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Abstract

This paper examines the risk aversion and initial wealth effects for an optimal selection problem
with two risky assets. It is assumed that a risk averse investor wishes to maximize the expected utility
from his/her final wealth. Many comparative static results are obtained for the situations when the risk
aversion of investor increases or decreases in the sense of Arrow-Pratt or in that of Ross, and when
the level of investor’s initial wealth increases or decreases. Especially, we investigate in more detail the
cases when the return rates of the two risky assets are stochastically independent, and when they have
bivariate normal distribution.
Key word: optimal portfolio, two risky assets, Arrow—Pratt measure of risk aversion, Ross ordering
of risk aversion, bivariate normal distribution, total positivity of order 2.

1 Introduction

This paper considers an optimal selection problem with two risky assets, where a risk averse investor wishes
to maximize the expected utility from his/her final wealth. We examine the risk aversion and initial effects
on the optimal portfolio, that is, comparative statics on how the optimal portfolio is affected by the cha.nge
of the investors risk aversion and/or. the level of his/her initial wealth.

There have been a great number of studies on the risk aversion and initial effects for various optimal
selection problems. The seminal studies were done independently by Arrow [1] and Pratt [26] in 1960s. They
proposed a measure of risk aversion, which is now very common and called Arrow-Pratt measure of risk
aversion, and some notions on individual’s attitudes toward risk such as IARA (Increasing Absolute Risk
Aversion), DARA (Decreasing Absolute Risk Aversion), IRRA (Increasing Relative Risk Aversion), DRRA
(Decreasing Relative Risk Aversion), and others, and showed that these notions play important roles in
various decision making problems under risk, including an optimal selection problem with one risk free asset
and one risky asset. Their interesting and important results are summarized with new proofs in the next
section. Since then, there have been extensive studies concerning such problems (see, e.g., [5, 10 11 20, 28]
and references therein).

On the other hand, for an optimal selection problem with two risky assets, Cass and Stiglitz [4] and Ross
[27] showed that, by counterexamples, the Arrow-Pratt measure does not yield any clear comparative statics
result, and, in some cases, implies rather counterintuitive effects on the optimal portfolios. Further, Ross
[27] introduced a new ordering risk aversion, so called Ross ordering, which strengthens that of Arrow-Pratt,
and obtained a distribution—free comparative statics results for an optimal selection problem with two risky
assets. Rubinstein [28] and Li and Ziemba [22] the cases when return rates of two risky assets have a bivariate
normal distribution under another measure of risk aversion, so called Rubinstein measure.

In this paper, we first derive well-known comparative statics results of the risk aversion and initial effects
for an optimal selection problem with one risk free and one risky assets, based on the Arrow-Pratt measure
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of risk aversion. The proofs given here are new and based on variation diminishing properties of TP, (Totally
Positive of order 2) functions (see Appendix A). Then, their results are partially extended to an optimal
selection problem with two risky assets. Analyses based on the Ross ordering of risk aversion are also done
for two risky assets problems. Especially, we investigate in more detail the cases when the return rates of
the two risky assets are stochastically independent, and when they have a bivariate normal distribution.

2 Ordering of Risk Aversion

2.1 Arrow-Pratt Ordering of Risk Aversion

Many measures of risk aversion for utility functions have been proposed with the object of expressing
individual’s risk aversion in the economic behavior under uncertainty. Among them, the following Arrow-
Pratt measures of risk aversion have been used most widely (Arrow [1], Pratt [26]).

Definition 2.1 (Arrow—Pratt Measures of Risk Aversion). Let u (v’ > 0, u” < 0) be a twice differ-
entiable von Neumann—Morgenstern (vN-M) utility function of a risk averse individual, defined on an open
interval of the real line R := (—o00,0c). Define the Absolute Risk Aversion (ARA) and the Relative Risk
Aversion (RRA, or Proportional Risk Aversion (PRA)) of u (or the individual) by

R = -5 (20) 2.1)
Rp(z;u) = —%%, ‘ (2.2)
respectively. a

The above measures of risk aversion are functions of the wealth level z. We further introduce some
notions of their functional behavior with respect to the wealth level z.

Definition 2.2 (IARA, DARA, IRRA, DRRA (in the Sence of Arrow—Pratt)).

(1) We say that a risk averse vN-M utility function u displays IARA (Increasing Absolute Risk Aversion)
in the sense of Arrow—Pratt if and only if its absolute risk aversion R (z; u) is increasing in the wealth
level z, and DARA (Decreasing Absolute Risk Aversion) in the sense of the Arrow—Pratt if and only
if it is decreasing in the wealth level z.!

(2) We say that a risk averse vN-M utility function u displays IRRA (Increasing Relative Risk Aversion)
in the sense of Arrow—Pratt if and only if its relative risk aversion Rgr(z;u) is increasing in the wealth
level z, and DRRA (Decreasing Relative Risk Aversion) in the sense of Arrow—Pratt if and only if it
is decreasing in the wealth level z. O

Arrow [1] and Pratt [26] examined the following hypothesis or claim concerning with the risk attitude of
typical investors.

Hypothesis 2.1.

(H1) The ARA (Absolute Risk Aversion) Ra(z;u) of a typical u (or a typical investor) is decreasing in the
wealth level z (DARA).

(H2) The RRA (Relative Risk Aversion) Rr(z;u) of a typical u (or a typical investor) is increasing in the
wealth level z (IRRA). a

1In this paper, the terms “increasing” and “decreasing” are used in the weak sense, that is, “increasing” means “nondecreas-
ing” and “decreasing” means “nonincreasing”.
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Arrow [1] and Pratt [26] found the following facts which support the above hypothesis 2.1: Consider an
optimal portfolio selection problem with one risk—free asset and one risky asset, where a risk averse investor
with a vN-M utility function u seeks to maximize his/her expected utility from the final wealth.

