The following corollary holds clearly from Theorem
3.3.1 and observing (3.6).

Corollary 3.3.1. X*(Ils x Ss) is compact and con-

Ver.

Remark. For any ((ziq),8) € QF, we define a sta-
tionary policy w as follows:
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Foreacha € Aand i € S,

xﬂ, if ;’L‘,; >0,
w(alt) = ¢ i
any prob. distrib. on 4, ifz; =0,
(3.8)

where z; = D c4 Tia- Then, z = (z:) with z; =
z(B,w,8;4),i € S is given as a unique solution of
(2.3).

Also, (i) and (iii) in (3.5) are rewritten as follows:

zi = B(i)(1 - 6())+

Y ies TiPii(w)(1 - 6(i)),i €S
(iii") Yiesclilw)z Sall=1,2,... .k

2

(i)

(3.9)
where d(ilw) = 3¢ 4 ¢ (i, a)w(ali).
Now, we define another multi-objective Mathemati-
cal Programming problem (MMP(II)) for VCOP:
MMP(II) : Maximize » r(i)y:
i€S
subject to () € QF,
yi =BG+ Y. Tjepsila) - > ia, i€ 8.
j€S,a€A a€s
Here we get the following corollary which is obvi-
ously given from Theorem 3.2.1 and 3.3.1 and Corol-
lary 3.3.1.

Corollary 3.3.2. The following (i)—(ii) hold:
(i) VCOP and MMP(II) are equivalent.

(ii) A Pareto optimal pair erists on Il X Sg.

For any stationary policy w € Ilg, let n(w) be
the total number of randomization under w, that
is, n(w) = 3 ;eg(m(i, w) — 1), where m(i,w) is the
number of elements in {a € A|w(ali) > 0}. De-
fine TI% := {w € IIs : n(w) £ k}, and Sk =
{r € Ss|fT(i) € {0,1} except at most k states}.
For (zis) € Q% I((zi)) < {1,2,...k}
is defined as follows: Z((Zia)) - (Il €
{1,2,...,k} : Ticsaea ¢(6:a)Tia = o'} For any
{l1,l2,...,ln} C {1,2,...,k}, let Qq,...1n}
{(®ia)|((ia),8) € Qquy ta,...1s} for some § € R},
where Qqi...1ny == {((%ia),6) € @ : I((zia)) =
{l1,13,...,1x}}. For any compact convex set D we
denote by ext(D) the set of extreme points of D.

Then, we have the following, whose proof is done

in Section 3.5.



Lemma 3.3.1. Under Assumption (x), it holds that
for any {l;,...,ln} C {1,...,k},

ext (Qq,...1n}) C {(B,w,6) : (w,6) € IT§ x S§},
(3.10)
where k i3 the number of constraints.

The existence of a Pareto optimal pair of station-
ary policy and stopping time requiring randomiza-
tion in at most k states is given in the following.

Theorem 3.3.2. Suppose Assumption (x) holds.
Then a Pareto optimal pair (n*,7*) for VCOP ez-
ists in H’§ X S§, that 1is,

e({Eg r(z,)|(m, 7) € A¥(, B)})
C e({E5 r(zs)l(w, 8) € (II§ x S§) N A*(a, B)}).
(3.11)

Example 3.1

Consider the following numerical example with p =
1.

S ={1,2,3,4},A = {1}, (a1,a2) = (0.5,0.4),8 =
(0.25,0.25,0.25,0.25),

0.3 04 01 0.2

04 01 02 03
i'l = ]
(pi5(1)) 02 0.3 04 0.1

03 03 01 03

d(1,1) = 06,c(2,1) = 0.1, c'(3,1) =
0.5,c(4,1) = 04,c%1,1) = 06,c%2,1) =
0.05,c%(3,1) = 0.1,c%(4,1) = 0.8,7(1) = 4,7(2) =
3,7(3) = 2,r(4) = 2. Letting z; = z;; (i € S),
the Mathematical Programming problem for the
corresponding constrained optimization problem,
(MMP(II)), is given as follows:

