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1 Introduction

In this study we give some geometrical
meaning of the parametric representation con-
cerning fuzzy numbers with bounded supports
as well as we show the representation of the ad-
dition, subtraction and product which are de-
fined by the extensions principle due to Zadeh
and many other theoreticians of fuzzy logic.
Our aim of this research is to establish solving
L—fuzzy optimization problems under which
the A—fuzzy max order relation, which is a
total order one, is introduced over the set of
L—fuzzy numbers with 0 < A < 1. In case that
feasible sets of L—fuzzy optimization problems
are uncompact we discuss criteria to guarantee
the existence of optimal solutions by applying
L—fuzzy analysis in which the subdifferential
of L—fuzzy functions and the mimimax equal-

ity play an important role. Under that feasible

sets are compact L—fuzzy optimization prob-
lems have real optimal values at real optimal

solutions.

2 Parametric Representa-

tion

There are many fruitful results on repre-
sentations of fuzzy numbers, differentials and
integrals of fuzzy functions ( see, e.g., in
[1, 2, 3, 4, 5, 6, 7, 8 etc). In this study we
give some geometrical meaning concerning the
parametric representation of fuzzy numbers.

Let I = [0,1] and R = (—00, +00). A fuzzy
number with a center is characterized by a

membership function p as follows:

Definition 1 Define a set of fuzzy numbers
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with bounded supports by
F& = {p: R — I satisfying (i) — (iv) delow}.

(i) There ezists a unique m € R such that
p(m) =1;

(ii) The support set supp(p) = cl({§ € R :
(&) > 0}) is bounded in R;

(iii) Let J = {£€ € R : u(§) > 0}. The
membership function u is strictly fuzzy
convez on J, ie, p(Aé + (1 — Né&) >
min{u(é1), u(€2)] for 0 < A < 1 and
§1,§2 € J such that &, # & 5

(iv) p is upper semi-continuous on R.

From the above definition the following theo-
rem shows that fuzzy numbers mean bounded
continuous curves in the two-dimensional space
R2. Condition (iii) plays an important role
in the proof (cf. [9]). Denote the follow-
ing parametric representation of u € Fgt by
21(a) = min La(u),23() = maxLa(y) for
0<a<1land

La(p) = {£€R:p(§)2a},
71(0) = mincl(supp(p)),
z2(0) = maxcl(supp(u)).

It follows that L,(p) = [z1(a), z2(a)).

Denote fuzzy numbers z = (z1,%2),y =
(y31,¥2) € Ft. From the extension principle
of Zadeh, it follows that

Bzy(€)

= Jmax. min(pz(£1), py(€2))

= max{a€l:{=&+&,

&1 € La(pz), &2 € La(l‘v)}

= max{a€l:

€ € [z1(a) + y1(a), 72(a) + y2(a)]},

where u, 1, are membership functions of z, y,
respectively. Thus we get z+y = (21 +y1,Z2+
¥2)-

From the above addition and multiplication,
it follows that z — y = (z1 — ¥2,22 — 11)-

Theorem 1 Denote z = (z1,22) € F&,

where z1,z2 are functions from I to R. Then
the following properties (i)-(iii) hold:
(i) z: € C(I),i =1,2. Here C(I) is the set of

all the continuous functions on I;

(ii) There exists a uniqgue m € R such that
z1(1) = z2(1) = m and z1(a) < m <

z2(a) fora € I;

(iii) One of the following statements (a) and
(b) holds;

(a) Functions z1,z2 are strictly increas-
ing, strictly decreasing on I, respec-
tively, with z,(a) < z2(a) for 0 <
a<l;

(b) z1(a) =z2(a)=m for0<a<1.

Conversely, under the above conditions (i)

-(iii), if we denote

pz(§) =sup{a € I: z1(a) < € < z2(a)}

then p, is the membership function of z, i.e.,
z € F.

Proof. See [9].
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By the above theorem we have the follow-
ing theorem which means significance in prov-
ing the existence and solving of optimal solu-
tions of fuzzy optimization: problems by apply-
ing the generalized Newton method which can
be proved by the contraction principle in the
complete metric space (see [9]).

Denote a metric of z =

(y1,2) € F3t by

(31,$2),y =

d(z,y) = 'igr;(m(a) - y1(a)| + |z2(@) — w2 (@)]).

Theorem 2 It follows that statements (i) and
(i) hold.

(i) The metric space (Fgt,d) is complete.