(1) If the utility function u displays DARA, then the optimal “amount” of the wealth to be invested in
the risky asset is increasing in the initial wealth level z;

(2) If the utility function u displays IRRA, then the optimal “proportion” of the wealth to be invested in
the risky asset is decreasing in the initial wealth level z.

In the next section 3, we will give a “new proof” of the above fact by applying a variation diminishing
property of a TP, function (see Appendix A). ‘

Definition 2.3 (>apra: Arrow—Pratt Ordering of Risk Aversion). Let u;, ug (u} > 0, u¥ < 0,71 =
1,2) be twice differentiable vN-M utility functions of two risk averse individuals, defined on a common open
interval of the real line R. If it holds that

" "
Ra(z;uy) = — =2 (2) > L2 (=) _ Ra(z;up) for all z, » (2.3)

u(z) ~  uy(e)

then (the individual with) u; is said to be more risk averse than (the individual with) uy (or (the individual
with) u, is said to be more risk tolerant than (the individual with) u;) in the sense of Arrow—Pratt, and in
this case, we write as

41 2APRA U2 (Or uz <APRA U1). (2.4)
a

The following equivalence among (1), (2), and (3) are well known in economics under uncertainty and
incomplete information (see Laffont [21], Hirshleifer and Riley [7], Gollier [6]). For (4), see Appendix A.2.

Theorem 2.1. For twice differentiable vN-M utility functions u;, uz (u} > 0, v <0, i = 1,2) of two risk
averse individuals, defined on a common open interval of the real line R, the following four statements are
mutually equivalent:

(1) u1 >aPRA u2, that is,

Ra(z;uy) = —%’,i,—((—:—;- > —% = Ra(z;up) for all z; (2.5)

(2) For some increa.éing and concave function G, it holds that
u1(z) = G(ua(z)) for all z; (2.6)
(3) If we let m;(w; X) be an insurance premium paid by the individual u;, ¢ = 1, 2 with wealth level w for

any fair gamble X (E[X] = 0) (in other words, m;(w; X) be a certainty equivalent value 7 such that
E[u; (w + X)] = u;(w — 7)), then

w1 (w; X) > my(w; X); | 2.7)
(4) The marginal utility u}(z) is TP, (Totally Positive of Order 2) with respect to i = 1,2 and possible z,
that is, ,
' . 1
“,1(“) “ W 150 forallz<y, (2.8)
up(z) ua(y)
or, equivalently,
!
up(2) is increasing in z. : (2.9

ui(2)
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2.2 Ross Ordering of Risk Aversion
The following ordering of risk aversion is a strengthened one of that of Arrow-Pratt (Ross [27]).

Definition 2.4 (>rra: Ross Ordering of Risk Aversion). Let u (u' > 0, u” < 0) be a twice differen-
tiable vN-M utility function of a risk averse individual, defined on an open interval of the real line R. If it
holds that

Y e 2P e (210

then (the individual with) u, is said to be more risk averse than (the individual with) u2 (or (the individual
with) u; is said to be more risk tolerant than (the individual with) u,) in the sense of Ross, and in this case,
we write as

u; 2RRA U2 (Or u2 <RRA ). (2.11)

O

Obviously, u; >Rra u2 implies u; >Apra u2, however, it could be shown by a counterexample that the
converse does not necessarily hold.
Theorem 2.2 (Ross [27]). For twice differentiable vN-M utility functions u;, u2 (v} > 0, 4! <0,i=1,2)
of two risk averse individuals, defined on a common open interval of the real line R, the following four
statements are mutually equivalent:

(1) U] 2RRA U2, that iS,

u () w(z)
Y @ 2P uE) #12
(2) For some positive number a (> 0), it holds that
n '
ui(@) 5 o 5 ulz2) for all z,,z2; (2.13)

up(z1) T up(ze)
(3) For some positive number a (> 0) and some decreasing and concave function G, it holds that
uy (z) = aua(z) + G(z) for all z; (2.14)
(4) If we let m;(W; X) be an insurance premium paid by the individual u;, i = 1, 2 with random initial

wealth level W for any fair gamble X (E[X|W)] = 0, a.s.) (in other words, 7;(W; X) be a certainty
equivalent value 7 such that Efu;(W + X)] = Elu;(W — =)]), then

m(W; X) 2 m(W; X). (2.15)
O

Correspondingly to the notions IARA, DARA, IRRA, DRRA in the sense of Arrow—Pratt defined in
Definition 2.2, we define IARA, DARA, IRRA, DRRA in the sense of Ross as follows:

Definition 2.5 (IARA, DARA, IRRA, DRRA in the Sense of Ross).

(1) We say that a risk averse vN-M utility function u displays IARA (Increasing Absolute Risk Aversion)
in the sense of Ross if and only if

u(- +y) 2rra u(-) forally >0, (2.16)

while we say that it displays DARA (Decreasing Absolute Risk Aversion) in the sense of Ross if and
only if

u(-) >rra u(-+y) forally>0. (2.17)
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(2) We say that a risk averse vN-M utility function u displays IRRA (Increasing Relative Risk Aversion)
in the sense of Ross if and only if

u((L+y) ) >rra u(-) forally >0, (2.18)

while we say that it displays DRRA (Decreasing Relative Risk Aversion) in the sense of Ross if and
only if

u(*) >rra u{(1+y) ) forally>0. (2.19)
a

Obviously, the above notions of Ross are stronger than the corresponding ones of Arrow-Pratt.

3 Portfolio Selection Problem with One Risk—Free and One Risky
Assets

We consider a risk averse investor with a vN-M utility function u (u' > 0, u” < 0) who allocates his/her
initial wealth w (> 0) between one risk—free and one risky assets. Let r (> 0) be an interest rate ( + 1) of
the risk—free asset, and X denote a random variable representing the rate of return (+ 1) on the risky asset,
whose cumulative distribution function is denoted by Fx. Let wx denote the “amount” of wealth invested
in the risky asset X. Then, the investor’s optimization problem is to maximize the expected utility from the
random final wealth, which is described as follows:
max E[u((w-wx)r+wxX)], : (3.1)
wx €F(w)

where F(w) (C R) denotes the set of all feasible solutions (e.g., F(w) = Ry := [0, 00) if a short sale of the
risky asset is not allowed).