Maximize —z1 —0.1z2 + 0.723 4+ 0.924 + 2.75
subject to

z1 = (0.25 + 0.3x; + 0.4x2 + 0.2x3 + 0.3z4)(1 - 6(1)),
Ip = (0.25 + 0.4z, + 0.1z2 + 0.3z3 + 0.3$4)(1 — 5(2)),
z3 = (0.25 + 0.1z; + 0.2z2 + 0.4x3 + 0.1z4)(1 — &(3)),
x4 = (0.25 + 0.2z; + 0.3z2 + 0.1z3 + 0.374)(1 — 6(4)),
0.6z + 0.1z2 + 0.5z3 + 0.4z4 < 0.5,

0.6z1 + 0.05z2 + 0.1z3 + 0.8z4 < 0.4,

2 20,0<6(i) < 1,i=1,2,3,4.

After a simple calculation, we find the optimal
26/71,
57/142, 6*(1) = 1,6*(2) =

solution of the above is z} = 0,23 =

zy = 43/Tl,z} =
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79/209,6*(3) = 0,6*(4) = 33/128 and the opti-
mal value is 1242/355(= 3.49859). Note that the
value is 285/82(= 3.47561) for §(1) = 6(2) = 1 and
0(3) =4(4) =0.

Thus, by Theorem 3.3.2, the pair (w*,7*) €
1% x 8% with w*(i) =1 foralli € S and 7" (1) =
& (1) = L,f7(2) = §*(2) = 79/209,f7°(3) =
6*(3) = 0, f7"(4) = 6*(4) = 33/128 is optimal for
the corresponding constrained optimization prob-
lem and the optimal reward 1242/355. Note that
™ € S2.

3.4 Lagrange multiplier approaches

In this section, we define the Lagrangian associ-
ated with VCOP and the saddle-point statement is
given (cf. Kurano et al.[27]). Consequently, by solv-
ing a parametric Mathematical Programming prob-
lem defined in the sequel, a Pareto optimal pair is
obtained.

Let b = (by,...,bp) € (int K*). The Lagrangian,
Lb, associated with VCOP is defined as

Lb((1r, T),A) =
P ] k —1
LES(r (X)) + Y Mle! —Eg(3 d(Xe, Ar)))
i=1 1=1 t=1

(3.12)

for any (w,7) € 1 x S and A = (Ay,...,A) € RE,
where RE is the positive orthant of R¥.

Hereafter A = (A1, A2,...,Ak) € ]Rf‘,_ will be written
simply by A 2 0.

For the Lagrangian approach we shall refer to
Luenberger([28]. We have the following saddle-point
statement, whose proof is similar to (Theorem 2,
p-221 in Luenberger(28]) combined with the use of
the scalarization technique and omitted.

Theorem 3.4.1. (cf. Luenberger(28]) For some
b € (int K*), suppose that the Lagrangian L® has
a saddle-point at (7*,7*) € [ x S and X\* € Rk,

i.e.,

Lo((m,7), %) S L%((x*, %), A%) £ L¥((x*,7*), )
(3.13)
for all (m,7) € I1x S and X € RX. Then, (7*,7*) is
a Pareto optimal for VCOP.