(ii) The real set R is a subset in FZ'.

Proof. See [9].
Let £ = (z1,22) € Ff. Denote z < y, if

minz, < miny, and maxz, < Maxyq

for o € I. The relationship < is called fuzzy-
max order, which is partially order relation.

Immediately we get the following theorem.

Theorem 3 ( [5]) Let z = (z1,%2),y =
(y1,y2) be L — R fuzzy numbers. Ifz = y,

then we have

z1(1) < 91(1), «1(0) < 41(0)

In order to decide the order relationship be-
tween z and y which satisfies the above in-
equality we consider some kind of order rela-

tionship over Fr. Let 0 < A< 1.

Definition 2 ( [5]) Let ¢ = (z1,22),y =
(y1,y2) be L—fuzzy numbers. Denote z Xx ¥,
if the only one of the following cases (i)-(iii)
hold:

(i) |31(1) —51(0) = (21(1) — 21 (0))| < %1(2) -
z1(1) for y1(1) 2 z1(1);

(i) Alpa(1) —1(0) — (z1(1) — 22(0))]
< (1) —21(1)
< y1(1) = 31(0) — (z1(1) — %1(0))]
for 11(1) > z1(1) end (1) — 11(0) #
z1(1) — 21(0);

(iii) ly1(1) =221} < Alya (1) —2(0) — (21(1) -
1(0))] for 111(1)—111(0)-(%‘(1)*xx(o)) >
0.

From the above defifnition the following theo-

rem is immediately given.

Theorem 4 (See [5]) Let ¢ = (z1,22),y =
(y1,y2) be L—fuzzy numbers. The relation
z =< y holds if and only if one of the following

inequalities (i) or (ii) holds:

(1) Alz1(1)—21(0)]4+21(1) < Alyr1(1)—31(0)]+
y1(1) for y1(1) — 41(0) > z1(1) — z1(0)-

yz(O) —12(1) - (:’72(0) - 232(1)) < yl(l) - xlﬂ)'(ﬁ) /\[.’121(1)—2,'1(0)]+.’51(1) < X[y;(l)—yl(O)]+

Let Fr be the set of L-fuzzy numbers and
let Fr C Ft. In the case that z X y is false
for £ = (1,%2),y = (¥1,¥2) € FiL, then we

have

31(1) = 1(0) — (z1(1) — 21(0)) > [ (1) — 1 (V)]-

1(1) for y1(1) — 11(0) < 21(1) — 21(0).
Thus < is a total order relationship over Fr.

By the above theorem we get the following
statement which plays an important role in
Section 4.
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Corollary 1 Let f* € R. Then there exists
no L—fuzzy number f € FL\R such that f =
f*ie,f 2\ f* and f* <x f.

In (7] they consider the following relation
in the sense of means defined by membership
functions.

Note. In considering a relation <p,, i.e.,

z <,, ¥y means that

1 1
/ a(z1(a)+z2(a))da < ] (1 (@) +1n(a))de
0 0

forz = (z1,22),¥ = (y1,12) € F2¢, we have the
following statements (i) - (iii). Let z,y,z €
FeL.

(i) z < z.

(ii) f ¢ <m y, and y <m z, then we have

z < 2.

(iii) If z <m v, and y <, z, then it follows
that x is equal to y in the sense of mean.
However they arn’t necessarily equal each
other in the sense of membership func-
tions. Thus the relation <,, isn’t an oder

relation over F.

In what follows we introduce an idea of
L—fuzzied numbers generalied by Ft. Let z €
Fr- The quadratic 22 of an L—fuzzy num-
ber z isn’t necessarily L—fuzzy number but
fuzzy number in FZ* (see [9]). For z =
(z1,22) € Fr and a € I, we have 22 = (22, z3)
if z1(@) 2 0; 2? = (z,22, maxz?,z2)) if
z1(a) S0 < z3(a);  2? = (¢, 2}) if 22(a) <
0. In this study we consider the left portion of
the membership function .2 is more signifi-
cant than the right portion of u,2. Denote an
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operator ()1, : Fgt — FL such that (z); =
(21(1), 21(1) — 21(0))1, for = = (z1,22) € FL.
We call that (z). is an L—fuzzized number.
Here the membership function of z is u.(¢) =

Sy for € R L: R Ry isa
shape function and £; = max(¢,0) if ¢ € R.
For z € ¥, we get the L—fuzzied number

(@)L = (21(2)%, 21(1)* - :(0)z;(0)))z,

where i = 1,5 =2 if ;(0)z2(0) < 0,i=j=1
if 1(0)z2(0) > 0 and |2,(0)| < |z2(0)|, i =
3 =2 if 21(0)z2(0) > 0 and |z,(0)| > |z2(0)|.
Let a shape function be L(£) = (1 — |¢])4.
For an L—fuzzy number z = (&,£); with
[éo] < £, which has the membership function

Hz(€) = L(3%7%), for ¢ € R. Then we get the
membership function

(l -'3@)*_ for ¢ < &2;
(1 - 5"%3@)4_ for £ > &3.