Let w (w;u) denote the (or an) optimal solution of the portfolio selection problem (3.1) in order to
represent explicitly the dependence on the utility function u and the initial wealth w.

Now, define the objective function of the problem (3.1) to be maximized as

U (wx,w;u) = E[u((w - wx)r+wxX)], wx € F(w). (3.2)
Differentiating it with respect to wx, we have
U (wx,wiw) = 5oU (wx,win) = Bl (@ = wx)r+wxX) {X = 1]
b'¢

= /m o (w—-wx)r +wxz){z —r}dFx(z),  (3:3)

— 00

s —s U (wx,w;u) = ]E[u” (w-wx)r+wxX){X —r}z] . (3.4)

aw a2

Since u"” < 0 in (3.4), we have

U" (wx,w;u) =

U" (wx,w;u) <0,
which implies U (wx,w;u) is a concave function of wx. It is noted that, in (3.3), the function
glz):=z—r

is increasing in z, so that it changes its sign at most once, and its possible sign change is from negative to
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For an arbitrarily fixed wx € R, define a function by
k(w,z;u) :=logu' (w —wx)r +wxz), weR, (3.5)

then its differentiation yields

E%k(w,z;u) = ((w—w):)r+wxa:)u” ((w—wx)r+wxz)r

= —Ra((w-wx)r+wxz;u)r, (3.6)
a—ik(w, z;u) = o (0 w):) mara—— u’ (w-wx)r+wxz)wy

= —Rp((w-wx)r+wxzr;u)wy. 3.7

Theorem 3.1. As the risk aversion, in the sense of the Arrow-Pratt, of (the utility function u of) the
investor increases, the optimal amount w (w; u) invested in the risky asset decreases. a

Theorem 3.2. Suppose that (the utility function u of) the investor displays DARA (IARA, respectively)
in the sense of Arrow-Pratt. Then, as the initial wealth w increases, the optimal amount wY (w; u) invested
in the risky asset increases (decreases, respectively). (]

Next, we rewrite the portfolio selection problem (3-1) as follows:

max Efu(w{(1-Ax)r+AxX})]= max E[u(w{r+Ax (X -r)})], (3.8)

where Ax := wx /w is the “proportion” of the wealth invested in the risky asset X and F is the set of all
feasible solutions.

Let Xy (w;u) denote the (or an) optimal solution of the portfolio selection problem (3.8) in order to
represent explicitly the dependence on the utility function u and the initial wealth w.

Now, define the objective function of the problem (3.8) to be maximized as

U(x,wiv) :=Efu(w{r+Ax (X —n)})], Ax € F. ' (3.9)
Differentiating it with respect to Ax, we have

U Oy wiw) = 50U O,wi9) = wBL (w{r+ Ax (X = )) (X — 1))

w / T Wit @-n) {s-r}dFx(@), (3.10)

—00

afz U (Ax,w;ju) = w’E [u” (w{r+Ax (X -n)pPh{x - r}z] . (3.11)
X

Since 4" < 0 in (3.11), we have

U" (Ax,w;u) :=

U" (wx,w;u) <0,

which implies that U (Ax,w;u) is a concave function of Ax.
Noting again that, in (3.10), the function

g(x)=z~r

is increasing in z, so that it changes its sign at most once, and its possible sign change is from negative to
positive.
For an arbitrarily fixed Ax € R, define a function by

k(w,z;u) :=logu' (w {r + Ax (z —1)}), (3.12)
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then its differentiation yields

1 "
%k(w,m;u) W ox @ _T)})u (w{r+ix(@-r)P{r+Ax(z-r)}
= —Ra(w{r+x(@-n)}u). (3.13)

Theorem 3.3. Suppose that (the utility function u of) the investor displays DRRA (IRRA, respectively) in
the sense of Arrow—Pratt. Then, as the initial wealth w increases, the optimal proportion XY (w;u) invested
in the risky asset increases (decreases, respectively). O

4 Portfolio Selection Problem with Two Risky Assets

‘We consider a risk averse investor with a vN-M utility function u who allocates his/her positive initial wealth
w (> 0) between two risky assets. Let possibly dependent random variables X and Y denote the rates of
returns (+1) on the two risky assets, and denote their joint distribution function by Fx,y and their marginal
distributions by Fx and Fy, respectively. For convenience, we call these assets as X, Y throughout this
paper. If we denote the proportion of his/her initial wealth w invested in the asset X by Ax (€ [0,1]), and
that in the asset Y by 1 — Ax (€ [0, 1]), then the expected utility from his/her final wealth is given by

UQx,wiu) = Elu(w{AxX +(1-Ax)Y})]
= Eu(w{dx(X-Y)+Y})]. ; (4.1)
Assuming that the investor’s objective is to maximize the expected utility of his/her final wealth, then

the portfolio selection problem with the two risky assets is to find or characterize the (or an) optimal solution
A% (w; u) of the following optimization problem:

A Ju). 4.2
A;Iana['afl] U( X;wyu) ( )

By differentiating U(\x,w; u) with respect to Ax, we have

U0, win) = 5§;U(Ax,w;u)

= wE[ (w{AxX + (1 -2x)Y}{X-Y}], (4.3)
2
U'(M\x,w;u) = gfx—zU()\x,w;u)

= wE[u" (w{dxX +(1-Ax)YH{X-Y}]. (4.4)
Since u” < 0 in (4.4), we have
U"(Ax,w;u) <0,
which implies that U(Ax,w;u) is a concave function of Ax. Accordingly, the (or an) optimal solution of the
problem (4.2) could be characterized as follows: for a solution Ax (€ [0,1]),
U'hwiu) >0 <= Ix(wju) > X (4.5)
Uhw;u) <0 <= Ax(w;u) <A (4.6)

For an example, if we set A = 1/2 in eqs. (4.5) and (4.5), then the investor demands the risky asset X
more than the risky asset Y, that is,

fa—ry

M(wsu) > 5 (21-Ax(w;u)) (4.7)

[V

if and only if

U’ (—,'w; u) > 0. (4.8)
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Remark 4.1.
(1) By the no-short-sale constraint F = [0, 1] in the portfolio selection problem (4.2), i.e.,
Ax €[0,1] (1-Ax €[0,1)]),

if weset A =1and A = 0in egs. (4.5) and (4.6), then the (or an) optimal proportion A% (w; u) invested
in the risky asset X is characterized as follows:

U'lw;ju) 20 <= Ax(w;u)=1; (4.9)
U'(0,w;u) <0 <= Ax(w;u)=0. (4.10)
(2) The constraint set F could be generalized to the case when
F=lat (5[0,1], —0<a<0<1<b< oo).