In order to have the existence of a saddle-point of
the Lagrangian L%(b € (int K*)) we introduce the

set of N3 x Ny matrices as follows:

For M > 0, let
( (.’L'ia) c RN1XN2 . W
@) Y i =BE)L - 6(9)
a€A
+ 3 wapiia)(1-8(3) (i€ S)
Q(M):={  i€Saca >

(i) 0S6() <1 (i€8)
(i) D TwSM-1

i€S,a€A
| (v) 220 (icSac4)

(3.14)
Note that Q(M) is 1dentlcal with the set of fea-
sible solutions of the Mathematical Programming
problem (MP(II)) introduced in Section 2 to solve
stopped MDPs with a constrained stopping time
S M,
where w € Ilg is constructed from (z;,) through
(3.8). Under Assumption (), it clearly holds that
for a sufficient large M > 0

and condition (iii) of (3.14) means EZT‘S

Q* c Q(M). (3.15)

Henceforth, M > 0 will be fixed such that (3.15)
holds. '

By using occupation measures defined in Section
2, the Lagrangian L?(b € (int K*)) can be rewritten

as follows:

Lb((%40), N) : ZZblrl(z yit+
i€S =1
k
Zxxa’— Y dia)e) (3.16)
jES,a€A

= ). (Zpu(a)r”(J)—r"(l)—Z/\zc (i,0))Tia

i€S,a€A jES
+ Z Aot + Z r°(2)B(1),

i€S

(3.17)

where y; = pB3) + Z;es aca TiaPji(a) —
> aca Tia and ro(4) = Zl Lburt (), for (xia) €
Q(M) and X € RX.

We need the following condition.
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Assumption (xx). (Slater condition) There exists
(zia) € Q(M) such that

> da)wia < o (3.18)
i€S,a€A
foralll=1,...,k.
Then, applying (Theorem 1, p.217 in

Luenberger|28]) we have the following Lemma un-
der Slater condition.

- Lemma 3.4.1. Under Assumption (x) and (xx),

for any b € (int K*), the Lagrangian L® has a
saddle-point at (z},) € Q(M) and A* € RE, ie.,
L2((zia), X*) £ L¥((x3), ) £ L((23,), A) for all
(zia) € Q(M), ) € RE.

If we construct a stationary policy w* from
(z¥) € Q(M) in Lemma 3.4.1 through (3.8),
(w*, \*) satisfies (3.13). Thus, we have the follow-
ing from Lemma 3.4.1.

Corollary 3.4.1. Under Assumption (x) and (xx),
for any b € (int K*), the Lagrangian Lb(,-) has a
saddle-point (w*, \*) € IIs X RE.

Applying the results above, we can present a
parametric Mathematical Programming approach
to obtain a Pareto optimal pair for VCOP. For any
be (int K*) and A € R, let "

r(i,alb, ) == 3 pis(a)r b(J)—Tb(l)—Z/\zc (i, a).

jEs
(3.19)

For b € (int K*) and A € R%, a parametric Math-
ematical Programming problem MP(b, ) will be

given as follows:

MP(b, A) : Maximize Z (%, alb, \)Tia

- i€S,a€A
subject to (zis) € Q(M).

Then, by using a result in Section 2, for each A 20
we have the optimal value v(b, ) for MP(b, \). By
(3.17) and Lemma 3.4.1, there exists A* € Rk such
that ‘

v(b, A*)+Z Aol = mm(v(b /\)+Z Nat). (3.20)
=1 1=1

From this multiplier A\*, we solve MP(b, A*). Let

((x%,),0*) be a solution of MP (b, X*). Then, from



the discussion above, ((w*, §*), A*) is a saddle-point
satisfying (3.13), and we can say that (w*,6*) is a
Pareto optimal pair for VCOP and the value of
MP(b, \*) is the expected rewards corresponding
the Pareto optimal pair (w*, §*), where w* is a sta-
tionary policy determined by z}, through (3.8).
Example 3.2

This is Example 3.1. By solving the equation (3.20)
with b = 1, we get A* = (29/213,248/213) and
the value of the saddle-point is 1242/355. In or-
der to obtain a optimal pair for VCOP, we solve
MP(1, X*) and get the optimal pair (w*, 7*) € 13 x
8% as follows: w*(i) =1 foralli € S and f7 (1) =
6*(1) = 1, f7(2) = 6*(2) = 79/209,f7°(3) =
6*(3) =0, f7"(4) = é*(4) = 33/128 and the corre-
sponding optimal reward 1242/355, which is equal
to the numerical results in Example 3.1.