In this case we construct an L—fuzzy numbers

B2 (f) =

(%)L with the same portion as the left one
of pza. It follows that (22), = (¢2,£2).. For
z € ¥, and k € R we have (kz)L = kz.

3 L—fuzzy Analysis

In this section we discuss general type of
criteria for the existence of optimal solutions
of L—fuzzy optimization problems.

Let 0< A <1, F:FL - Fr an L—fuzzy
function and z € F;,. Define

OF\(z) ={p € FL : F(z) + ph <\ F(z + h)
Vh € .7:[,}.



The set OFy\(x) is
A—subdifferential of F at z. The L—fuzzy

said to be a

number p is called a A—subgradient of F at
z if p € OF)(x). We illustrate the following

example concerning the A—subdifferential.

Example 1 Let a = (a1(1),4,)L € Fi. De-
note a function F : Fr — Fr by F(z) =
(ax)r. Then there exists a \—subdifferential at
z OF\(z) = {(a1(1),pls) € FL : 0 < p < 1}
forxz e Fr.

Let a set

Fp={z= (2,27

e Fr,

z = (&',&%,---, "7 € FF;

j= 1a2a""n}
and elements

y= (ﬂlsgz)""gn)T € ‘FE

with a metric d(z,y) = 3_7_; d(#,%°). Then
it can be seen that FJ' is a complete metric

space. Denote the addition of z,y by
s+y= & +7,8 +7, -, 3" +§")
and the multiplication of z € 7,k € R by
kx = (k&' k&2, - -, k™)

where k27 = (kzi, ka), 3 = (¢}, 2)) € Fi, for
k >0 and k3 = (kz}, kz]) € Fi, for k < 0.
In what follows we discuss an extension
principle concerning the fuzzy function F :
Fp — F&. For example, an addition F(z) =
7! + 72, polynomial F(z) = (z!)? where z =
(2%,#%) € F2. Denote the membership func-

tion

BF@z)(§) =  sup

in
£=f(t1a"’)tn) j=1,+n al’ld C(Z)

Hz; (t.’i)) .

Here some f : R® = R,t = (t1,t3,:--,t) €
R",C(z) is a condition on the mem-
bership functions psz;,Jj 1,2,---,n, of
y,---,Z") € FP under which
f(t1,:--,tn) = F(t1,-+-,tn). In the case that

z = (2,---

F(z) = 7' + 22,z = (#',%%) we consider

f(t1,t2) =t1 +t2,C(2z) = @ and also
pr(=) () = S min (g (t5))

When F(z) = 23,z = (3!, 72, 23) then we have
f(tl,t2’t3) = t:{,C(z) = {#51 = pz2 = ﬂis}
and also

pro@= swp ( min [ust)-

é=tatats \j=1,2,3, andC/(2)

Let F : F} — Fr. The set epir(F) =
{(z,y) € Fp x FL : F(z) =<\ y} is said to
be a A—epigraph of F.

Definition 3 Let S be a convez set in F7. A
function F : § = FL is convez if epir(F) is

A—convez.

It follows that a function F : § — .7-‘}: is

A—convex if and only if F(kz + (1 — k)y) <»

kF(z) + (1 — k)F(y) for z,y € F2, and 0 <
k<1
In what follows we consider the following

L—fuzzy optimization problem
min F(z) subject to g;j(z) < (0,8;)c (P%)

where & = (61,02, ++,6m)T € R™ with ;20
for j = 1,2,---,m. Let F : F} — Fr and
g; : FT = FL be A—convex, respectively.