In this case, the above characterizations of the optimal proportions A} (w; u) and 1— A% (w; u) invested
in the risky assets X and Y would be modified as follows:

U(lwju) 20 <= 1-%(w;u) <0; (4.11)
U'(0,w;u) <0 <= Ax(w;u) <0, (4.12)
and accordingly the presented results in the sequel could be modified in obvious ways. a

4.1 Analysis Based on Arrow—Pratt Measure of Risk Aversion
By writing down U’(1, w; u) in eq. (4.9), we have
U'(l,w;u) = wE[u'(wX){X-Y}]
wEx [Ey [u'(wX)}{X - Y} X]]
= wEx [v'(wX){X - Ey[Y|X]}]

= w‘/oo u'(wz) {z — my | x(z)} dFx(z), (4.13)

—oo
where Ex [-] and Ey [] are the expectation operators with respect to the random variables X and Y, respec-
tively, and we define

my|x(z) == Ey [Y|X = z]. (4.14)
By writing down U’ (%,w;u) in eq. (4.8), we have
(i) = ol s
= 2uvE[v' (w2){Z-Y}]

2wEz [Ey [u'(wZ){Z - Y}|Z]]
= 2uwEz [u'(wZ){Z - Ey[Y|Z]}]

= 2w/ u'(wz) {z — my z(2)} dFz(2), (4.15)
where, we define as
X+Y
Z:="2—,

Fz is the cumulative distribution function of the random variable Z, Ez[-] is the expectation operator with
respect to the random variable Z, and

(4.16)

my|z(2) = Ey[Y|Z = 2] = Ey [Y'X+Y = z] :

2
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4.1.1 Risk Aversion Effects

First, let us investigate the risk aversion effects on the (or an) optimal portfolio for an arbitrarily fixed
positive initial wealth w (> 0).
By eq. (4.13), we have the following theorem.

Theorem 4.1. Let a positive initial wealth w (> 0) be arbitrarily fixed.

(1) Suppose that z — my|x(z) changes its sign at most once in z and its possible sign change is from
“negative to positive.” If an investor does not invest all of his/her wealth exclusively in X, then
neither does a more risk averse investor in the sense of Arrow—Pratt (if an investor invests a positive
proportion of his/her initial wealth in Y, then so does a more risk averse investor in the sense of
Arrow-Pratt).

(2) Suppose that z — my|x(z) changes its sign at most once in = and its possible sign change is from
“positive to negative.” If an investor invests all of his/her wealth exclusively in X, then so does a more
risk averse investor in the sense of Arrow—Pratt. ‘ O

Furthermore, by eq. (4.15), we have the following theorem.
Theorem 4.2. Let a positive initial wealth w (> 0) be arbitrarily fixed.

e Suppose that z — my|z(2) changes its sign at most once in 2 and its possible sign change is from
“negative to positive.” If an investor invests more of his/her initial wealth in ¥ than in X, then so
does a more risk averse investor in the sense of Arrow-Pratt. a

4.1.2 Initial Wealth Effects

Next, let us investigate the initial wealth effects on the (or an) optimal portfolio, when a (VN-M utility
function u of) a risk averse investor is arbitrarily fixed.

Theorem 4.3. Let (a vN-M utility function u of) a risk averse investor be fixed. Suppose that his/her
vN-M utility function u displays IRRA (DRRA, respectively). : _

(1) Suppose that z — my|x(z) changes its sign at most once in = and its possible sign' change is from
“negative to positive.” If an investor does not invest all of his/her wealth w; exclusively in X, then
neither does he/she all of his/her larger (smaller, respectively) initial wealth w; exclusively in X (if an
investor invests a positive proportion of his/her initial wealth w; in Y, then so does he/she a positive
proportion of his/her larger (smaller, respectively) initial wealth ws in Y).

(2) Suppose that z — my|x(z) changes its sign at most once in and its possible sign change is from
“positive to negative.” If an investor invests all of his /her wealth w; exclusively in X, then so does
he/she all of his/her larger (smaller, respectively) initial wealth w exclusively in X - a

Theorem 4.4. Let (a vN-M utility function u of) a risk averse investor be fixed. Suppose that his]her
vN-M utility function u displays IRRA (DRRA, respectively). ‘

e Suppose that z — my|z(z) changes its sign at most once in z and its possible sign change is from
“negative to positive.” If an investor invests more of his /her initial wealth w; in Y than in X, then so
does he/she more of his/her larger (smaller, respectively) initial wealth w; in Y than in X. a
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4.1.3 Sufficient Conditions

Now, let us examine sufficient conditions for

2 - my5(2) :=z—Ey[Y|Z=z]=E[Z—Y|X;Y =z] =E[X—;{’X;Y =z] (4.17)
to change its sign at most once in z, from negative to positive. It suffices for this that E X-vix -2*- Y =2z

is increasing in z. Further, for the latter, it is sufficient that the following conditional random variable is
stochastically increasing in z in a sense of a suitable stochastic dominance relation (or stochastic ordering
relation):

2

For a candidate of such a stochastic dominance relation, we consider the likelihood rate dominance (or
likelihood ratio ordering), which is known to be rather strong but easily verifiable stochastic dominance
relation. A necessary and sufficient condition for the conditional random variable (4.18) to be stochastically
increasing in z with respect to the likelihood rate dominance is in the followings: the joint probability density
function

[X_;I ’X +Y =z]. (4.18)

froy x4v (w,2)

of the bivariate random vector
2 7 2

is TP, (Totally Positive of order 2) with respect w and z (see, Appendix A and, e.g., Tong [34]). On the
other hand, since

(59

f_x_;l‘g_tl(w,z) = 2fx'y(z+w,z—w), (4.19)
we have, by Theorem 4.2, the following corollary.
Corollary 4.1. Let a positive initial wealth w (> 0) be arbitrarily fixed.