3.5 Proof of Lemma 3.3.1

In this section, we prove Lemma 3.3.1.
By argument similar to those used in (Theorem
3.8, p.34, in Altman[4]) we can show that

ext (Q{ll,...,l,.}) C {z(B,w,d) : (w,8) € IT§ x Ss}.
(3.21)
Let (w*, §*) € I1% x Ss be such that z(8, w*, §*) €
Q(iy,....1n}- Suppose that there exists jn,(n =
1,...,h+1) with

0<6*(jn) <1 for n=1,2,...h+1. (3.22)

For simplicity, put z* = z(8,w*,§*) suppressing
B, w* and 4*.

Let L := {lyl,....lh}, L = {1,2,...,k} —
L,J :={j1,j2,.--,jn+1} and J := S — J. For any
row vector = (z1,Z32,...,zN,) € R®, we can write
z = (z,,73), where z; and z5 are subvectors of
zand 25 = {z; : i € J} and z5 = {z; : i € J}.
Also, P(w*) will be partitioned into submatrices
as follows:

P&(w:) - (PJ(W*)JJ P6('w‘).]7) ,

Pé(w*)3, Pé(w*)57

where P°(w*);; = (P;j(w*)(1 - 6(5))).i € J;j € J

and other submatrices are similarly defined.
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For simplicity, we write

Pi(w*) = (Pl Pz) .
P Q

Let c(w*) = (ca(w*)), where cy(w*) = &(i|w*) for
i€ Sand l € {1,2,...,k}. C(w*) will be parti-
tioned as done in the above:

CJI) ,

Cit

C
C(w*) = ( L
Here we consider the following inequality system

CyL
suppressing w*.
(cf. (3.9)).

(1) z5=Bs(1-65)+z;P + z5Ps,
(i) 23 = B7(1 - 83) + 24P + 23Q,
(iii) zjCyr + :lijCjL = ay,

(iv)

2sCy + 2305 < o,

(3.23)
where 8;(1 - &5) = (B(3)(1 — 8(3));4 € J), By(1 -
637) = (B()( — 8(i));i € T) and = and < mean
componentwise relations.

We. note that z* = (z3,23%) and §* = (63,0%)
satisfy (3.23) obviously.

From Assumption (%), it clearly holds that
limy, .00 Q™ = 0, so that (I — Q)~! exists and by
(ii) in (3.23) we get

3= (B5(1 - 65) +zsP)(I - Q)™", (3.24)

where I is an identity matrix with the same dimen-
sions as Q.

Also, since (i) in (3.23) includes only §; with re-
spect to 4, it uniquely determines 8, if z; and &5 are
given. Thus (i) and (ii) in (3.23) determine uniquely
z7 and d; if z; and &5 are given. Inserting from
(3.24) into (iii) in (3.23), we have that

2)(CoL+P(I-Q)7") = ar—-B5(1-65)(I-Q) c3;.
(3.25)
Now, we denote by D the set of all pairs (z7, d5)
satisfying (3.23).
Let D be the set of all z;,(z; 2 0) satisfying

(3.25) with &5 = 6%, that is,
D={z,|(z;,65)€ Dandz;20}.  (3.26)

Observing that (3.25) with 65 = 6% has h equations
and h + 1 unknown elements, we find that D is a



polyhedral convex set with at least one dimension.
Since (3.22) means that z*; € D is a relative interior
point in D, there exists 0 < v < 1 and z},2% € D
with

ay =yzy + (1 - )a3. (3.27)
Let 2%, 8} and zZ, 63 be those determined uniquely
thorough (i)-(ii) in (3.23) with z; = z},d7 = &%
and x5 = 22,07 = 3% respectively. Let ! =
(z3,22),6' = (8},6%) and & =