In order to give conditions for the existence
of optimal solutions of the problem (P§) we
denote thé following Lagrangian

m
L(w) =F(z) +Y_ nilgi(2)° + Mlg;z) — 8)),

i=1
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where g;(2)° is the center, £,,(.) is the spread
of the L—fuzzy number g;(z), respectively, and
w=(z,1) € FL xRY,n = (m,m,--*,0m) €
RT. An element (z*,7*) € FT x R is called
a saddle point of L if

L(2",n) 2x L(2%,17) 2a L(2,77)
for n € RT and z € CJ, where the feasible set

¢ = {zeFP:

g](z) jA (O’JJ)L for j = 1’2,- ..’m}_

From now on it is necessary to establish exis-
tence criteria for fuzzy optimization problems
by considering saddle points of the Lagrangian
functions and to propose iteration method, for
example generalized Newton method by apply-
ihg the idea of the subdifferential of convex
analysis. For example, the following results (I)
and (II) are expected to hold:

(I) Let S C F7 be convexand F : S — i, be
A—convex. Then it follows that 8F)(z) #

9 for z.

(IT) Assume that F: F} — Fp and g; : F —
FL,j =1,2,---,m, are A—convex. It fol-
lows that statements (i) - (iv) are mutu-
ally equivalent.

(i) An element w* = (2*,7*) € C§ is the
saddle point of L;

(ii) A point 2* € FT is an optimal solu-
tion of (P§);

(iii) The following relations (a) and (b)
hold:

(a) mjgi(z*) =0for j=1,2,---,m;

(b) 8Lx(w*) > 0. Here

OLa(w) = {p€ Fp x R™ :
L(w) + ph
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<x L(w + h),Vh € F} x R™}

for we FL x R,

(iv) It follows that

L(w*) = mgxrxzinﬁ(w) = mgnmfxﬁ(w).

In case that there exists an optimal solution
of L—fuzzy optimization problemsby the above

theorems, the solution means a real number.

Theorem 8 Let n = 1. Denote

£ = min{f(2): z € §}, f§ = min{f(z°) : z € C§},

f3 = min{f(2)° : z € 3}, f{ = min{f(2) : 2 € 3},

where z° € R, f(2)° € R are centers of z, f(2),
respectively, C3 =C{NR = {z*€ R: z €}

If there exist f§,i = 1,2, 3,4, then it follows
that ff € R,i=1,2,3,4, and that

R=f=K<f

If6=0, then ff = f§ = f = f}.
If6#0, then fi = f§ = f§ < fL.

4 Compact Feasible Sets

In this section we establish an criterion for
the existence of optimal solutions of L—fuzzy
optimization prolems with compact feasible
sets. In the following example we consider
L—fuzzy optimization problem with a fuzzy
objective function and fuzzy constraints.



Example 2 Let z = (u,v) € F} and X € I.
Fuzzy functions F, g;,j = 1,2, 3, are as follows
(P):

F(z) = -—u-v;
g1(z) = —u=x(0,61)L;
g2(z) = —v=x(0,82)z;
g3(z) = W)+ ") 2 (L,8)r.

Here (0,51)L,(0,62)L,(1,63)L are L—fuzzy
numbers and (u?)r = (u1(1)%,£ua)L, (V)L =

(v1(1)?,£y2) L are L—fuzzized numbers.

Iﬁ order to find an optimal solution 2* =
(u*,v*) € F2 we consider the Lagrangian func-
tion L(w) = —u — v + k(w), where w =
(zm),m = (m,m,m3)T € RY, and k(w) =
Mm—u1(1) + A(lu — 61)] + me[—v1(1) + A(bw -
82)] +m3u1(1)® +v1(1)? — 1+ A(€ya +£y2 — d3)].
Denote w* = (u*,v*,0,0,0). We find condi-
tions of u* = (u1(1),€u+)r,v* = (v1(1),4s*)L
satisfying the inequality £(z*,n) =<\ L(w*) Xi
£(2,0,0,0) for n € R3 and (u,v) € C. Then it
follows that

—u* —v* <\ —u—o.

Since saddle points of £ are optimal solutions
of (PJ), we get

(1) —ui(1) = vi (D) +A(lus +6o+) < —ur(1) =
v1(1) + A(£y + £y) for Lye + £ye > £y + £y,

(i) —3 (1)~ 0] (1) + A(fur +or) < —ur (1)
v1(1) + A(ly + £y) for Lye + Lye < Ly + L.

From conditions of constraints we get the
feasible set C§ = {(u,v) € FE : u =
(u1(1), £u)L,v = (v1(1), £y) L satisfy the follow-
ing conditions (c-i) - (c-iii) below }.