¢ Assume that fxy(z + w,z — w) is TP, with respect to w and z, that is,

Ixy(z+w,z1 —w) fxy(z2 + w2 —w)

20 forall w; <ws, z <z, 4.20
Ixy(z1+wa, 21 —wa)  fxy(z2 + w2, 23 — w,) ! 1= (4.20)

Then, if an investor invests more of his/her initial wealth in ¥ than in X, then so does a more risk
averse investor in the sense of Arrow-Pratt. a

Corollary 4.2. Let (a vN-M utility function u of) a risk averse investor be fixed. Suppose that his/her
vN-M utility function u displays IRRA (DRRA, respectively).

e Assume that fxy(z+w,z —w) is TP, with respect to w and 2. If an investor invests more of his/her
initial wealth w; in Y than in X, then so does he/she more of his/her larger (smaller, respectively)
initial wealth w, in Y than in X. O

4.1.4 Independent Cases
When two random variables X and Y are stochastically independent, since
my|x(z) = py (: the mean of Y = a constant), (4.21)

z — my,|x(z) = z — py is increasing in z, so that it changes its sign at most once in z, and its possible sign
change is from negative to positive. Accordingly, by Theorem 4.1, we have the following corollary.
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Corollary 4.3. Let a positive initial wealth w (> 0) be arbitrarily fixed.

e Assume that two risky assets X and Y are stochastically independent. If an investor does not invest
all of his/her wealth exclusively in X, then neither does a more risk averse investor in the sense of
Arrow-Pratt (if an investor invests a positive proportion of his/her initial wealth in Y, then so does a
more risk averse investor in the sense of Arrow—Pratt). O

Similarly, by Theorem 4.3, we obtain the following corollary.

Corollary 4.4. Let (a vN-M utility function u of) a risk averse investor be fixed. Suppose that his/her
vN-M utility function u displays IRRA (DRRA, respectively).

¢ Assume that two risky assets X and Y are stochastically independent. If an investor does not invest
all of his/her wealth w; exclusively in X, then neither does he/she all of his/her larger (smaller,
respectlvely) initial wealth w; exclusively in X (if an investor invests a positive proportion of his/her
initial wealth w; in Y, then so does he/she a positive proportion of his/ her larger (smaller, respectively)
initial wealth ws in Y'). a

For examples where the sufficient condition in Theorem 4.2, 4.4 is easily verifiable, there is a case when the
random variable X and Y are independently distributed according to Gamma distributions with a common
scale parameter as follows:

Example 4.1. Consider the case when the random variables X and Y are independently distributed accord-
ing to Gamma distributions with a common scale parameter A (> 0), and possibly distinct shape parameters
ax and ay (> 0), respectively. That is, their probability density functions fx are fy are given by

\ax pox —1e—-Az Aev yay —le—Ay

and their means and variances by

ax a ay ay
EX] =, Var[X]=-3; ElY]==, Valt]=-3
A _ A A
Then, their sum X + Y is also Gamma distributed with scale parameter A and shape parameter ax + ay,
that is, its probability density function fxiy is given by
Aex +ay zax+ay—le-kz
I'(ax +ay)

Ix+v(2) =

Further, since the bivariate random vector (Y, X + Y) has its probability density function fy,xy given by

ax+ay — ax—1,ay—1,—-Az
frx+v(y,2) = fx(z —y)fr(y) = A (;‘(ai))l‘(a:) <,

the probability density function fy|x+y of the conditional random variable [Y|X +Y = Z], i.e., the condi-
tional probability density function of the random variable Y given the event {X +Y = z} is

fr.x+v (Y, 2)
fx+y(2)
I‘(ax +ay) (1 y)ax—l (y)ay—l 1.

T(ax)T(ay) z z z

frix+v(ylz)
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Therefore, since

HY|X+Y =2 = fo YFrixey Wl2)dy
_ I'(ax +ay) : Y ax—1 y ay
= Tax)Tay) Jy -5 G w
_ T(ax + ay) 1 ax -1, ay
= Teatag * [, A-v=towds

I'(ax + ay) I'(ax)T(ay +1)
® T(ex)L(ey) T(ax +ay + 1)

ay
ax +ay
and
Y -
z—myz(z) =2-E [Y ‘X; = z] =z2-EY|X+Y=2]=2- (2zaxa-:’ay) = :i +:iz,
(4.22)
we have the following equivalence
ax > ay <> z—my|z(z): incrasingin 2. ‘ (4.23)

Further, it is well-known that, if ax > ay, then X is larger than Y in the sense of increasing and convex
ordering, that is, for any increasing and convex function g, we have

Eg(X)] > Eg(Y)]
(see Chapter 4, and e.g., Kijima and Ohnishi {17, 19], Stoyan [32], Shaked and Shanthikumar [31]). a

For an example of discrete prdbability distribution, we have the case when each of X and Y is Poisson
distributed.

Example 4.2. Let us consider the case when X and Y are Poisson distributed with parameters A x and Ay
(> 0), respectively, that is, their probability mass functions px and py are given by

Ag e~ Mey

px(z)=PX=1)= o TE€Ly py() =B =y)= " » YELZLy,

and their means and variances by
E[X] = Ax, Var[X]=MAx; E[Y]=\y, Var[Y]=)\y.