We can assume that z! and z2? satis-

(:1:5,:1:%),.’1:2 =
(93,53).
fying (iv) in (3.23) by choosing z} and 2% suf-
ficiently near to z%. Applying Lemma 2.2.1 we
get ! = z(B,w*, ') and 2?2 = z(B,w*,é?).
Thus, we have that z(8,w*,8*) = vz(8, w*, ') +
(1 = v)z(B, w*, %), which implies z(83,w*,8*) ¢
ext(Qqi, 15,...,1»})- This completes the proof. g

~—

4 Countable state MDPs with a
constraint ([20])

4.1 Problem formulation

In this section, the optimization problem for a
stopped decision process with countable state space
is considered. Stopping times 7 are forced to be con-
strained so that E7 < « for some fixed o > 0. We
introduce a randomized stationary stopping time in
order to extend the entry time of a stopping region
and prove the existence of an optimal constrained
pair of stationary policy and stopping time utiliz-
ing a Lagrange multiplier approach. In this sec-
tion, we shall formulate the constrained optimiza-
tion problem for the countable state space referring
to Hordijk [16]. Also, an optimal constrained pair
of policy and stopping time is defined. A dynamic
system, at times t = 0,1,2,..., is observed to be
in one of a possible number of states. Let S be the
countable state space, denoted by S = {1,2,...}.
We denote by P(S) the set of all probability vec-

tors on S, i.e.,
P(S):={p=(p1,...)Ip: 206 21),) _ps S1}.
i=1

We allow for breaking down or disappearing of the
system with positive probability, so . opi S 1.
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For each i € S, P(i) is a subset of P(S), which is
assumed to be given. If at time ¢ the system ob-
served is in state ¢ and the decision maker takes
p(%,-) € P(i), then the system moves to a new state
j € S selected according to the probability distribu-
tion p(¢,-). This decision process is then repeated
from the new state j.

Let P be the set of all stochastic matrices where
i-th row vector p(i,-) € P(i). A notion of conver-
gence on P is given as follows: a sequence P, =
(pn(i,7)) € P converges to P = (p(i,j)) € P if
pn(i,5) — p(i,5)(n — oo) for each i,j € S. In
this case, we write lim,_0o P, = P. Also, P with
this topology forms metric space (cf. Hordijk[16]).
An element of P is called a transition matrix. The
policy R for controlling the system is a sequence of
transition matrices, Py, P, - -- € P, denoted by R =
(Po, P, . ..), where P, gives the transition probabil-
ity at time ¢(t 2 0). Here we confine ourselves to
memoryless or Markov policies, which is shown to
be sufficient to our optimization problem (cf. Theo-
rem 13.2 in Hordijk[16]). We denote by R the set of
all policies. If the policy takes at all times the same
transition matrix, i.e., P® := (P, P,...),P € P, it
is called a stationary policy, denoted simply by P

and induces a stationary Markov chain.

The sample space is the product space 2 = S
such that the projection X, on the n-th factor S
describes the state at time n. For each R € R
and initial state ¢ € S, we can define the mea-
In order to
solve our problem described in the sequel, we in-

sure P; g on Q in an obvious way.

troduce randomized stopping time (cf. Chow et
al.[9], Irle[21] and Kennedy[26]). To this end, en-
larging Q to Q := Q x [0,1], let G, = F, x By,
where F, = o(Xp, X1, ..., Xn), the o-field induced
by {Xo,Xi,...,Xn}, and B; is Borel subsets on
[0,1](n 2 0) and Goo = Foo X By, where Fu
is the smallest o-field containing all F,(n 2 0).
Let N := {0,1,2,...} U {oo}.
7:Q — N a (randomized) stopping time with re-
spect to G := {Gnp,n € N} if {Tr =n} € G, for each
n € N. The class of stopping times with respect
to G will be denoted by C(G). Let c: P xS - R