(ci)  wi(1) > A(lu — 61),
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(c-if) v1(1) 2 A(€y — b2),
(c-iti) u1(1)% +v1(1)? < 1+ A\[03 — £y2 — £,2].

Here

2ui (1l — (L) (wm(1)24) (1)
Ly =< (£,)? (jua(1)| £ &) (U32)
—2u (1)l — (£u)? (wa(1) € —£,) (Us)

20(1)ly ~ (&) () 26) (W)
bia =14 (&)? (@) < &) (V2)
—201(1)by — (&)* (n1(1) < -6) (V3)
The set Cﬁ is non-empty since the point
(ur(1), v1(1))T = (AM(tw — 61), A€y — 62))7 sat-
isfies (c-iii) in case that u1(1) > £u,v1(1) > .
Conditions (c-i) - (c-iii) leads to
(c—1) wui(1) = =Ny,
(c—ii) v(l) > —Adg,
(c—iil) u1(1)2+v1(1)2 <1+ Ads.
So the set C. = {(w1(1),11(1))T € R? :
(c—i) —(c— iii) hold } is compact. It can
be easily seen that the set Spq = {(fu,b) €
R2 : (Up) and (V) hold },p = 1,3;q = 1,3,
are compact. In casethatp =1and ¢ =1,2,3,
it follows that
A(£,)? <14 X3 and M2 < 1+ M.
The latter inequality means that £, < |v1(1)]
or A(€y)? < 1+ Ad3, which show that Spg,p =
2;q = 1,2, 3, are compact. In the similar way
it follows that Spq,p = 1, 3; ¢ = 2, are compact.
Thus, from the compactness of C. C R? and
Spq C R2,p,q = 1,2,3, the feasible set C is
compact in Fr.
From (c — i) and (c — ii) we have
—u1(1) = v1(1) + Alu + £) < A1 + 02),
so f(z) = (0,61 + 82)1. From (c —iii) it fol-
lows that —uy(1) — v;(1) > —/2(1+ Ad3)

and the mimimum is attained at u;(1) =



(1) = (~/13%,0),, which means that
min, £(z) = (—/22%,0); and v* = v* =
(- k".‘;‘—‘51,0)1,. When A =0 and §; =0,j =
1,2, 3, then the real type of optimization prob-
lem (P§) gives —v/2 < f(z) < 0 in R and
u* =v*=,/1/2€R.

This example shows that there exists a
unique optimal solution of L—fuzzy number of
fuzzy optimization problem (P{) with a fuzzy
coefficient, where (P?) is an optimization prob-
lem with R—valed coefficiets if £, = 0 and (P)
is fuzzy type if £, # 0, where £, is the spread of
z € C§. Therefore the optimal solution to the
real type (P) is the same as solution to the
fuzzy type (P§) concerning A = 0 and £, = 0.

ij what follows we show an existence crite-
iron for (P$) having compact feasible sets. By
theorems in Section 3 we get the following ex-
istence criterion for real optimal solutions of

L—fuzzy optimazation problems.

Theorem 6 Let n = 1. If f and g;,j =
1,2,---,m, are A—convez and the feasible set
C¢ is compact in F}, then (P$) has a real op-

timal value at a real optimal solution.

Moreover the following minimax criterion is ex-
pected to be proved in the same way as the
minimax theorems in the real analysis. Let
C{ be a convex and compact set in F} and
let A € I. A function £ : C{ x RT — Fi,
satisfies (i) and (ii). (i) £(-,n) is A—lower
semi-continuous and A—quasiconvex on C§ fér
n € RY; (ii) £(z, ) is A\—concavelike on R for
z € C§. Then there exists an optimal solution
z* € C§ of (P}).

Here we mean that definitions of A—semi-
continuous, A—quasiconvex or A—concavelike
of L—fuzzy functions are as follows: It is said
that F : 7} = F| is A—lower semi-continuous
at z € Fp if for any € > 0 there exists a
6 > 0 such that F(z) <\ F(z + h) + € where
d(z,z + h) < 4. It is said that F : F} — Fi is
A—quasiconvex if for each z;, 2, € Fr and k €
I, kF(21)+(1—-k)F(2z2) <x max{F(z), F(z,)).
It is said that Y : RT* — F is A—concavelike
if for each 7,7 € RT and 0 < k < 1, there
exists an 9 € RT such that kY (n) + (1 -
k)Y (n2) <» Y (no).
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