Then, their sum X +Y is also Poisson distributed with parameter Ax + )y, that is, its probability mass
function px4y is given by

_ (Ax +Ay)ze Cx+av)

Px+y(2) =P(X +Y =2) )

Further, since the bivariate random vector (Y, X +Y) has its probability mass function py,xy given by

;—FAg’,e—(Xx-f-Xy)
pY,X+Y(y1 Z) = ]P(Y = y,X +Y = 2) = P(X =z- y)IP(Y = y) =px(2 - y)pY(y) = (Z — y)'y!

k)

the probability mass function of the conditional random variable [Y|X + Y = 2], i.e., the conditional
probability mass function py x4y of the random variable Y given the event {X + Y = z} is the following
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binomial distribution:

pyix+y(Wlz) = P(Y =y|X+Y =2)
P(X+Y =2)
_ pyrx+v(¥,2)
px+v(2)
NI e~ Ox+dy)
(z—y)ly!
(Ax + ,\Y)ze-—(z\x+>«v)
2!

) ) ()
y Ax + Ay Ax + Ay ’

Therefore, we have

Y X+ =)= Loy prixav ) == e
so that
z —my|z(2) =z—E[Y‘X;Y =z] =z-EY|X+Y =2z]=2— (2z )\XA:)\y) = ;‘\i ;;‘\: z.
: ‘ (4.24)
Accordingly, we have the following equivalence
Ax > Ay <= z—my|z(2): increasing in z. (4.25)
-

Next, let us examine the condition given in Corollaries 4.1 and 4.2. When X and Y are stochastically
independent,

fxy(z+w,z—w) = fx(z+w)fr(z —w). - o (4.26)

Therefore, in order for fx,y(z + w,z — w) to be TP; with respect to w and z, it suffices: that -

(1) fx(z + w) is TP, with respect to w and z;

(2) fr(z —w) is TP, with respect to w and z.

Hence, from Corollaries 4.1 and 4.2, we have the follow.ing corollary.

Corollary 4.5. Assume that X and Y are stochastically independent, and

(1) fx(z + w) is TP, with respect to w and z;

(2) fr(z —w) is TP, with respect to w and =.

Then, if an investor invests more of his/her initial wealth in Y than in X, then so does a more risk averse
investor in the sense of Arrow—Pratt. ‘ a

Corollary 4.6. Let (a vN-M utility function u of) a risk averse investor be fixed. Suppose that his/her
vN-M utility function u displays IRRA (DRRA, respectively). Assume that X and Y are stochastically
independent, and *
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(1) fx(z+ w) is TP, with respect to w and z;
(2) fr(z — w) is TP, with respect to w and z.

If the investor invests more of his/her initial wealth w; in Y than in X, then so does more of his/her larger
(smaller, respectively) initial wealth w, in Y than in X. (]

Remark 4.2.

(1) If fx(z + w) is TP, with respect to w and z, then random variable X is said to be DLR {(Decreasing
Likelihood Ratio). In this case, it is well known that the coefficient of variation of X satisfies
o[X]
ClX)i=o<5>1. (4.27)
E(X]
(2) If fy(z — w) is TP, with respect to w and 2, then random variable Y is said to be ILR (Increasing
Likelihood Ratio). In this case, it is well known that the coefficient of variation of Y satisfies

| ClY] := ;—:{[% <L (4.28)
Generally, a function f (: R = R;) is called PF; (Pélya Frequency of Order 2) if f(z —w) is TP, with
respect to w and z (see Barlow and Proschan [2, 3] and Karlin [12]). a
From the above, if
(1) fx(z +w) is TP; with respect to w and z;
(2) fr(z —w) is TP; with respect to w and z;
(3) EX] > E[Y],
then we have
o[X] > EX] > E[Y] > o[Y], (4.29)

that is, asset X is more “high risk and high return” than asset Y.

4.1.5 Bivariate Normal Cases

We consider the case when the random vector (X, Y) has a bivariate normal distribution, that is,

(X,Y) ~N(p, %), (4-30)
2
where u = kx is the mean vector, and ¥ = ( X o)i;y ) is the variance—covariance matrix.
By ox)yy Oy

Further, the correlation coefficient is defined as

. 9Xxy
= (4.31)

In this case, the joint density function of (X,Y) is given by

1 Q=)
Ixy(z,y) = PT—— ,,26 , (4.32)
where ‘
- 2 - - - 2
e e e 1, (433)
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and the conditional density function of Y given {X = z}, written fy|x (y|z), is a probability density function
of a univariate normal distribution

g
N (uy + p;}%(x - px), oy (1 - pz)) (4.34)
(see, e.g., Tong [34]).
By this result, we have
” .
my|x(z) = py +p_ (2 = px) (4.35)
so that
z—myx(z) = z-(py+p—(z—px)
- Tox
a .
= (1 - Pa—y) T — py + p—=px. (4.36)
ox ox

Therefore, if we set ¢ :=1— pg—}:-, then £ — my x(z) changes its sign at most once in z and its possible sign

change is from negative to positive for ¢ > 0, and from positive to negative for ¢ < 0.
Since the correlation coefficient satisfies —1 < p < 1, the conditions for the sign of ¢ are characterized as
follows: '

(1) fox > oy then ¢ > 0;
(2) If ox < oy then
(2.1) ¢>0for ~1< p < 2X,
oy
(2.2) c<0for X <p<.
oy

Accordingly, let us use standard deviation (or variance) of return rate as a “risk” measure of risky asset,
and say that “X is riskier than Y” when ox > oy, Then, the following corollary is obtained from Theorem
4.1.

Corollary 4.7. Assume that the random vector (X,Y) has a bivariate normal distribution. Let a positive
initial wealth w (> 0) be arbitrarily fixed.

(1) Suppose that X is riskier than Y, that is, ox > oy. If an investor does not invest all of his/her initial
wealth exclusively in X, then neither does a more risk averse investor in the Arrow—Pratt sense (if an
investor invests a positive proportion of his/her initial wealth in Y, then so does a more risk averse
investor in the sense of Arrow-Pratt.) A .