We call a map



and 7 : S — R be running cost and terminal re-
ward functions respectively. For simplicity, we put
cp(i) := c(P,i)(P € P,i € S). Hereafter, we assume
that for P,Q € P with p(i,-) = q(3, -) cp(i) = co(i)-
For any policy R = (P, P,,...) € R and 7 € C(G),
we define the expected reward Jg ,(i) by

T—1

JR.T(i) = ]Ei.R (Z C(Xn) + T(X‘r)) ’ (4-1)

n=0
where E; g is the expectation with respect to the
product measure P} p := P; p xps on Q and p is a
Lebesgue measure on B;. Note that 7 = oo with
positive probability is admissible with zero reward.
A 7 € C(G) is called randomized stationary if for
each n 20,

IP:-,R(T = n|X01 X1, .. "Xn—lan =747 Z n)

is depending only on j € S. In such a case, we can
define the set {4(j),j € S} by

0(j) :=P; p(r =n|Xo,..., Xpn-1,Xpn =4, 7 2 n).

(4.2)

Then obviously

0<6(j)S1 foreach jeS  (4.3)

Conversely, for any set {6(j), j € S} satisfying (4.3),
we can define a randomized stationary stopping
time 7 through (4.2). Such a stopping time is said
to be determined by {4(j)}. When §(j) = 0 or
0(j) = 1 for all j € S, the corresponding stopping
time is called simply stationary, which is a entry
time of I" := {j € S|6(j) = 1}, denoted by 7.

Let o > 0 be given arbitrarily. Constrained op-
timal pairs will be defined with respect to a given
initial state. So without loss of generality we may
assume the initial state is “1”. Let

A(G) :={(R,7) e Rx C(G)|E1,r(7) £ a and
Er(r(Xr)) < oo},
where Er(r(X;)) denotes the vector with ith com-

ponent E; g(r(X;)). In this paper, we will consider
the constrained optimization problem:

maximize Jg (1), subject to (R, 7) € A(G).
(4.4)
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The constrained pair (R*,7*) € A(G) is called op-
timal in state 1 € S if

Jpe,r+(1) 2 Jr2(1) (4.5)

for all (R, T) € A(G).
We shall use the following.

Lemma 4.1.1. (Generalized dominated conver-
gence theorem cf. [32, 35])

Let P,,P € P and gn,g,yn,y be vectors with
limp, ,p P,e = Pe, g — g,yp — y as n — oo,
where e = (1,1,...). If Py, — Py as n — oo and
|gn| £ yn for alln 2 1, then P,g, — Pg asn — oo.

4.2 Lagrange formulation for con-
strained optimization

In this section, the Lagrange multiplier is intro-
duced and the parameterized version of stopped de-
cision process is analyzed.

Introducing the Lagrange multiplier A 2 0, let

cp(i) :==cp(i)— A, i€S and (4.6)
-1
J.() =E;g (Z AMNXn) + r(X,.)) , i€S
n=0
(4.7)

for each (R, 7) € R x C(G). The value function J*
is defined as

JAG) = sup

A -
JR,T(z)'
(R,T)ERXC(G)

(4.8)

If J}(i) = J} (i) for all i € S, the pair (R,7) is
called A-optimal.
We need the following assumption.

Assumption (U): The following (i)-(iii) are satis-
fied:

(i) P is compact and convex,

(ii) cp(?) S 0 for all P € P and i € S and cp(i)
isconvex in P P foreachie€ S

(iii) There exists a vector u with u 2> |r|e such
that



e+ Pu<u, and |cple + Pu < u, (4.9)
im PNy =0 forall PP and (4.10)
Plin}l) Pu = Pyu for all Py € P. (4.11)

For each )\, the next theorem holds, under the fol-

lowings:
Q) :={Q e P| II‘:r’lea%((c)}‘; +PJ =ch+QJY,

L\ :={i € S|J*(i) =r(i)}  and

L) :={i € S|r(@) > r}gxgg(ci‘; + PJ*)(4)}.