(2) Suppose that Y is riskier than X, that is, ox < oy.

(2.1) When -1<p< -‘;—X-, if an investor does not invest all of his/her initial wealth exclusively in X,
Y

then so does not a more risk averse investor in the Arrow—Pratt sense (if an investor invests a
positive proportion of his/her initial wealth in Y, then so does a more risk averse investor in the
sense of Arrow-Pratt);

(2.2) When Z—X < p <1, if an investor invests all of his/her initial wealth exclusively in X, then so
Y

does a more risk averse investor in the Arrow—Pratt sense. O

Similarly, from Theorem 4.3, we have the following corollary.
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Corollary 4.8. Assume that the random vector (X.Y) has a bivariate normal distribution. Let (a vN-M
utility function u of) a risk averse investor be fixed. Suppose that his/her vN-M utility function u displays
IRRA (DRRA, respectively).

(1) Suppose that X is riskier than Y, that is, 6x > oy. If an investor does not invest all of his/her wealth
w) exclusively in X, then neither does he/she all of his/her larger (smaller, respectively) initial wealth
wy exclusively in X (if an investor invests a positive proportion of his/her initial wealth w; in Y, then
so does he/she a positive proportion of his/her larger (smaller, respectively) initial wealth w, in Y).

(2) Suppose that Y is riskier than X, that is, ox < oy.

(2.1) When -1 <p< Z—x, if an investor does not invest all of his/her initial wealth exclusively in X,
Y

then so does not a more risk averse investor in the Arrow-Pratt sense (if an investor invests a
positive proportion of his/her initial wealth in Y, then so does a more risk averse investor in the
sense of Arrow—Pratt;)

(2.2) When Z—x < p £ 1, if an investor invests all of his/her wealth w; exclusively in X, then so does
Y
he/she all of his/her larger (smaller, respectively) initial wealth w, exclusively in X. O

In the sequel, the following lemma plays important roles.

Lemma 4.1 (Covariance Operator of Stein—Rubinstein). Assume that the random vector (X,Y’) has
a bivariate normal distribution, and a function g (: R — R) is a differentiable function. Then, under a suitable
integrability condition, we have

Cov(X,g(Y)) = Cov(X,Y)E[g' (Y)). (4.37)
O

Theorem 4.5. Assume that the random vector (X,Y) has a bivariate normal distribution. If ux < py
and ox > oy then any risk averse investor invests more of his/her initial wealth in ¥ than in X. O

Now, if the random vector (X,Y) has a bivariate normal distribution, then the random vector Y.2) =

2
are as follows (see, e.g., Tong [34]):

u = ( ::’Z, ) = ( ﬂx“-l‘-, By ) ) (4.38)
2

X+Y . P . . . .
(Y, 2+% has another bivariate normal distribution, and its mean vector and variance—covariance matrix

9 02 oxy + 0?,
t _ gy oY,z - Y 2
¥ o= ( ovz 0% ) oxy+oy ox+2xy+oy |7 - (4.39)
2 4
Further, if we define the correlation coefficient between Y and Z as
t.— 9Y.Z 4
pl: p— . (4.40)

then, similarly to the previous argument, the conditional distribution of Y given {Z = 2} is the following
normal distribution: '

g 2
N (i + 92 = ), o (1- 4 ))- (441)
oz
From the above results, we have

g
my|z(z) = py + p'é(z - Bz), (4.42)
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g
z—my|z(2) = 2- (uy +pt X (z - yz))
oz

g g
(1 - p*—Y) z— py +pl —pz. (4.43)
oz oz

Therefore, if we let ¢f := 1 - pf— then z — my|z(2) changes its sign in z at most once, and its possible
oz

sign change is from negative to positive for ¢! > 0, and from positive to negative for ¢! < 0. Rewriting ct as

19Y _ __ Ok =0y | 4.44
oz 03(+20‘x,y+0§,’ ( )

we have, by Theorem 4.2, the following corollary.

Corollary 4.9. Assume that the random vector (X,Y) has a bivariate normal distribution. Let a positive
initial wealth w (> 0) be arbitrarily fixed.

o Suppose that X is riskier than Y'; that is, ox 2> oy. Then, if an investor invests more of his/her initial
wealth in Y than in X, then so does a more risk averse investor in the sense of Arrow-Pratt. O

Similarly, by Theorem 4.4, we obtain the following corollary.

Corollary 4.10. Assume that the random vector (X,Y) has a bivariate normal distribution. Let (a vN-M
utility function u of) a risk averse investor be fixed. Suppose that his /her vN-M utility function u displays
IRRA (DRRA, respectively).

e Suppose that X is riskier than Y, that is, ox > oy. Then, if the investor invests more of his/her initial
wealth w; in Y than in X, then so does more of his/her larger (smaller, respectively) initial wealth w2
inY than in X. ‘ a

4.2 Analysis Based on Ross Ordering of Risk Aversion

In this subsection, we examine the risk aversion and initial wealth effects on the optimal portfoho based on
the ordering of risk aversion proposed by Ross, S. A. which is a stronger notion than that of Arrow-Pratt.
Ross [27] proved the following comparative statics results.

Theorem 4.6 (Ross [27]). Let a positive initial wealth w (> 0) be arbitrarily fixed. Assume that my|x(z) >
z for all possible z. Then, the (or an) optimal proportion of the initial wealth invested in X is larger for a
more risk averse investor in the sense of Ross. 0

Theorem 4.7 (Ross [27]). Let an investor be fixed. Assume that my) x(z) > « for all possible z, and
the investor’s utility function displays IRRA (DRRA, respectively) in the sense of Ross. Then, the (or an)
optimal proportion of his/her initial wealth invested in X increases (decreases, respectively) in his/her initial
wealth. : , 0

Notice that the statement “my|x(z) > z for all possible z” implies that Y is riskier and offers a higher
return than X in a sense.