Theorem 4.2.1. (cf. Chap. 3, 4 in Hordijk[16] and
Chow et al.[9]) Suppose that Assumption (U) holds.
Then, for any A 2 0, we have:

(i) ¥ oEr|c*(Xn)| < 00 for all RE€R.

(ii) |J* £ (1 + \)u and J* satisfies the following
Bellman’s optimality equation.

JA=rv >+ PJ). 4.12
rV max(cp + PJ%) (4.12)

where a V b = max{a, b} for real number a,b.

(iii) P;o(tr(n) < o0) = 1 forallQ € Q(A\) and
a pair (Q®°, ) with Q@ € Q(\) and () C
IV c T()) is A-optimal ini € S.

Corollary 4.2.1. Suppose that Assumption (U)
holds. Let Q(\),T'(A),L(X) be as in Theorem 4.2.1
(iii). Let {6(i) : i € S} be such that 0 < 6(i) <1
and 6(3) = 0 if i € T(A\), = 1 ifi € L(A). Then,
for the randomized stopping time T determined by
{86(3) : i € S} through (4.2), a pair (Q*,7) with
Q € Q()) is A-optimal.

The next three lemmas are useful in the next sec-
tion, whose proofs are done by referring to the idea
used in (Beutler and Ross[7], and Sennott[33]).

Lemma 4.2.1. For each i € S,J*(i) is non-

increasing and continuous in A 2 0.
For some A-optimal pair (Q,7())) with Qx €
Q(A), let

T(A)-1

VA(i) =E; Q. [ Z c(Xn) -I-T‘(X-,-()\)):| (4.13)

n=0
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and

K*(3) :=E; g, T(A). (4.14)

Lemma 4.2.2. For each i € S, K (i) and V(i)
are non-increasing in A(A 2 0).

Lemma 4.2.3. It holds that
(i) for each X 2 0,Q(}) is closed and convez.

(ii) Q(X) is upper semi-continuous in A 20, ie.,
if Qn € QAn), A — X and Qn — Q as
n — 0o, then @ € Q(A).

4.3 An optimal constrained pair

Theorem 4.3.1. If there ezists a non-negative
number X such that

]El,QX(T(:\-)) = a for some Q5 € Q(A),  (4.15)

X-optimal pair (Qx, (X)) is an optimal constrained

one.

By Theorem 4.3.1, in order to show the existence
of an optimal constrained pair, it is sufficient to
prove that there exist the multiplier X satisfying
(4.15).

To this end, we introduce

~ := inf{A\|K*(1) £ a} (4.16)

Since K*(1) is non-increasing in A 2 0, v is well-
defined in (4.16). Here, we need the following as-
sumption.

Assumption (D): (Slater condition cf.
Luenberger[28]) There exists a pair (R,7) €

R x C(G) such that
Eir(r) < . (4.17)
Lemma 4.3.1. Under Assumption (D), v < oo.

Let (\n) and (,) be any sequences such that

/\n > An+1, 571. < 5n+1 ('n g 1) (418)

and limy,—00 An = liMp_00 n = . Then, since JA
is non-increasing in A, we have that I'(6;) C -+- C
['(6,) C -+ C I'(As) C -+ C I'(A1). Here, we can
prove the following fact.



Lemma 4.3.2. The following holds:
(i) limpooo I'(An) = T(%).
(ii) limp_00 I'(ds) D L(9).

The existence of an optimal constrained pair is
given in the following.

Theorem 4.3.2. Suppose that Assumptions (U)
and (D) hold. Then there erists an optimal con-
strained pair (R*, 7*) such that R* is stationary pol-
icy and T* is a stationary stopping time determined
by {0(3)} with 6(3) = 1 if i ¢ L(y) and 6(i) = 0
if i ¢ I'(y) and requiring randomization in at most
one state.