Above two theorems are very interesting since they don’t assume the distribution form of returns rates on
the assets X, Y. However, the condition “my x(x) > z for all possible z” does not hold in some important
cases, for an example, in the case when the random vector (X, Y’) has a bivariate normal distribution. Hence,
in this section, we will discuss the case of bivariate normal distribution.

Theorem 4.8. Let a positive initial wealth w. (> 0) be arbitrarily fixed. Assume tha.t the random vector
(X,Y) has a bivariate normal distribution, and that the mean px of X is smaller than the mean py of
Y. Then, the (or an) optimal proportion of the initial wealth invested in X is larger for a more risk averse
investor in the sense of Ross. O
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Theorem 4.9. Let (a vN-M utility function u of) arisk averse investor be fixed. Suppose that the investor’s
utility function u displays IRRA (DRRA, respectively) in the sense of Ross. Assume that the random vector
(X.Y) has a bivariate normal distribution, and the mean px of X is smaller than the mean uy of Y. Then,
the optimal proportion of his initial wealth invested in X increases (decrease, respectively) in his initial
wealth. a
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A Appendix

A.1 Total Positivity

In this appendix, we provide the information needed in this paper about total positivity. The theory of
totally positive functions is very rich and the results provided here is indeed only “the tip of the iceberg.”
More detailed discussions of the theory of total positivity are in Karlin [12].
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Definition A.1 (Total Positivity of Order n). A real valued function K(z,y) defined on a rectangle
subset X x Y in R? := R x R, is said to be Totally Positive of order n (TP,,) in = and y if and only if, for
all possible ; < 22 < --- <z, and y; < y2 < --- < yYn, we have

K(xliyl) 2 Os (A'l)

and for each k = 2,--- ,n,
K(Ihyl) K(zl,yk)
L. |20 (A.2)
K(zk,1n) -+ K(zi,u1)
a

For a function K(z,y) defined on a rectangle subset X x Y in R?, we denote

1, T2 K(z1,11) K(z1,92)
K = det y I1 < Z2, < ya.
( n V2 ) ( K(z2,51) K(z2,92) PR e

Then, for n = 2, the above definition is reduced to the following.

Definition A.2. A nonnegative function K(z,y) defined on a rectangle subset X x Y in R?, is said to be
Totally Positive of order 2 or simply TP, denoted by K € TP3(X x Y), if and only if

z1, T

K( yl y2 ) = K(z1,11)K(22,y2) — K(21,¥2)K(z2,3) 20, 21 <22, 91 <ypo.
1; Y2

a

Assuming the twice differentiability of the function, its TP, property is easily verified by its 2nd order
derivative.

Lemma A.1. Continuously twice differentiable positive valued function K(z,y) defined on a rectangle
subset X x Y in R?, is TP, in z and y if and only if

& log K(z,y)

> . ' .
D20y >0 forall (z,y) € X xY. (A.3)

O

The property (A.3) is called as log-super-modularity of function K.
For two nonnegative functions K(z,z), L(z,y) defined on rectangle subsets X x Z and Z x Y in R?,
respectively, let

M(z,y) = / K(z,z)L(z,y)d2, z€X, yeY.

The next result is a special case of the well known composition formula (see page 17 of Karlin [12])).

Proposition A.1 (Composition Formula). We have

M( o1, ) =// K( 1, T2 )L( 1, 22 )dzldzz.
Y1, Y2 21<22 21, 22 Y1, Y2

As a consequence, if K € TP3(X x Z) and L € TP3(Z xY), then M € TP2(X x Y). ]
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Definition A.3 (Pélya Frequency of Order 2). A nonnegative function f(z) defined on a subset of R
is said to be Pdlya Frequency of order 2 (PF3) in z if and only if f(x —y) is TP, in z and y, i.e,,

f@i—y)f(z2 —y2) > flz1 —y2)f(@2 —w1). =1 <22, y1 <2
O

The class of PF, functions is important and has many applications in various fields. A key property
that every PF; function possesses is the characterization that it has the form f(z) = e~ (=) where ¢(z) is a
convex function.

Proposition A.2. Every PF, function on a subset of R is log—concave. a
The next result is found in page 128 of Karlin [12].

Proposition A.3. For cumulative distribution functions F' and G, let
o0 o0
H@)= [ Fe-1)a6w) = [ Ga-ndre), zeR
—O0 —00

If both F and G are PF; then so is H (H is a cumulative distribution function too). a

The next result is called the variation—diminishing property of Karlin [12] (the details are found in Section
_3 of Chapter 5).

Theorem A.1 (Variation Diminishing Property). Suppose that K(z,y) is TP, in = and y, and f(y)
has at most n — 1 sign changes. Let

o(z) = / K(z,9)f ()dn() (A4)

where  is a o—finite measure on the Borel measurable space (R, B(R)). Then g(z) has at most n — 1 sign
changes. Moreover, if g(z) has exactly n — 1 sign changes, then they occur with same pattern as that of

f)- 0

A.2 TP, Functions and Theory of Risk Aversion

Let uy, up (u} > 0, u! < 0, i = 1,2) be twice differentiable vN-M utility functions of two risk averse
individuals, defined on a common open interval of the real line R Jewitt {11] showed that u; >gra u: if and
only if

u)(z)
) (=)

is increasing in z (A.5)
or, equivalently,

u(z) wiy)

>0 forallz<y. (A6
uy(@) ) )

- The property in (A.6) can be stated in terms of total positivity. Namely, uj(z) is TP in = and i = 1,2 (see
Karlin [12]).

Lemma A.2. Suppose that utility function u displays IRRA (DRRA, respectively) and 0 < w; < ws.
Define u;(x) = u(w;z), i = 1,2. Then, u; <pa u2 (u2 <rA 1) a

Theorem A.2. For utility function u on R, suppose that u’ > 0, v” < 0 and u" exists. If « displays IRRA,
then u'(—az) is TP ina >0and z € R O