Proof. For any sequences (\,),(d,) satisfying
(4.18), there exist sequences (Qn), (Q,.), such
that Q, € Q) (Q,) € QB.).K™(1) =
EI,Q“(TF(&.)) 2 a, K’\"(l) = El,ﬁ,.(ﬁ‘(«\n)) <
a (n 2 1). Noting P is compact, we can assume
thath—vgandan——»@asn-»ooforsomeg
and Q € P. By Lemma 4.2.3, Q,Q € Q(7). Also,
from Assumption (U), QVe — 0 as N — oo for all
Q € P, so that, applying Lemma 4.1.1, by Lemma
4.3.2 we get

(4.19)
(4.20)

]EI.Q(TE('y)) g a and

E, 5(mrm) S o

If at least one of inequalities (4.19) and (4.20) holds
in equality, from Theorem 4.3.1 it follows that there
is an optimal constrained pair for state 1.

Suppose that EI,Q(TL(.,)) > a and El’a(Tr(»,)) <
a. We must investigate the following two case. In
case that E; o(7r(y)) < a, from Corollary 4.2.1
there exists ra;domized stopping time 7 determined
by {6(i),i € S} with §(i) = 1if i € [(7),= 0
if i ¢ T(y) and 0 < §(3) < 1 if [(7) — [(7) and
E,,q(7) = a, which means from Theorem 4.3.1 that
the constrained pair (Q*,7) is optimal. For this
case, obviously 7 can be requiring randomization in
at most one state. In case that Ei q(7r(,)) > a,
noting E; 5(7r()) < a, there exists a € (0,1) such
that E}e@+(1-a@(r(y) = a. Since Q(y) is con-
vex, a@Q + (1 — a)Q € P, so that a constrained pair
((aQ + (1 — a)Q)*, 7r(y)) is optimal in state 1. g
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Using the idea of the OLA policy for the
usual stopping problem, we can derive some re-
sults. For each A 2 0, let I'*(\) := {i €
Slr(i) 2 maxpep(ch + Pr)(i)} and [*(A) := {i €
I'*(A)|r(3) > maxpep(cp + Pr)(i)}. Here we intro-
duce an assumption insuring the validity of the OLA
stopping time.

Assumption (A,): For any P = (p(3, 7)) €
P,p(i,j) = 0ifi € '*(X\) and j ¢ I'*(A) ori € L*())
and j ¢ [*(A).

Corollary 4.3.1. Suppose that Assumptions in
Theorem 4.3.1 hold and Assumption (Ay) holds for
v as in (4.16). Then, we have:

(i) T(y) =T*(7) and L(y) =L*(v).

(i) Let {J(i),i € S} satisfy that J(i) =
maxpep(ch + PJ)(i) fori € S and J(i) =
(i) fori e I*(v). Then, for the initial state
“17, J(1) = sup(r,nea(g) Jr.r(1)-

Example. Here we give a simple example for
a Markov deferiorating system with state space

= {1,2,...}. This system is formulated as fol-
lows:

(i) P C{P = (p(i, 1)) 3jes P(i, 5) = B,p(i,5) 2
0 for i,j € S} for some B(0 < B < 1) and P
is convex and compact.

(ii) For any P = (p(i,j)) € P,p(i,j) =0 if i > j.
(iii) cp(2) = —c for some c > 0.

(iv) The reward function r on S has a property
that for each P € P,(Pr — r)(i) is non-
increasing in i € S.

Under these assumptions, we observe that Assump-
tions (U) and (D) hold. Also, by simple calculation
we find that for A 2 0 there exists non-negative
integer ix < i, such that I'*(\) = [i,00) and
L*(A) = [iy, 00), so that Assumption (A,) hold for
all A 2 0. Thus, for any a > 0, from Corollary 4.3.1
we know that there exists an optimal constrained
pair for this system.
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